CT Angiography-Derived Fractional Flow Reserve

  • Adriaan Coenen
  • Frank Gijsen
  • Koen NiemanEmail author
Part of the Contemporary Medical Imaging book series (CMI)


A virtual fractional flow reserve can be calculated from regular CT angiograms using computational fluid dynamics. Several CT-FFR applications, at a variable state of development, allow for assessment of the hemodynamic severity of coronary artery disease, limit false-positive CTA interpretations, potentially substitute other functional tests, and avoid normal invasive angiography results.


Computed tomography Fractional flow reserve Hemodynamic significance Myocardial ischemia Coronary artery disease Computational fluid dynamics Machine-learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Authors/Task Force members, Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):2541–619.CrossRefGoogle Scholar
  2. 2.
    Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124(23):e574–651.PubMedGoogle Scholar
  3. 3.
    Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Morris PD, Narracott A, von Tengg-Kobligk H, Silva Soto DA, Hsiao S, Lungu A, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart. 2016;102(1):18–28.PubMedCrossRefGoogle Scholar
  5. 5.
    Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J, Norgaard BL, et al. Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging. 2015;8(10):1209–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Schaap M, van Walsum T, Neefjes L, Metz C, Capuano E, de Bruijne M, et al. Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA. IEEE Trans Med Imaging. 2011;30(11):1974–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Choy JS, Kassab GS. Scaling of myocardial mass to flow and morphometry of coronary arteries. J Appl Physiol. 2008;104(5):1281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, et al. Coronary CT angiography derived fractional flow reserve: methodology and evaluation of a point of care algorithm. J Cardiovasc Comput Tomogr. 2016;10(2):105–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Itu L, Sharma P, Mihalef V, Kamen A, Suciu C, Lomaniciu D, editors. A patient-specific reduced-order model for coronary circulation. 2012 9th IEEE international symposium on biomedical imaging (ISBI); 2012. 2–5 May 2012.Google Scholar
  10. 10.
    Ko BS, Wong DT, Norgaard BL, Leong DP, Cameron JD, Gaur S, et al. Diagnostic performance of transluminal attenuation gradient and noninvasive fractional flow reserve derived from 320-detector row CT angiography to diagnose hemodynamically significant coronary stenosis: an NXT substudy. Radiology. 2016;279(1):75–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82(5):1595–606.PubMedCrossRefGoogle Scholar
  12. 12.
    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Ko BS, Cameron JD, Munnur RK, Wong DT, Fujisawa Y, Sakaguchi T, et al. Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging. 2017;10(6):663–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Nickisch H, Lamash Y, Prevrhal S, Freiman M, Vembar M, Goshen L, et al. Learning patient-specific lumped models for interactive coronary blood flow simulations. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention – MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part II. Cham: Springer International Publishing; 2015. p. 433–41.CrossRefGoogle Scholar
  15. 15.
    Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121(1):42–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol. 2014;63(12):1145–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;36(47):3359–67.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol. 2016;68(5):435–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Renker M, Schoepf UJ, Wang R, Meinel FG, Rier JD, Bayer RR, et al. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol. 2014;114(9):1303–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology. 2015;274(3):674–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Kruk M, Wardziak L, Demkow M, Pleban W, Pregowski J, Dzielinska Z, et al. Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging. 2016;9(6):690–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Kurata A, Coenen A, Lubbers MM, Nieman K, Kido T, Kido T, et al. The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography. Eur Radiol. 2017;27(4):1416–23.PubMedCrossRefGoogle Scholar
  24. 24.
    De Geer J, Sandstedt M, Bjorkholm A, Alfredsson J, Janzon M, Engvall J, et al. Software-based on-site estimation of fractional flow reserve using standard coronary CT angiography data. Acta Radiol. 2016;57(10):1186–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang DH, Kim YH, Roh JH, Kang JW, Ahn JM, Kweon J, et al. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J Cardiovasc Imaging. 2017;18(4):432–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Schrauwen JT, Koeze DJ, Wentzel JJ, van de Vosse FN, van der Steen AF, Gijsen FJ. Fast and accurate pressure-drop prediction in straightened atherosclerotic coronary arteries. Ann Biomed Eng. 2015;43(1):59–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, Segreto S, Dijkshoorn ML, Wragg A, van Geuns RM, Pugliese F, Nieman K. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC Cardiovasc Imaging. 2017;10(7):760–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Norgaard BL, Gaur S, Leipsic J, Ito H, Miyoshi T, Park SJ, et al. Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease a substudy of the NXT trial. JACC Cardiovasc Imaging. 2015;8(9):1045–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Gaur S, Taylor CA, Jensen JM, Botker HE, Christiansen EH, Kaltoft AK, et al. FFR derived from coronary CT angiography in nonculprit lesions of patients with recent STEMI. JACC Cardiovasc Imaging. 2017;10(4):424–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim KH, Doh JH, Koo BK, Min JK, Erglis A, Yang HM, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv. 2014;7(1):72–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Wentzel JJ, Chatzizisis YS, Gijsen FJ, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res. 2012;96(2):234–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Gijsen FJ, Wentzel JJ, Thury A, Mastik F, Schaar JA, Schuurbiers JC, et al. Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol. 2008;295(4):H1608–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124(7):779–88.PubMedCrossRefGoogle Scholar
  35. 35.
    Gijsen F, van der Giessen A, van der Steen A, Wentzel J. Shear stress and advanced atherosclerosis in human coronary arteries. J Biomech. 2013;46(2):240–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Cicha I, Worner A, Urschel K, Beronov K, Goppelt-Struebe M, Verhoeven E, et al. Carotid plaque vulnerability: a positive feedback between hemodynamic and biochemical mechanisms. Stroke. 2011;42(12):3502–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Fujii K, Kobayashi Y, Mintz GS, Takebayashi H, Dangas G, Moussa I, et al. Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation. 2003;108(20):2473–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang JM, Luo T, Tan SY, Lomarda AM, Wong AS, Keng FY, et al. Hemodynamic analysis of patient-specific coronary artery tree. Int J Numer Method Biomed Eng. 2015;31(4):e02708.PubMedCrossRefGoogle Scholar
  39. 39.
    van der Giessen AG, Groen HC, Doriot PA, de Feyter PJ, van der Steen AF, van de Vosse FN, et al. The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees. J Biomech. 2011;44(6):1089–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Koo BK. Haemodynamic force analysis improves non-invasive prediction of risk of ACS: the results of first-in-man EMERALD study (exploring the mechanism of the plaque rupture in acute coronary syndrome using coronary CT angiography and computational fluid dynamics). Imaging and functional assessment presented at: EuroPCR; May 16–19, 2016; Paris. 2016.Google Scholar
  41. 41.
    Chan BT, Lim E, Chee KH, Abu Osman NA. Review on CFD simulation in heart with dilated cardiomyopathy and myocardial infarction. Comput Biol Med. 2013;43(4):377–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Aguado-Sierra J, Krishnamurthy A, Villongco C, Chuang J, Howard E, Gonzales MJ, et al. Patient-specific modeling of dyssynchronous heart failure: a case study. Prog Biophys Mol Biol. 2011;107(1):147–55.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lantz J, Henriksson L, Persson A, Karlsson M, Ebbers T. Patient-specific simulation of cardiac blood flow from high-resolution computed tomography. J Biomech Eng. 2016;138(12):121004.CrossRefGoogle Scholar
  44. 44.
    Astorino M, Hamers J, Shadden SC, Gerbeau JF. A robust and efficient valve model based on resistive immersed surfaces. Int J Numer Method Biomed Eng. 2012;28(9):937–59.PubMedCrossRefGoogle Scholar
  45. 45.
    Kawaji T, Shiomi H, Morishita H, Morimoto T, Taylor CA, Kanao S, et al. Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice. Int J Cardiovasc Imaging. 2017;33(2):271–81.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Departments of Radiology and CardiologyErasmus University Medical CenterRotterdamThe Netherlands
  2. 2.Department of Biomedical EngineeringErasmus University Medical CenterRotterdamThe Netherlands
  3. 3.Stanford University, School of MedicineCardiovascular InstituteStanfordUSA

Personalised recommendations