Advertisement

Transluminal Attenuation Gradient and Other CT Techniques for Gauging Lesion Significance

  • Yeon Hyeon ChoeEmail author
  • Jin-Ho Choi
  • Sung Mok Kim
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

Transluminal attenuation gradient (TAG) using 256-slice or 320-slice CT scanners (TAG320) showed a sensitivity of 58–77%, specificity of 44–87%, positive predictive value of 50–83%, negative predictive value of 27–88%, and an area under the curve (AUC) of 0.72–0.78, with invasive fractional flow reserve (FFR) used as the reference standard. The combination of coronary CT angiography (CCTA) and TAG resulted in an AUC between 0.64 and 0.87. In studies using a 64-slice CT scanner, cutoff values of TAG ranged from −1.8 HU/cm to −15.1 HU/cm, while studies using 256- or 320-slice CT scanners used thresholds between −7.5 HU/cm and −15.4 HU/cm. The addition of TAG to CCTA may improve the diagnostic performance of CCTA for evaluating calcified lesions. The AUC for contrast density difference (CDD) was not significantly higher compared to TAG and visual stenosis assessment. TAG-corrected coronary opacification (CCO) was lower in vessels with a hemodynamically significant lesion; however, TAG-CCO was not significant when subgroup analysis was performed for vessels with ≥50% stenosis on CCTA. The CT-integrated approach resulted in a marked increase in sensitivity and a mild decrease in specificity compared with both CCTA + CT perfusion (CTP) and CCTA + TAG320. CT-FFR provides better diagnostic performance for the detection of lesion-specific ischemia compared to stenosis detection on CCTA and TAG. A significant correlation was found between TAG and transluminal diameter gradient (TDG).

Keywords

Transluminal attenuation gradient, TAG Corrected coronary opacification, CCO Transluminal diameter gradient, TDG Contrast density difference, CDD Reverse attenuation sign Coronary CT angiography, CCTA CT fractional flow reserve, CT-FFR CT perfusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dweck MR, Williams MC, Moss AJ, Newby DE, Fayad ZA. Computed tomography and cardiac magnetic resonance in ischemic heart disease. J Am Coll Cardiol. 2016;68:2201–16.CrossRefGoogle Scholar
  2. 2.
    Kim YJ, Yong HS, Kim SM, Kim JA, Yang DH, Hong YJ. Korean guidelines for the appropriate use of cardiac CT. Korean J Radiol. 2015;16:251–85.CrossRefGoogle Scholar
  3. 3.
    Min JH, Kim SM, Lee S, Choi JH, Chang SA, Choe YH. Diagnostic performance of algorithm for computer-assisted detection of significant coronary artery disease in patients with acute chest pain: comparison with invasive coronary angiography. AJR Am J Roentgenol. 2014;202:730–7.CrossRefGoogle Scholar
  4. 4.
    Rief M, Kranz A, Hartmann L, Roehle R, Laule M, Dewey M. Computer-aided CT coronary artery stenosis detection: comparison with human reading and quantitative coronary angiography. Int J Cardiovasc Imaging. 2014;30:1621–7.CrossRefGoogle Scholar
  5. 5.
    Koo HJ, Yang DH, Kim YH, Kang JW, Kang SJ, Kweon J, et al. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int J Cardiovasc Imaging. 2016;32(Suppl 1):1–19.CrossRefGoogle Scholar
  6. 6.
    Yoon YE, Choi JH, Kim JH, Park KW, Doh JH, Kim YJ, et al. Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve. JACC Cardiovasc Imaging. 2012;5:1088–96.CrossRefGoogle Scholar
  7. 7.
    Yoon YE, Lim TH. Current roles and future applications of cardiac CT: risk stratification of coronary artery disease. Korean J Radiol. 2014;15:4–11.CrossRefGoogle Scholar
  8. 8.
    Zhu X, Zhu Y, Xu H, Tang L, Xu Y. The influence of body mass index and gender on coronary arterial attenuation with fixed iodine load per body weight at dual-source CT coronary angiography. Acta Radiol. 2012;53:637–42.CrossRefGoogle Scholar
  9. 9.
    Ofili EO, Kern MJ, Labovitz AJ, St Vrain JA, Segal J, Aguirre FV, et al. Analysis of coronary blood flow velocity dynamics in angiographically normal and stenosed arteries before and after endolumen enlargement by angioplasty. J Am Coll Cardiol. 1993;21:308–16.CrossRefGoogle Scholar
  10. 10.
    Youn HJ, Foster E. Demonstration of coronary artery flow using transthoracic Doppler echocardiography. J Am Soc Echocardiogr. 2004;17:178–85.CrossRefGoogle Scholar
  11. 11.
    Steigner ML, Mitsouras D, Whitmore AG, Otero HJ, Wang C, Buckley O, et al. Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circ Cardiovasc Imaging. 2010;3:179–86.CrossRefGoogle Scholar
  12. 12.
    Choi JH, Min JK, Labounty TM, Lin FY, Mendoza DD, Shin DH, et al. Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4:1149–57.CrossRefGoogle Scholar
  13. 13.
    Ko BS, Wong DT, Norgaard BL, Leong DP, Cameron JD, Gaur S, et al. Diagnostic performance of transluminal attenuation gradient and noninvasive fractional flow reserve derived from 320-detector row CT angiography to diagnose hemodynamically significant coronary stenosis: an NXT substudy. Radiology. 2016;279:75–83.CrossRefGoogle Scholar
  14. 14.
    Park EA, Lee W, Park SJ, Kim YK, Hwang HY. Influence of coronary artery diameter on intracoronary transluminal attenuation gradient during CT angiography. JACC Cardiovasc Imaging. 2016;9:1074–83.CrossRefGoogle Scholar
  15. 15.
    Funama Y, Utsunomiya D, Oda S, Shimonobo T, Nakaura T, Mukunoki T, et al. Transluminal attenuation-gradient coronary CT angiography on a 320-MDCT volume scanner: effect of scan timing, coronary artery stenosis, and cardiac output using a contrast medium flow phantom. Phys Med. 2016;32(11):1415–21.CrossRefGoogle Scholar
  16. 16.
    Krug KB, Bovenschulte H, Geissler HJ, Flesch M, Schneider T, Brackrogge D, et al. In-vivo measurements of coronary blood flow using 16-slice multidetector spiral computed tomography (MDCT) in a porcine model. Rofo. 2009;181:220–9.CrossRefGoogle Scholar
  17. 17.
    Chow BJ, Kass M, Gagne O, Chen L, Yam Y, Dick A, et al. Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol. 2011;57:1280–8.CrossRefGoogle Scholar
  18. 18.
    Chatzizisis YS, George E, Cai T, Fulwadhva UP, Kumamaru KK, Schultz K, et al. Accuracy and reproducibility of automated, standardized coronary transluminal attenuation gradient measurements. Int J Cardiovasc Imaging. 2014;30:1181–9.CrossRefGoogle Scholar
  19. 19.
    Lackner K, Bovenschulte H, Stutzer H, Just T, Al-Hassani H, Krug B. In vitro measurements of flow using multislice computed tomography (MSCT). Int J Cardiovasc Imaging. 2011;27:795–804.CrossRefGoogle Scholar
  20. 20.
    Bovenschulte H, Krug B, Schneider T, Schwabe H, Kabbasch C, Bangard C, et al. CT coronary angiography: coronary CT-flow quantification supplements morphological stenosis analysis. Eur J Radiol. 2013;82:608–16.CrossRefGoogle Scholar
  21. 21.
    Lardo AC, Rahsepar AA, Seo JH, Eslami P, Korley F, Kishi S, et al. Estimating coronary blood flow using CT transluminal attenuation flow encoding: formulation, preclinical validation, and clinical feasibility. J Cardiovasc Comput Tomogr. 2015;9:559–566. e551.CrossRefGoogle Scholar
  22. 22.
    Hell MM, Dey D, Marwan M, Achenbach S, Schmid J, Schuhbaeck A. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography. Eur J Radiol. 2015;84:1502–8.CrossRefGoogle Scholar
  23. 23.
    Wong DT, Ko BS, Cameron JD, Leong DP, Leung MC, Malaiapan Y, et al. Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion + computed tomography angiography with transluminal attenuation gradient + computed tomography angiography against invasive fractional flow reserve. J Am Coll Cardiol. 2014;63:1904–12.CrossRefGoogle Scholar
  24. 24.
    Zheng M, Wei M, Wen D, Zhao H, Liu Y, Li J, et al. Transluminal attenuation gradient in coronary computed tomography angiography for determining stenosis severity of calcified coronary artery: a primary study with dual-source CT. Eur Radiol. 2015;25:1219–28.CrossRefGoogle Scholar
  25. 25.
    Stuijfzand WJ, Danad I, Raijmakers PG, Marcu CB, Heymans MW, van Kuijk CC, et al. Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis. JACC Cardiovasc Imaging. 2014;7:374–86.CrossRefGoogle Scholar
  26. 26.
    Choi JH, Koo BK, Yoon YE, Min JK, Song YB, Hahn JY, et al. Diagnostic performance of intracoronary gradient-based methods by coronary computed tomography angiography for the evaluation of physiologically significant coronary artery stenoses: a validation study with fractional flow reserve. Eur Heart J Cardiovasc Imaging. 2012;13:1001–7.CrossRefGoogle Scholar
  27. 27.
    Nakanishi R, Matsumoto S, Alani A, Li D, Kitslaar PH, Broersen A, et al. Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. Int J Cardiovasc Imaging. 2015;31:1251–9.CrossRefGoogle Scholar
  28. 28.
    Wang R, Renker M, Schoepf UJ, Wichmann JL, Fuller SR, Rier JD, et al. Diagnostic value of quantitative stenosis predictors with coronary CT angiography compared to invasive fractional flow reserve. Eur J Radiol. 2015;84:1509–15.CrossRefGoogle Scholar
  29. 29.
    Ko BS, Seneviratne S, Cameron JD, Gutman S, Crossett M, Munnur K, et al. Rest and stress transluminal attenuation gradient and contrast opacification difference for detection of hemodynamically significant stenoses in patients with suspected coronary artery disease. Int J Cardiovasc Imaging. 2016;32:1131–41.CrossRefGoogle Scholar
  30. 30.
    Li M, Zhang J, Pan J, Lu Z. Obstructive coronary artery disease: reverse attenuation gradient sign at CT indicates distal retrograde flow--a useful sign for differentiating chronic total occlusion from subtotal occlusion. Radiology. 2013;266:766–72.CrossRefGoogle Scholar
  31. 31.
    Li M, Zhang J, Zhang Q, Pan J, Lu Z, Wei M. Coronary stent occlusion: reverse attenuation gradient sign observed at computed tomography angiography improves diagnostic performance. Eur Radiol. 2015;25:568–74.CrossRefGoogle Scholar
  32. 32.
    Choi JH, Kim EK, Kim SM, Kim H, Song YB, Hahn JY, et al. Noninvasive discrimination of coronary chronic total occlusion and subtotal occlusion by coronary computed tomography angiography. JACC Cardiovasc Interv. 2015;8:1143–53.CrossRefGoogle Scholar
  33. 33.
    Li Y, Yu M, Zhang J, Li M, Lu Z, Wei M. Non-invasive imaging of myocardial bridge by coronary computed tomography angiography: the value of transluminal attenuation gradient to predict significant dynamic compression. Eur Radiol. 2017;27(5):1971–9.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Department of Radiology, HVSI Imaging Center, Heart Vascular Stroke Institute, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
  2. 2.Division of Cardiology, Department of Medicine (J-H C)Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulSouth Korea
  3. 3.Department of RadiologyHVSI Imaging Center, Heart Vascular Stroke InstituteSeoulSouth Korea

Personalised recommendations