Advertisement

Ischemic Stroke: The Role of Cardiac CT

  • Jin HurEmail author
  • Byoung Wook Choi
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

Investigation of potential embolic sources is an important diagnostic step in managing patients with acute ischemic stroke or transient ischemic attack, especially when the mechanism is considered to be embolic. During the past decade, cardiac CT has been tested and compared with transesophageal echocardiography (TEE) for the diagnosis of cardioembolic sources. Many studies showed that cardiac CT is a very useful and powerful modality for the detection of cardioembolic sources in stroke patients. However, based on current evidence, cardiac CT is not recommended for the use in the initial evaluation of intracardiac structures in stroke patients. In addition, cardiac CT imaging has fundamental disadvantages including radiation dose and use of iodine contrast media. Continued technological advances requiring less contrast and ionizing radiation could increase the importance of cardiac CT in this field in the near future.

Keywords

Ischemic stroke Cardiac CT and ischemic stroke Stoke and cardiac CT Cardioembolic stroke Cardioembolic sources in stroke patients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonita R. Epidemiology of stroke. Lancet. 1992;339:342–4.CrossRefGoogle Scholar
  2. 2.
    Sacco RL, Adams R, Albers G, et al. Guidelines for prevention stroke in patients with ischemic stroke or transient ischemic attack. Stroke. 2006;37:577–617.CrossRefGoogle Scholar
  3. 3.
    Albers GW, Amarenco P, Easton JD, Sacco RL, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke. Chest. 2004;126:483S–512S.CrossRefGoogle Scholar
  4. 4.
    Kistler JP. Cerebral embolism. Compr Ther. 1996;22:515–30.PubMedGoogle Scholar
  5. 5.
    McNamara RL, Lima JA, Whelton PK, Powe NR. Echocardiographic identification of cardiovascular sources of emboli to guide clinical management of stroke: a cost-effectiveness analysis. Ann Intern Med. 1997;127:775–87.CrossRefGoogle Scholar
  6. 6.
    Pearson AC, Labovitz AJ, Tatineni S, Gomez CR. Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology. J Am Coll Cardiol. 1991;17:66–72.CrossRefGoogle Scholar
  7. 7.
    Leung DY, Black IW, Cranney GB, et al. Selection of patients for transesophageal echocardiography after stroke and systemic embolic events: role of transthoracic echocardiography. Stroke. 1995;26:1820–4.CrossRefGoogle Scholar
  8. 8.
    Daniel WG, Mugge A. Transesophageal echocardiography. N Engl J Med. 1995;332:1268–79.CrossRefGoogle Scholar
  9. 9.
    de Bruijn SF, Agema WR, Lammers GJ, et al. Transesophageal echocardiography is superior to transthoracic echocardiography in management of patients of any age with transient ischemic attack or stroke. Stroke. 2006;37:2531–44.CrossRefGoogle Scholar
  10. 10.
    Harloff A, Handke M, Reinhard M, et al. Therapeutic strategies after examination by transesophageal echocardiography in 503 patients with ischemic stroke. Stroke. 2006;37:859–64.CrossRefGoogle Scholar
  11. 11.
    Rauh R, Fischereder M, Spengel FA. Transesophageal echocardiography in patients with focal cerebral ischemia of unknown cause. Stroke. 1996;27:691–4.CrossRefGoogle Scholar
  12. 12.
    Strandberg M, Marttila RJ, Helenius H, Hartiala J. Transoesophageal echocardiography in selecting patients for anticoagulation after ischaemic stroke or transient ischaemic attack. J Neurol Neurosurg Psychiatry. 2002;73:29–33.CrossRefGoogle Scholar
  13. 13.
    Nikolaou K, Flohr T, Knez A, et al. Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging. 2004;20:535–40.CrossRefGoogle Scholar
  14. 14.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46:552–7.CrossRefGoogle Scholar
  15. 15.
    Mollet NR, Cademartiri F, van Mieghem CA, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005;112:2318–23.CrossRefGoogle Scholar
  16. 16.
    Boxt LM, Lipton MJ, Kwong RY, Rybicki F, Clouse ME. Computed tomography for assessment of cardiac chambers, valves, myocardium and pericardium. Cardiol Clin. 2003;21:561–85.CrossRefGoogle Scholar
  17. 17.
    Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial. Stroke. 1993;24:35–41.CrossRefGoogle Scholar
  18. 18.
    Doufekias E, Segal AZ, Kizer JR. Cardiogenic and aortogenic brain embolism. J Am Coll Cardiol. 2008;51:1049–59.CrossRefGoogle Scholar
  19. 19.
    Wolber T, Maeder M, Atefy R, et al. Should routine echocardiography be performed in all patients with stroke? J Stroke Cerebrovasc Dis. 2007;16:1–7.CrossRefGoogle Scholar
  20. 20.
    Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301:500–7.CrossRefGoogle Scholar
  21. 21.
    Heinrich MC, Häberle L, Müller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250:68–86.CrossRefGoogle Scholar
  22. 22.
    Honoris L, Zhong Y, Chu E, et al. Comparison of contrast enhancement, image quality and tolerability in coronary CT angiography using 4 contrast agents: a prospective randomized trial. Int J Cardiol. 2015;186:126–8.CrossRefGoogle Scholar
  23. 23.
    Agmon Y, Khandheria BK, Gentile F, Seward JB. Echocardiographic assessment of the left atrial appendage. J Am Coll Cardiol. 1999;34:1867–77.CrossRefGoogle Scholar
  24. 24.
    Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function and role in thromboembolism. Heart. 1999;82:547–55.CrossRefGoogle Scholar
  25. 25.
    Achenbach S, Sacher D, Ropers D, et al. Electron beam computed tomography for the detection of left atrial thrombi in patients with atrial fibrillation. Heart. 2004;90:1477–8.CrossRefGoogle Scholar
  26. 26.
    Shapiro MD, Neilan TG, Jassal DS, et al. Multidetector computed tomography for the detection of left atrial appendage thrombus: a comparative study with transesophageal echocardiography. J Comput Assist Tomogr. 2007;31:905–9.CrossRefGoogle Scholar
  27. 27.
    Singh NK, Nallamothu N, Zuck VP, Issa ZF. Left atrial appendage filling defects on 64-slice multidetector computed tomography in patients undergoing pulmonary vein isolation: predictors and comparison to transesophageal echocardiography. J Comput Assist Tomogr. 2009;33:946–51.CrossRefGoogle Scholar
  28. 28.
    Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ Cardiovasc Imaging. 2013;6:185–94.CrossRefGoogle Scholar
  29. 29.
    Kim YY, Klein AL, Halliburton SS, et al. Left atrial appendage filling defects identified by multidetector computed tomography in patients undergoing radiofrequency pulmonary vein antral isolation: a comparison with transesophageal echocardiography. Am Heart J. 2007;154:1199–205.CrossRefGoogle Scholar
  30. 30.
    Hur J, Kim YJ, Nam JE, et al. Thrombus in the left atrial appendage in stroke patients: detection with cardiac CT angiography: a preliminary report. Radiology. 2008;249:81–7.CrossRefGoogle Scholar
  31. 31.
    Vaitkus PT, Barnathan ES. Embolic potential, prevention and management of mural thrombus complicating anterior myocardial infarction: a meta-analysis. J Am Coll Cardiol. 1993;22:1004–9.CrossRefGoogle Scholar
  32. 32.
    Srichai MB, Junor C, Rodriguez LL, et al. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152:75–84.CrossRefGoogle Scholar
  33. 33.
    Weinsaft JW, Kim HW, Shah DJ, et al. Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol. 2008;52:148–57.CrossRefGoogle Scholar
  34. 34.
    Bittencourt MS, Achenbach S, Marwan M, et al. Left ventricular thrombus attenuation characterization in cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2012;6:121–6.CrossRefGoogle Scholar
  35. 35.
    Holmes DR, Reddy VY, Turi ZG, et al. PROTECT AF Investigators. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomized non-inferiority trial. Lancet. 2009;374:534–42.Google Scholar
  36. 36.
    Garcia-Fernandez MA, Perez-David E, Quiles J, et al. Role of left atrial appendage obliteration in stroke reduction in patients with mitral valve prosthesis: a transesophageal echocardiographic study. J Am Coll Cardiol. 2003;42:1253–8.CrossRefGoogle Scholar
  37. 37.
    Hur J, Kim YJ, Lee HJ, et al. Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology. 2009;251:683–90.CrossRefGoogle Scholar
  38. 38.
    Kim SC, Chun EJ, Choi SI, et al. Differentiation between spontaneous echocardiographic contrast and left atrial appendage thrombus in patients with suspected embolic stroke using two-phase multidetector computed tomography. Am J Cardiol. 2010;106:1174–81.CrossRefGoogle Scholar
  39. 39.
    Hur J, Kim YJ, Lee HJ, et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke. 2011;42:2471–7.CrossRefGoogle Scholar
  40. 40.
    Budoff MJ. Maximizing dose reductions with cardiac CT. Int J Cardiovasc Imaging. 2009;25:279–87.CrossRefGoogle Scholar
  41. 41.
    Castillo JG, Silvay G. Characterization and management of cardiac tumors. Semin Cardiothorac Vasc Anesth. 2010;14:6–20.CrossRefGoogle Scholar
  42. 42.
    Bjessmo S, Ivert T. Cardiac myxoma: 40 years’ experience in 63 patients. Ann Thorac Surg. 1997;63:697–700.CrossRefGoogle Scholar
  43. 43.
    Sparrow PJ, Kurian JB, Jones TR, Sivananthan MU. MR imaging of cardiac tumors. Radiographics. 2005;25:1255–76.CrossRefGoogle Scholar
  44. 44.
    Kim EY, Choe YH, Sung K, Park SW, Kim JH, Ko YH. Multidetector CT and MR imaging of cardiac tumors. Korean J Radiol. 2009;10:164–75.CrossRefGoogle Scholar
  45. 45.
    Scheffel H, Baumueller S, Stolzmann P, et al. Atrial myxomas and thrombi: comparison of imaging features on CT. AJR Am J Roentgenol. 2009;192:639–45.CrossRefGoogle Scholar
  46. 46.
    Hong YJ, Hur J, Kim YJ, et al. Dual-energy cardiac computed tomography for differentiating cardiac myxoma from thrombus. Int J Card Imaging. 2014;30:121–8.CrossRefGoogle Scholar
  47. 47.
    Kerut EK, Norfleet WT, Plotnick GD, et al. Patent foramen ovale: a review of associated conditions and the impact of physiological size. J Am Coll Cardiol. 2001;38:613–23.CrossRefGoogle Scholar
  48. 48.
    Woods TD, Patel A. A critical review of patent foramen ovale detection using saline contrast echocardiography: when bubbles lie. J Am Soc Echocardiogr. 2006;19:215–22.CrossRefGoogle Scholar
  49. 49.
    Pinto FJ. When and how to diagnose patent foramen ovale. Heart. 2005;91:438–40.CrossRefGoogle Scholar
  50. 50.
    Kim YJ, Hur J, Shim CY, et al. Patent foramen ovale: diagnosis with multidetector CT: comparison with transesophageal echocardiography. Radiology. 2009;250:61–7.CrossRefGoogle Scholar
  51. 51.
    Kim YJ, Hur J, Choe KO, et al. Interatrial shunt detected in coronary computed tomography angiography: differential features of a patent foramen ovale and an atrial septal defect. J Comput Assist Tomogr. 2008;32:663–7.CrossRefGoogle Scholar
  52. 52.
    Mas JL, Arquizan C, Lamy C, et al. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med. 2001;345:1740–6.CrossRefGoogle Scholar
  53. 53.
    Mylonakis E, Calderwood SB. Infective endocarditis in adults. N Engl J Med. 2001;345:1318–30.CrossRefGoogle Scholar
  54. 54.
    Cabell CH, Pond KK, Peterson GE, et al. The risk of stroke and death in patients with aortic and mitral valve endocarditis. Am Heart J. 2001;142:75–80.CrossRefGoogle Scholar
  55. 55.
    Di Salvo G, Habib G, Pergola V, et al. Echocardiography predicts embolic events in infective endocarditis. J Am Coll Cardiol. 2001;37:1069–76.CrossRefGoogle Scholar
  56. 56.
    Daniel WG, Mugge A, Martin RP, et al. Improvement in the diagnosis of abscesses associated with endocarditis by transesophageal echocardiography. N Engl J Med. 1991;324:795–800.CrossRefGoogle Scholar
  57. 57.
    Habets J, Tanis W, Reitsma JB, et al. Are novel non-invasive imaging techniques needed in patients with suspected prosthetic heart valve endocarditis? A systematic review and meta-analysis. Eur Radiol. 2015;25:2125–33.CrossRefGoogle Scholar
  58. 58.
    Benjamin EJ, Plehn JF, D'Agostino RB, et al. Mitral annular calcification and the risk of stroke in an elderly cohort. N Engl J Med. 1992;327:374–9.CrossRefGoogle Scholar
  59. 59.
    Higgins J, Mayo J, Skarsgard P. Cardiac computed tomography facilitates operative planning in patients with mitral calcification. Ann Thorac Surg. 2013;95:e9–11.CrossRefGoogle Scholar
  60. 60.
    Budoff MJ, Takasu J, Katz R, et al. Reproducibility of CT measurements of aortic valve calcification, mitral annulus calcification, and aortic wall calcification in the multi-ethnic study of atherosclerosis. Acad Radiol. 2006;13:166–72.CrossRefGoogle Scholar
  61. 61.
    Amarenco P, Cohen A, Tzourio C, et al. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med. 1994;331:1474–9.CrossRefGoogle Scholar
  62. 62.
    The French Study of Aortic Plaques in Stroke Group. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med. 1996;334:1121–221.Google Scholar
  63. 63.
    Tunick PA, Rosenzweig BP, Katz ES, Freedberg RS, Perez JL, Kronzon I. High risk for vascular events in patients with protruding aortic atheromas: a prospective study. J Am Coll Cardiol. 1994;23:1085–90.CrossRefGoogle Scholar
  64. 64.
    Rana BS, Monaghan MJ, Ring L, Shapiro LS, Nihoyannopoulos P. The pivotal role of echocardiography in cardiac sources of embolism. Eur J Echocardiogr. 2011;12:25–31.CrossRefGoogle Scholar
  65. 65.
    Pepi M, Evangelista A, Nihoyannopoulos P, et al. European Association of Echocardiography. Recommendations for echocardiography use in the diagnosis and management of cardiac sources of embolism: European Association of Echocardiography. Eur J Echocardiogr. 2010;11:461–76.Google Scholar
  66. 66.
    Ko Y, Park JH, Yang MH, et al. Significance of aortic atherosclerotic disease in possibly embolic stroke: 64-multidetector row computed tomography study. J Neurol. 2010;257:699–705.CrossRefGoogle Scholar
  67. 67.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, et al. ACCF/SCCTA/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American college of cardiology foundation appropriate use criteria task force, the society of cardiovascular computed tomography, the American college of radiology, the American heart association, the American society of echocardiography, the American society of nuclear cardiology, the north American society for cardiovascular imaging, the society for cardiovascular angiography and interventions, and the society for cardiovascular magnetic resonance. J Am Coll Cardiol. 2010;56:1864–94.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Department of RadiologyYonsei University School of Medicine, Severance HospitalSeoulSouth Korea

Personalised recommendations