CT Imaging of the Heart-Lung Axis

  • Michelle C. WilliamsEmail author
  • Edwin J. R. van Beek
Part of the Contemporary Medical Imaging book series (CMI)


Computed tomography imaging can assess both the heart and the lungs in a single, rapid diagnostic test. There is an important overlap between cardiovascular and respiratory diseases, which may be mediated through shared aetiologies, such as smoking, or shared pathological mechanisms, such as inflammation. Cardiovascular disease may be identified on imaging performed to assess respiratory disease and vice versa. Abnormalities of the right heart can be a common endpoint of a variety of causes of pulmonary hypertension including thromboembolic, respiratory and cardiac diseases. Coronary artery calcification can be used as a marker of the presence of coronary artery disease in patients being assessed with CT for respiratory disease. Incidental extra-cardiac findings in the lungs are frequently identified on cardiac CT and may have important clinical and economic implications. Thus imaging of the heart-lung axis is an important feature of CT imaging of the heart, where the radiologist plays a key role in providing insight and helps triage the patient to appropriate care pathways.


CT imaging of the heart-lung Heart-lung imaging High-resolution CT of the chest CT pulmonary angiography Pulmonary hypertension and the heart Cardiovascular disease and lung cancer screening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Budoff MJ, NASIR K, Kinney GL, Hokanson JE. Coronary artery and thoracic calcium on noncontrast thoracic CT scans: comparison of ungated and gated examinations in patients from the COPD gene cohort. J Cardiovasc Comput Tomogr. 2011;5(2):113–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Steiner RM, Budoff MJ, Khurram N, Kinney GL, Hokanson JE, Barr RG, Nath H, Lopez-Garcia C, Black-Shinn J, and Casaburi R. Coronary artery calcium on non-contrast thoracic CT scans; comparison of ECG gated and non-gated examinations in patients from the COPD gene cohort. In A2616–16. American Thoracic Society. 2011. doi:
  3. 3.
    Shemesh J, Henschke CI, Shaham D, Yip R, Farooqi AO, Cham MD, McCauley DI, et al. Ordinal scoring of coronary artery calcifications on low-dose CT scans of the chest is predictive of death from cardiovascular disease. Radiology. 2010;257(2):541–8.PubMedCrossRefGoogle Scholar
  4. 4.
    OʼHare PE, Ayres JF, OʼRourke RL, Slaughter RE, Marshall HM, Bowman RV, Fong KM, Yang IA. Coronary artery calcification on computed tomography correlates with mortality in chronic obstructive pulmonary disease. J Comput Assist Tomogr. 2014;38(5):753–9.PubMedCrossRefGoogle Scholar
  5. 5.
    McClelland RL, Chung H, Detrano R, Post W, Kronmal RA. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-ethnic Study of Atherosclerosis (MESA). Circulation. 2006;113(1):30–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Foley PWX, Hamaad A, El-Gendi H, Leyva F. Incidental cardiac findings on computed tomography imaging of the thorax. BMC Res Notes. 2010;3(1):326; BioMed Central Ltd.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    McKie SJ, Hardwick DJ, Reid JH, Murchison JT. Features of cardiac disease demonstrated on CT pulmonary angiography. Clin Radiol. 2005;60(1):31–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu F, Coursey CA, Grahame-Clarke C, Sciacca RR, Rozenshtein A, Homma S, Austin JHM. Aortic valve calcification as an incidental finding at CT of the elderly: severity and location as predictors of aortic stenosis. AJR Am J Roentgenol. 2006;186(2):342–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Jairam PM, Gondrie MJA, Grobbee DE, Mali WPTM, Jacobs PCA, van der Graaf Y, PROVIDI Study Group. Incidental imaging findings from routine chest CT used to identify subjects at high risk of future cardiovascular events. Radiology. 2014;272(3):700–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim JW, Kang E-Y, Yong HS, Kim YK, Ok HW, Yu-Whan O, Ki YL, Han H. Incidental extracardiac findings at cardiac CT angiography: comparison of prevalence and clinical significance between precontrast low-dose whole thoracic scan and postcontrast retrospective ECG-gated cardiac scan. Int J Cardiovasc Imaging. 2009;25(1):75–81; Springer Netherlands.PubMedCrossRefGoogle Scholar
  11. 11.
    van Beek EJR, Thompson B. Should we include full field of view in assessment of cardiac CT? J Cardiovasc Comput Tomogr. 2008;2(1):64; author reply 64–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Mirsadraee S, van Beek EJR. Cross-sectional cardiac imaging: prevalence and significance of extracardiac findings. J Thorac Imaging. 2014;29(2):92–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Galbán CJ, Han MLK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galbán S, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Balbinot F, da Costa Batista Guedes Á, Nascimento DZ, Zampieri JF, Alves GRT, Marchiori E, Rubin AS, Hochhegger B. Advances in imaging and automated quantification of pulmonary diseases in non-neoplastic diseases. Lung. 2016;194(6):871–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Xu Y, van Beek EJR, Hwanjo Y, Guo J, McLennan G, Hoffman EA. Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol. 2006;13(8):969–78; Elsevier.PubMedCrossRefGoogle Scholar
  16. 16.
    Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard J-AO, Kalra MK. Dual-energy CT: spectrum of thoracic abnormalities. Radiographics. 2016;36(1):38–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Mirsadraee S, Reid JH, Connell M, MacNee W, Hirani N, Murchison JT, van Beek EJ. Dynamic (4D) CT perfusion offers simultaneous functional and anatomical insights into pulmonary embolism resolution. Eur J Radiol. 2016;85(10):1883–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Wild J, Arrigo M, Isenring BD, Buergi U, Kurowski T, Schuurmans MM, Huber LC, Benden C. Coronary artery disease in lung transplant candidates: role of routine invasive assessment. Respiration/Int Rev Thorac Dis. 2015;89(2):107–11.Google Scholar
  19. 19.
    Burris AC, Boura JA, Raff GL, Chinnaiyan KM. Triple rule out versus coronary CT angiography in patients with acute chest pain: results from the ACIC consortium. JACC Cardiovasc Imaging. 2015;8(7):817–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Ayaram D, Bellolio MF, Murad MH, Laack TA, Sadosty AT, Erwin PJ, Hollander JE, Montori VM, Stiell IG, Hess EP. Triple rule-out computed tomographic angiography for chest pain: a diagnostic systematic review and meta-analysis. Edited by Alan E Jones. Acad Emerg Med. 2013;20(9):861–71.PubMedCrossRefGoogle Scholar
  21. 21.
  22. 22.
    Carter BD, Abnet CC, Feskanich D, Freedman ND, Hartge P, Lewis CE, Ockene JK, et al. Smoking and mortality--beyond established causes. N Engl J Med. 2015;372(7):631–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen W, Thomas J, Sadatsafavi M, FitzGerald JM. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and Meta-analysis. Lancet Respir Med. 2015;3(8):631–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Rong Y, Luo X, Zhang Z, Cui X, Liu Y, Chen W. Occupational exposure to asbestos and cardiovascular related diseases: a meta-analysis. Prev Med Rep. 2015;2:920–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Samoli E, Atkinson RW, Analitis A, Fuller GW, Green DC, Mudway I, Anderson HR, Kelly FJ. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occup Environ Med. 2016;73(5):300–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Langrish JP, Bosson J, Unosson J, Muala A, David E, Newby NL, Mills AB, Sandström T. Cardiovascular effects of particulate air pollution exposure: time course and underlying mechanisms. J Intern Med. 2012;272(3):224–39.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ Health. 2013;12(1):43.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Van Eeden S, Leipsic J, Paul Man SF, Sin DD. The relationship between lung inflammation and cardiovascular disease. Am J Respir Crit Care Med. 2012;186(1):11–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Gan WQ, Man SFP, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–80.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    McEvoy JW, Nasir K, DeFilippis AP, Lima JA, Bluemke DA, Hundley WG, Barr RG, et al. Relationship of cigarette smoking with inflammation and subclinical vascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(4):1002–10.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Seifarth H, Schlett CL, Lehman SJ, Bamberg F, Donnelly P, Januzzi JL, Koenig W, Truong QA, Hoffmann U. Correlation of concentrations of high-sensitivity troponin T and high-sensitivity C-reactive protein with plaque progression as measured by CT coronary angiography. J Cardiovasc Comput Tomogr. 2014;8(6):452–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47(8 Suppl):C7–C12.PubMedCrossRefGoogle Scholar
  33. 33.
    Miller J, Edwards LD, Agustí A, Bakke P, Calverley PMA, Celli B, Coxson HO, et al. Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort. Respir Med. 2013;107(9):1376–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Maclay JD, McAllister DA, Rabinovich R, Haq I, Maxwell S, Hartland S, Connell M, et al. Systemic elastin degradation in chronic obstructive pulmonary disease. Thorax. 2012;67(7):606–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Conway EM, Pikor LA, Kung SHY, Hamilton MJ, Lam S, Lam WL, Bennewith KL. Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med. 2016;193(2):116–30.PubMedCrossRefGoogle Scholar
  36. 36.
    King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med. 2015;4(1):68.PubMedCrossRefGoogle Scholar
  37. 37.
    Gudmundsson G, Margretardottir OB, Sigurdsson MI, Harris TB, Launer LJ, Sigurdsson S, Olafsson O, Aspelund T, Gudnason V. Airflow obstruction, atherosclerosis and cardiovascular risk factors in the AGES Reykjavik study. Atherosclerosis. 2016;252(September):122–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chandra D, Gupta A, Strollo PJ, Fuhrman CR, Leader JK, Bon J, Slivka WA, et al. Airflow limitation and endothelial dysfunction. Unrelated and independent predictors of atherosclerosis. Am J Respir Crit Care Med. 2016;194(1):38–47; American Thoracic Society.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Putcha N, Han MLK, Martinez CH, Foreman MG, Anzueto AR, Casaburi R, Cho MH, et al. Comorbidities of COPD have a major impact on clinical outcomes, particularly in African Americans. Chronic Obstr Pulm Dis. 2014;1(1):105–14.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Black-Shinn JL, Kinney GL, Wise AL, Regan EA, Make B, Krantz MJ, Graham Barr R, et al. Cardiovascular disease is associated with COPD severity and reduced functional status and quality of life. COPD. 2014;11(5):546–51; Taylor & Francis.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Williams MC, Murchison JT, Edwards LD, Agustí A, Bakke P, Calverley PMA, Celli B, et al. Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax. 2014;69(8):718–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Reid JH, Murchison JT. Acute right ventricular dilatation: a new helical CT sign of massive pulmonary embolism. Clin Radiol. 1998;53(9):694–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Becattini C, Agnelli G, Germini F, Vedovati MC. Computed tomography to assess risk of death in acute pulmonary embolism: a meta-analysis. Eur Respir J. 2014;43(6):1678–90; European Respiratory Society.PubMedCrossRefGoogle Scholar
  46. 46.
    Pengo V, Lensing AWA, Prins MH. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004;350(22):2257–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Konstantinides S, Torbicki A, Agnelli G. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35(45):3145–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Exter d, Paul L, van Es J, Kroft LJM, Erkens PMG, Douma RA, Mos ICM, Jonkers G, et al. Thromboembolic resolution assessed by CT pulmonary angiography after treatment for acute pulmonary embolism. Thromb Haemost. 2015;114(1):26–34.Google Scholar
  49. 49.
    Ley S, Ley-Zaporozhan J, Pitton MB, Schneider J, Wirth GM, Mayer E, Düber C, Kreitner K-F. Diagnostic performance of state-of-the-art imaging techniques for morphological assessment of vascular abnormalities in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol. 2012;22(3):607–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Matsuoka S, Washko GR, Dransfield MT, Yamashiro T, San Jose Estepar R, Diaz A, Silverman EK, Patz S, Hatabu H. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol. 2010;17(1):93–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Barberà JA. Mechanisms of development of chronic obstructive pulmonary disease-associated pulmonary hypertension. Pulm Circ. 2013;3(1):160–4.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kent BD, Mitchell PD, McNicholas WT. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis. 2011;6:199–208.PubMedPubMedCentralGoogle Scholar
  53. 53.
    O'Donnell DE, K A W. Lung hyperinflation in COPD: applying physiology to clinical practice. COPD Res Pract. 2015;1:4.CrossRefGoogle Scholar
  54. 54.
    Shin S, King CS, Whitney Brown A, Albano MC, Atkins M, Sheridan MJ, Ahmad S, et al. Pulmonary artery size as a predictor of pulmonary hypertension and outcomes in patients with chronic obstructive pulmonary disease. Respir Med. 2014;108(11):1626–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Wells JM, Morrison JB, Bhatt SP, Nath H, Dransfield MT. Pulmonary artery enlargement is associated with cardiac injury during severe exacerbations of COPD. Chest J. 2016;149(5):1197–204.CrossRefGoogle Scholar
  56. 56.
    Naeije R. Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(1):20–2.PubMedCrossRefGoogle Scholar
  57. 57.
    Dimopoulos K, Wort SJ, Gatzoulis MA. Pulmonary hypertension related to congenital heart disease: a call for action. Eur Heart J. 2014;35(11):691–700; The Oxford University Press.PubMedCrossRefGoogle Scholar
  58. 58.
    Peña E, Dennie C, Veinot J, Muñiz SH. Pulmonary hypertension: how the radiologist can help. Radiographics. 2012;32(1):9–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Eriksson B, Lindberg A, Müllerova H, Rönmark E, Lundbäck B. Association of heart diseases with COPD and restrictive lung function--results from a population survey. Respir Med. 2013;107(1):98–106.PubMedCrossRefGoogle Scholar
  60. 60.
    Curkendall SM, deLuise C, Jones JK, Lanes S, Stang MR, Goehring E, She D. Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Ann Epidemiol. 2006;16(1):63–70.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Huiart L, Ernst P, Suissa S. Cardiovascular morbidity and mortality in COPD. Chest J. 2005;128(4):2640–6.CrossRefGoogle Scholar
  62. 62.
    Budoff MJ, J E Hokanson KNASIR, Shaw LJ, Kinney GL, Chow D, DeMoss D, et al. Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc Imaging. 2010;3(12):1229–36; Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Barr RG, Ahmed FS, Carr JJ, Hoffman EA, Jiang R, Kawut SM, Watson K. Subclinical atherosclerosis, airflow obstruction and emphysema: the MESA lung study. Eur Respir J. 2012;39(4):846–54; Alhaj EK, Alhaj NE, Bergmann SR, Hecht H, Matarazzo TJ, Smith S, Alhaj N, Alhaj M, Nelson S. Coronary artery calcification and emphysema. Can J Cardiol. 2008;24(5):369–72.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sidney S, Sorel M, Charles P, Quesenberry C dL, Lanes S, Eisner MD. COPD and incident cardiovascular disease hospitalizations and mortality: Kaiser Permanente medical care program. Chest J. 2005;128(4):2068–75.CrossRefGoogle Scholar
  65. 65.
    Gaisl T, Schlatzer C, Schwarz EI, Possner M, Stehli J, Sievi NA, Clarenbach CF, et al. Coronary artery calcification, epicardial fat burden, and cardiovascular events in chronic obstructive pulmonary disease. Edited by James D Chalmers. PLoS One. 2015;10(5): e0126613; Public Library of Science.Google Scholar
  66. 66.
    Konecny T, Park JY, Somers KR, Konecny D, Orban M, Soucek F, Parker KO, et al. Relation of chronic obstructive pulmonary disease to atrial and ventricular arrhythmias. Am J Cardiol. 2014;114(2):272–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Romme EAPM, McAllister DA, Murchison JT, van Beek EJR, Petrides GS, Price COS, Rutten EPA, Smeenk FWJM, Wouters EFM, MacNee W. Associations between COPD related manifestations: a cross-sectional study. Respir Res. 2013;14(1):129.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ye C, Younus A, Malik R, Roberson L, Shaharyar S, Veledar E, Ahmad R, et al. Subclinical cardiovascular disease in patients with chronic obstructive pulmonary disease: a systematic review. QJM. 2016;
  69. 69.
    Reed RM, Eberlein M, Girgis RE, Hashmi S, Iacono A, Jones S, Netzer G, Scharf S. Coronary artery disease is under-diagnosed and under-treated in advanced lung disease. Am J Med. 2012;125(12):1228.e13–22.CrossRefGoogle Scholar
  70. 70.
    Cassagnes L, Gaillard V, Monge E, Faivre J-B, Delhaye C, Molinari F, Petyt G, et al. Prevalence of asymptomatic coronary disease in fibrosing idiopathic interstitial pneumonias. Eur J Radiol. 2015;84(1):163–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Navaratnam V, Millett ERC, Hurst JR, Thomas SL, Smeeth L, Hubbard RB, Brown J, and Quint JK. 2016. Bronchiectasis and the risk of cardiovascular disease: a population-based study. Thorax, BMJ Publishing Group Ltd and British Thoracic Society, 72:thoraxjnl-2015-208188.Google Scholar
  72. 72.
    National Lung Screening Trial Research Team, Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F, et al. Results of initial low-dose computed tomographic screening for lung Cancer. N Engl J Med. 2013;368(21):1980–91.CrossRefGoogle Scholar
  73. 73.
    Chiles C, Duan F, Gladish GW, Ravenel JG, Baginski SG, Snyder BS, DeMello S, Desjardins SS, Munden RF, NLST Study Team. Association of coronary artery calcification and mortality in the national lung screening trial: a comparison of three scoring methods. Radiology. 2015;276(1):82–90.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sverzellati N, Cademartiri F, Bravi F, Martini C, Gira FA, Maffei E, Marchianò A, et al. Relationship and prognostic value of modified coronary artery calcium score, FEV1, and emphysema in lung cancer screening population: the MILD trial. Radiology. 2012;262(2):460–7. Scholar
  75. 75.
    Jacobs PC, Gondrie MJA, van der Graaf Y, de Koning HJ, Isgum I, van Ginneken B, Mali WPTM. Coronary artery calcium can predict all-cause mortality and cardiovascular events on low-dose CT screening for lung cancer. Am J Roentgenol. 2012;198(3):505–11; American Roentgen Ray Society.CrossRefGoogle Scholar
  76. 76.
    Koonce J, Schoepf JU, Nguyen SA, Northam MC, Ravenel JG. Extra-cardiac findings at cardiac CT: experience with 1,764 patients. Eur Radiol. 2009;19(3):570–6; Springer-Verlag.PubMedCrossRefGoogle Scholar
  77. 77.
    Kirsch J, Araoz PA, Steinberg FB, Fletcher JG, McCollough CH, Williamson EE. Prevalence and significance of incidental extracardiac findings at 64-multidetector coronary CTA. J Thorac Imaging. 2007;22(4):330–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Lehman SJ, Abbara S, Cury RC, Nagurney JT, Hsu J, Goela A, Schlett CL, et al. Significance of cardiac computed tomography incidental findings in acute chest pain. Am J Med. 2009;122(6):543–9; Elsevier.PubMedCrossRefGoogle Scholar
  79. 79.
    Schietinger BJ, Bozlar U, Hagspiel KD, Norton PT, Greenbaum HR, Wang H, Isbell DC, et al. The prevalence of extracardiac findings by multidetector computed tomography before atrial fibrillation ablation. Am Heart J. 2008;155(2):254–9; Elsevier.PubMedCrossRefGoogle Scholar
  80. 80.
    Kawano Y, Tamura A, Goto Y, Shinozaki K, Zaizen H, Kadota J. Incidental detection of cancers and other non-cardiac abnormalities on coronary multislice computed tomography. Am J Cardiol. 2007;99(11):1608–9; Elsevier.PubMedCrossRefGoogle Scholar
  81. 81.
    Burt JR, Iribarren C, Fair JM, Norton LC, Mahbouba M, Rubin GD, Hlatky MA, Go AS, Fortmann SP, Atherosclerotic Disease, Vascular Function, Genetic Epidemiology (ADVANCE) Study. Incidental findings on cardiac multidetector row computed tomography among healthy older adults: prevalence and clinical correlates. Arch Intern Med. 2008;168(7):756–61; American Medical Association.PubMedCrossRefGoogle Scholar
  82. 82.
    Scot-Heart Investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385(9985):2383–91.CrossRefGoogle Scholar
  83. 83.
    Karius P, Schuetz GM, Schlattmann P, Dewey M. Extracardiac findings on coronary CT angiography: a systematic review. J Cardiovasc Comput Tomogr. 2014;8(3):174–82. e1–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Flor N, Di Leo G, Squarza SA, Tresoldi S, Rulli E, Cornalba G, Sardanelli F. Malignant incidental extracardiac findings on cardiac CT: systematic review and meta-analysis. Am J Roentgenol. 2013;201(3):555–64; American Roentgen Ray Society.CrossRefGoogle Scholar
  85. 85.
    Showkathali R, Sen A, Brickham B, Dworakowski R, Wendler O, MacCarthy P. ‘Incidental findings’ during TAVI work-up: more than just an inconvenience. EuroIntervention. 2015;11(4):465–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Goehler A, McMahon PM, Lumish HS, Carol CW, Munshi V, Gilmore M, Chung JH, et al. Cost-effectiveness of follow-up of pulmonary nodules incidentally detected on cardiac computed tomographic angiography in patients with suspected coronary artery disease. Circulation. 2014;130(8):668–75.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    MacMahon H, Austin JHM, Gamsu G, Herold CJ, Jett JR, Naidich DP, Patz EF, Swensen SJ. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237(2):395–400.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Michelle C. Williams
    • 1
    Email author
  • Edwin J. R. van Beek
    • 1
  1. 1.Edinburgh Imaging Facility QMRI, University of EdinburghEdinburghUK

Personalised recommendations