Advertisement

The Role of Cardiac CT in Patients with Metabolic Disorders

  • Gianluca PontoneEmail author
  • Giuseppe Muscogiuri
  • Mark Rabbat
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

Cardiac computed tomography (CT) plays a pivotal role in the diagnostic pathway and risk stratification of patients with metabolic disorders. In patients with diabetes mellitus (DM), there is strong evidence that the presence of coronary artery calcium (CAC) is associated with increased risk in developing significant coronary artery disease (CAD); moreover, the severity of CAD is related to worse outcomes. In Gaucher disease (GD) the role of cardiac CT is valuable in the evaluation of valvular and intramyocardial calcification, while in mucopolysaccharidoses cardiac CT is helpful for the evaluation of coronary artery narrowing and valvular pathology. Cardiac CT can assess for the presence of CAC in both alkaptonuria and cystinosis. Furthermore, in alkaptonuria the assessment of valve morphology is valuable in cases of calcific deterioration.

In obese patients, cardiac CT can evaluate the presence of CAC and is able to quantify epicardial adipose tissue.

Keywords

Diabetes mellitus Gaucher disease Mucopolysaccharidoses Alkaptonuria Cystinosis Obesity Coronary artery calcium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polonsky KS. The past 200 years in diabetes. N Engl J Med. 2012;367(14):1332–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Inzucchi SE. Diagnosis of diabetes. N Engl J Med. 2013;368(2):193.PubMedCrossRefGoogle Scholar
  3. 3.
    Nesto RW, Zarich S. Acute myocardial infarction in diabetes mellitus: lessons learned from ACE inhibition. Circulation. 1998;97(1):12–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Budoff MJ, Raggi P, Beller GA, Berman DS, Druz RS, Malik S, et al. Noninvasive cardiovascular risk assessment of the asymptomatic diabetic patient: the imaging council of the American College of Cardiology. JACC Cardiovasc Imaging. 2016;9(2):176–92.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92(8):2157–62.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bavishi C, Argulian E, Chatterjee S, Rozanski A. CACS and the frequency of stress-induced myocardial ischemia during MPI: a meta-analysis. JACC Cardiovasc Imaging. 2016;9(5):580–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Dabelea D, Kinney G, Snell-Bergeon JK, Hokanson JE, Eckel RH, Ehrlich J, et al. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes. 2003;52(11):2833–9.PubMedCrossRefGoogle Scholar
  9. 9.
    He ZX, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000;101(3):244–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Wong ND, Rozanski A, Gransar H, Miranda-Peats R, Kang X, Hayes S, et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care. 2005;28(6):1445–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663–9.  https://doi.org/10.1016/j.jacc.2003.09.068.CrossRefPubMedGoogle Scholar
  12. 12.
    Silverman MG, Blaha MJ, Budoff MJ, Rivera JJ, Raggi P, Shaw LJ, et al. Potential implications of coronary artery calcium testing for guiding aspirin use among asymptomatic individuals with diabetes. Diabetes Care. 2012;35(3):624–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nasir K, Bittencourt MS, Blaha MJ, Blankstein R, Agatson AS, Rivera JJ, et al. Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association cholesterol management guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2015;66(15):1657–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Valenti V, Hartaigh BO, Cho I, Schulman-Marcus J, Gransar H, Heo R, et al. Absence of coronary artery calcium identifies asymptomatic diabetic individuals at low near-term but not long-term risk of mortality: a 15-year follow-up study of 9715 patients. Circ Cardiovasc Imaging. 2016;9(2):e003528.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rassi CH, Churchill TW, Tavares CA, Fahel MG, Rassi FP, Uchida AH, et al. Use of imaging and clinical data to screen for cardiovascular disease in asymptomatic diabetics. Cardiovasc Diabetol. 2016;15:28.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    McClelland RL, Jorgensen NW, Budoff M, Blaha MJ, Post WS, Kronmal RA, et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–53.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Andreini D, Pontone G, Bartorelli AL, Agostoni P, Mushtaq S, Antonioli L, et al. Comparison of the diagnostic performance of 64-slice computed tomography coronary angiography in diabetic and non-diabetic patients with suspected coronary artery disease. Cardiovasc Diabetol. 2010;9:80.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ulimoen GR, Ofstad AP, Endresen K, Gullestad L, Johansen OE, Borthne A. Low-dose CT coronary angiography for assessment of coronary artery disease in patients with type 2 diabetes--a cross-sectional study. BMC Cardiovasc Disord. 2015;15:147.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rana JS, Dunning A, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, et al. Differences in prevalence, extent, severity, and prognosis of coronary artery disease among patients with and without diabetes undergoing coronary computed tomography angiography: results from 10,110 individuals from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes): an InteRnational Multicenter Registry. Diabetes Care. 2012;35(8):1787–94.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kim JJ, Hwang BH, Choi IJ, Choo EH, Lim S, Kim JK, et al. Impact of diabetes duration on the extent and severity of coronary atheroma burden and long-term clinical outcome in asymptomatic type 2 diabetic patients: evaluation by Coronary CT angiography. Eur Heart J Cardiovasc Imaging. 2015;16(10):1065–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Min JK, Labounty TM, Gomez MJ, Achenbach S, Al-Mallah M, Budoff MJ, et al. Incremental prognostic value of coronary computed tomographic angiography over coronary artery calcium score for risk prediction of major adverse cardiac events in asymptomatic diabetic individuals. Atherosclerosis. 2014;232(2):298–304.PubMedCrossRefGoogle Scholar
  22. 22.
    Andreini D, Pontone G, Mushtaq S, Bertella E, Conte E, Baggiano A, et al. Prognostic value of multidetector computed tomography coronary angiography in diabetes: excellent long-term prognosis in patients with normal coronary arteries. Diabetes Care. 2013;36(7):1834–41.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Halon DA, Azencot M, Rubinshtein R, Zafrir B, Flugelman MY, Lewis BS. Coronary computed tomography (CT) angiography as a predictor of cardiac and noncardiac vascular events in asymptomatic type 2 diabetics: a 7-year population-based cohort study. J Am Heart Assoc. 2016;5(6):e003226.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Muhlestein JB, Lappe DL, Lima JA, Rosen BD, May HT, Knight S, et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014;312(21):2234–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Pontone G, Andreini D, Baggiano A, Bertella E, Mushtaq S, Conte E, et al. Functional relevance of coronary artery disease by cardiac magnetic resonance and cardiac computed tomography: myocardial perfusion and fractional flow reserve. Biomed Res Int. 2015;2015:297696.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pontone G, Muscogiuri G, Andreini D, Guaricci AI, Guglielmo M, Mushtaq S, et al. The new frontier of cardiac computed tomography angiography: fractional flow reserve and stress myocardial perfusion. Curr Treat Options Cardiovasc Med. 2016;18(12):74.PubMedCrossRefGoogle Scholar
  27. 27.
    Pontone G, Bertella E, Mushtaq S, Loguercio M, Cortinovis S, Baggiano A, et al. Coronary artery disease: diagnostic accuracy of CT coronary angiography--a comparison of high and standard spatial resolution scanning. Radiology. 2014;271(3):688–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang R, Renker M, Schoepf UJ, Wichmann JL, Fuller SR, Rier JD, et al. Diagnostic value of quantitative stenosis predictors with coronary CT angiography compared to invasive fractional flow reserve. Eur J Radiol. 2015;84(8):1509–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Ko BS, Cameron JD, Leung M, Meredith IT, Leong DP, Antonis PR, et al. Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging. 2012;5(11):1097–111.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakazato R, Park HB, Gransar H, Leipsic JA, Budoff MJ, Mancini GB, et al. Additive diagnostic value of atherosclerotic plaque characteristics to non-invasive FFR for identification of lesions causing ischaemia: results from a prospective international multicentre trial. EuroIntervention. 2016;12(4):473–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaur S, Ovrehus KA, Dey D, Leipsic J, Botker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J. 2016;37(15):1220–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Vliegenthart R, De Cecco CN, Wichmann JL, Meinel FG, Pelgrim GJ, Tesche C, et al. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: insights from a multicenter registry. J Cardiovasc Comput Tomogr. 2016;10(4):301–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Horowitz M, Elstein D, Zimran A, Goker-Alpan O. New directions in Gaucher disease. Hum Mutat. 2016;37:1121.PubMedCrossRefGoogle Scholar
  34. 34.
    Bendikov-Bar I, Horowitz M. Gaucher disease paradigm: from ERAD to comorbidity. Hum Mutat. 2012;33(10):1398–407.PubMedCrossRefGoogle Scholar
  35. 35.
    Shah S, Misri A, Bhat M, Maheshwari S. Gaucher’s disease type III C: unusual cause of intracardiac calcification. Ann Pediatr Cardiol. 2008;1(2):144–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chabas A, Cormand B, Grinberg D, Burguera JM, Balcells S, Merino JL, et al. Unusual expression of Gaucher’s disease: cardiovascular calcifications in three sibs homozygous for the D409H mutation. J Med Genet. 1995;32(9):740–2.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Abrahamov A, Elstein D, Gross-Tsur V, Farber B, Glaser Y, Hadas-Halpern I, et al. Gaucher’s disease variant characterised by progressive calcification of heart valves and unique genotype. Lancet. 1995;346(8981):1000–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Ceyhan M, Celik FK, Elmali M, Gurmen N. An unusual form of Gaucher’s disease: pulmonary and cardiovascular involvement and cholelitiasis. Cent Eur J Med. 2010;5(4):495–8.Google Scholar
  39. 39.
    Altunbas G, Ercan S, Inanc IH, Ozer O, Kervancioglu S, Davutoglu V. Extensive vascular and valvular involvement in Gaucher disease. Asian Cardiovasc Thorac Ann. 2015;23(4):446–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Coutinho MF, Lacerda L, Alves S. Glycosaminoglycan storage disorders: a review. Biochem Res Int. 2012;2012:471325.PubMedCrossRefGoogle Scholar
  41. 41.
    Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v49–59.CrossRefGoogle Scholar
  42. 42.
    Braunlin E, Wang R. Cardiac issues in adults with the mucopolysaccharidoses: current knowledge and emerging needs. Heart. 2016;102(16):1257–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Braunlin EA, Harmatz PR, Scarpa M, Furlanetto B, Kampmann C, Loehr JP, et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis. 2011;34(6):1183–97.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Brosius FC 3rd, Roberts WC. Coronary artery disease in the hurler syndrome. Qualitative and quantitative analysis of the extent of coronary narrowing at necropsy in six children. Am J Cardiol. 1981;47(3):649–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Kettles DI, Sheppard M, Liebmann RD, Davidson C. Left ventricular aneurysm, aortic valve disease and coronary narrowing in a patient with Hunter’s syndrome. Cardiovasc Pathol. 2002;11(2):94–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Felice T, Murphy E, Mullen MJ, Elliott PM. Management of aortic stenosis in mucopolysaccharidosis type I. Int J Cardiol. 2014;172(3):e430–1.PubMedCrossRefGoogle Scholar
  47. 47.
    Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick DL, et al. Natural history of alkaptonuria. N Engl J Med. 2002;347(26):2111–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Butany JW, Naseemuddin A, Moshkowitz Y, Nair V. Ochronosis and aortic valve stenosis. J Card Surg. 2006;21(2):182–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Ffolkes LV, Brull D, Krywawych S, Hayward M, Hughes SE. Aortic stenosis in cardiovascular ochronosis. J Clin Pathol. 2007;60(1):92–3.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hiroyoshi J, Saito A, Panthee N, Imai Y, Kawashima D, Motomura N, et al. Aortic valve replacement for aortic stenosis caused by alkaptonuria. Ann Thorac Surg. 2013;95(3):1076–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Fisher AA, Davis MW. Alkaptonuric ochronosis with aortic valve and joint replacements and femoral fracture: a case report and literature review. Clin Med Res. 2004;2(4):209–15.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hannoush H, Introne WJ, Chen MY, Lee SJ, O’Brien K, Suwannarat P, et al. Aortic stenosis and vascular calcifications in alkaptonuria. Mol Genet Metab. 2012;105(2):198–202.PubMedCrossRefGoogle Scholar
  53. 53.
    Elmonem MA, Veys KR, Soliman NA, van Dyck M, van den Heuvel LP, Levtchenko E. Cystinosis: a review. Orphanet J Rare Dis. 2016;11:47.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Emma F, Nesterova G, Langman C, Labbe A, Cherqui S, Goodyer P, et al. Nephropathic cystinosis: an international consensus document. Nephrol Dial Transplant. 2014;29(Suppl 4):iv87–94.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Nesterova G, Gahl WA. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. Cystinosis. Seattle: GeneReviews; 1993.Google Scholar
  56. 56.
    Ueda M, O’Brien K, Rosing DR, Ling A, Kleta R, McAreavey D, et al. Coronary artery and other vascular calcifications in patients with cystinosis after kidney transplantation. Clin J Am Soc Nephrol. 2006;1(3):555–62.PubMedCrossRefGoogle Scholar
  57. 57.
    Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22(7 Suppl):s176–85.PubMedGoogle Scholar
  58. 58.
    Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood). 2009;28(5):w822–31.CrossRefGoogle Scholar
  59. 59.
    Haslam D. Obesity: a medical history. Obes Rev. 2007;8(Suppl 1):31–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mitchell A, Fantasia HC. Understanding the effect of obesity on fertility among reproductive-age women. Nurs Womens Health. 2016;20(4):368–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Cassidy AE, Bielak LF, Zhou Y, Sheedy PF 2nd, Turner ST, Breen JF, et al. Progression of subclinical coronary atherosclerosis: does obesity make a difference? Circulation. 2005;111(15):1877–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Lee DH, Steffes MW, Gross M, Park K, Holvoet P, Kiefe CI, et al. Differential associations of weight dynamics with coronary artery calcium versus common carotid artery intima-media thickness: The CARDIA Study. Am J Epidemiol. 2010;172(2):180–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kovacic JC, Lee P, Baber U, Karajgikar R, Evrard SM, Moreno P, et al. Inverse relationship between body mass index and coronary artery calcification in patients with clinically significant coronary lesions. Atherosclerosis. 2012;221(1):176–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Bild DE, Detrano R, Peterson D, Guerci A, Liu K, Shahar E, et al. Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2005;111(10):1313–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Taylor AJ, Feuerstein I, Wong H, Barko W, Brazaitis M, O'Malley PG. Do conventional risk factors predict subclinical coronary artery disease? Results from the Prospective Army Coronary Calcium Project. Am Heart J. 2001;141(3):463–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Labounty TM, Gomez MJ, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, et al. Body mass index and the prevalence, severity, and risk of coronary artery disease: an international multicentre study of 13,874 patients. Eur Heart J Cardiovasc Imaging. 2013;14(5):456–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Fujiyoshi A, Sekikawa A, Shin C, Masaki K, David Curb J, Ohkubo T, et al. A cross-sectional association of obesity with coronary calcium among Japanese, Koreans, Japanese Americans, and U.S. whites. Eur Heart J Cardiovasc Imaging. 2013;14(9):921–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Iacobellis G, Malavazos AE, Corsi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol. 2011;43(12):1651–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Yorgun H, Canpolat U, Hazirolan T, Ates AH, Sunman H, Dural M, et al. Increased epicardial fat tissue is a marker of metabolic syndrome in adult patients. Int J Cardiol. 2013;165(2):308–13.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakanishi R, Rajani R, Cheng VY, Gransar H, Nakazato R, Shmilovich H, et al. Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis. 2011;218(2):363–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Spearman JV, Renker M, Schoepf UJ, Krazinski AW, Herbert TL, De Cecco CN, et al. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. Eur Radiol. 2015;25(11):3372–81.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198–224.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mangold S, Wichmann JL, Schoepf UJ, Litwin SE, Canstein C, Varga-Szemes A, et al. Coronary CT angiography in obese patients using 3(rd) generation dual-source CT: effect of body mass index on image quality. Eur Radiol. 2016;26(9):2937–46.PubMedCrossRefGoogle Scholar
  75. 75.
    Mangold S, Wichmann JL, Schoepf UJ, Caruso D, Tesche C, Steinberg DH, et al. Diagnostic accuracy of coronary CT angiography using 3rd-generation dual-source CT and automated tube voltage selection: clinical application in a non-obese and obese patient population. Eur Radiol. 2017;27(6):2298–308.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Gianluca Pontone
    • 1
    Email author
  • Giuseppe Muscogiuri
    • 1
  • Mark Rabbat
    • 2
    • 3
  1. 1.Centro Cardiologico MonzinoIRCCSItaly
  2. 2.Department of Medicine, Division of CardiologyLoyola University ChicagoChicagoUSA
  3. 3.Department of Medicine, Division of CardiologyEdward Hines Jr. VA HospitalHinesUSA

Personalised recommendations