Pathology and Pathophysiology of Coronary Atherosclerotic Plaques

  • Hiroyoshi Mori
  • Frank D. Kolodgie
  • Aloke V. Finn
  • Renu VirmaniEmail author
Part of the Contemporary Medical Imaging book series (CMI)


The death rate from coronary artery disease has declined in the past few decades through greater understanding of risk factors of coronary heart disease as well as through better treatment, including the creation of coronary care units. However, because of the lack of an animal model of unstable plaque, our understanding of atherosclerotic plaque morphology comes only from static histology of lesion morphology in patients dying of acute coronary syndromes (Virmani et al., Arterioscler Thromb Vasc Biol 20:1262–1275, 2000). Although transgenic models of atherosclerosis have markedly enhanced our understanding of certain aspects of plaque progression and regression, they have failed thus far to explain the relationship of the coagulation parameters and plaque morphology that precipitate coronary thrombosis (Virmani et al., Arterioscler Thromb Vasc Biol 20:1262–1275, 2000). Until we are able to create a better model or study plaque morphology prospectively and determine the mechanisms and the anatomic markers of progression, we will make progress very slowly. This review is based on the examination of human coronary artery pathology in patients dying a sudden coronary death, in order to ascertain the pathologic lesion morphologies that are linked to plaque progression and thrombosis, which will be necessary for us to be able to recognize by invasive or noninvasive means the prospective lesions that are likely to produce symptoms.


Coronary atherosclerotic plaques Atheroscleriotic plaques Coronary artery disease Atherosclerosis classification Intimal xanthomas (fatty streak) Fibroatheromas Thin-cap fibroatheroma Coronary calcification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.CrossRefGoogle Scholar
  2. 2.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15:1512–31.CrossRefGoogle Scholar
  3. 3.
    Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med. 1984;310:1137–40.CrossRefGoogle Scholar
  4. 4.
    Yahagi K, Kolodgie FD, Otsuka F, Finn AV, Davis HR, Joner M, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;13:79–98. Nature Publishing Group.Google Scholar
  5. 5.
    Nakashima Y, Chen Y-X, Kinukawa N, Sueishi K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. 2002;441:279–88.CrossRefGoogle Scholar
  6. 6.
    Ikari Y, McManus BM, Kenyon J, Schwartz SM. Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol. 1999;19:2036–40.CrossRefGoogle Scholar
  7. 7.
    Cohn JN, Goldstein SO, Greenberg BH, Lorell BH, Bourge RC, Jaski BE, et al. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone Trial Investigators. N Engl J Med. 1998;339:1810–6.CrossRefGoogle Scholar
  8. 8.
    McGill HC, McMahan CA, Herderick EE, Tracy RE, Malcom GT, Zieske AW, et al. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol. 2000;20:836–45.CrossRefGoogle Scholar
  9. 9.
    Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb. 2003;10:63–71.CrossRefGoogle Scholar
  10. 10.
    Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998;97:2433–44.CrossRefGoogle Scholar
  11. 11.
    Kockx MM, De Meyer GR, Bortier H, de Meyere N, Muhring J, Bakker A, et al. Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation. 1996;94:1255–62.CrossRefGoogle Scholar
  12. 12.
    Proudfoot D, Shanahan CM. Biology of calcification in vascular cells: intima versus media. Herz. 2001;26:245–51.CrossRefGoogle Scholar
  13. 13.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316–25.CrossRefGoogle Scholar
  14. 14.
    Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. Relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53:1517–27. American College of Cardiology Foundation.CrossRefGoogle Scholar
  15. 15.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.CrossRefGoogle Scholar
  16. 16.
    Michel JB, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011;32:1977–85.CrossRefGoogle Scholar
  17. 17.
    Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93:1354–63.CrossRefGoogle Scholar
  18. 18.
    Roberts WC, Kragel AH, Gertz SD, Roberts CS, Kalan JM. The heart in fatal unstable angina pectoris. Am J Cardiol. 1991;68:22B–7B.CrossRefGoogle Scholar
  19. 19.
    Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91:2844–50.CrossRefGoogle Scholar
  20. 20.
    Libby P, Sukhova G, Lee RT, Galis ZS. Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. J Cardiovasc Pharmacol. 1995;25 Suppl 2:S9–12.CrossRefGoogle Scholar
  21. 21.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.CrossRefGoogle Scholar
  22. 22.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281:921–6.CrossRefGoogle Scholar
  23. 23.
    Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, et al. Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death. relation to epicardial plaque histopathology. J Am Coll Cardiol. 2009;54:2167–73. Elsevier Inc.CrossRefGoogle Scholar
  24. 24.
    Yahagi K, Zarpak R, Sakakura K, Otsuka F, Kutys R, Ladich E, et al. Multiple simultaneous plaque erosion in 3 coronary arteries. JACC Cardiovasc Imaging. 2014;7:1172–4.CrossRefGoogle Scholar
  25. 25.
    Yahagi K, Davis HR, Arbustini E, Virmani R. Sex differences in coronary artery disease: pathological observations. Atherosclerosis. 2015;239:260–7.CrossRefGoogle Scholar
  26. 26.
    Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82:265–8.CrossRefGoogle Scholar
  27. 27.
    Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz. 2001;26:239–44.CrossRefGoogle Scholar
  28. 28.
    Sakakura K, Nakano M, Otsuka F, Yahagi K, Kutys R, Ladich E, et al. Comparison of pathology of chronic total occlusion with and without coronary artery bypass graft. Eur Heart J. 2014;35:1683–93.CrossRefGoogle Scholar
  29. 29.
    Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26:450–6.CrossRefGoogle Scholar
  30. 30.
    Heistad DD, Armstrong ML. Blood flow through vasa vasorum of coronary arteries in atherosclerotic monkeys. Arteriosclerosis. 1986;6:326–31.CrossRefGoogle Scholar
  31. 31.
    Williams JK, Armstrong ML, Heistad DD. Vasa vasorum in atherosclerotic coronary arteries: responses to vasoactive stimuli and regression of atherosclerosis. Circ Res. 1988;62:515–23.CrossRefGoogle Scholar
  32. 32.
    Virmani R, Roberts WC. Extravasated erythrocytes, iron, and fibrin in atherosclerotic plaques of coronary arteries in fatal coronary heart disease and their relation to luminal thrombus: frequency and significance in 57 necropsy patients and in 2958 five mm segments of 224 major epicardial coronary arteries. Am Heart J. 1983;105:788–97.CrossRefGoogle Scholar
  33. 33.
    Constantinides P. Coronary thrombosis linked to fissure in atherosclerotic vessel wall. JAMA. 1964;188 Suppl:35–7.Google Scholar
  34. 34.
    Pasterkamp G, Virmani R. The erythrocyte: a new player in atheromatous core formation. Heart. 2002;88:115–6.CrossRefGoogle Scholar
  35. 35.
    Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–6.CrossRefGoogle Scholar
  36. 36.
    Hunt ME, O’Malley PG, Vernalis MN, Feuerstein IM, Taylor AJ. C-reactive protein is not associated with the presence or extent of calcified subclinical atherosclerosis. Am Heart J. 2001;141:206–10.CrossRefGoogle Scholar
  37. 37.
    Burke AP, Taylor A, Farb A, Malcom GT, Virmani R. Coronary calcification: insights from sudden coronary death victims. Z Kardiol. 2000;89 Suppl 2:49–53.CrossRefGoogle Scholar
  38. 38.
    Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.CrossRefGoogle Scholar
  39. 39.
    Narula J, Achenbach S. Napkin-ring necrotic cores: defining circumferential extent of necrotic cores in unstable plaques. JACC Cardiovasc Imaging. 2009;2:1436–8.CrossRefGoogle Scholar
  40. 40.
    Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2:1412–9.CrossRefGoogle Scholar
  41. 41.
    Tanaka A, Shimada K, Yoshida K, Jissyo S, Tanaka H, Sakamoto M, et al. Non-invasive assessment of plaque rupture by 64-slice multidetector computed tomography – comparison with intravascular ultrasound. Circ J. 2008;72:1276–81.CrossRefGoogle Scholar
  42. 42.
    Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging. 2010;3:440–4.CrossRefGoogle Scholar
  43. 43.
    Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Otsuka F, Stolzmann P, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243–52.CrossRefGoogle Scholar
  44. 44.
    Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S2–10.CrossRefGoogle Scholar
  45. 45.
    Can atherosclerosis imaging techniques improve the detection of patients at risk for ischemic heart disease? Proceedings of the 34th Bethesda Conference. Bethesda, Maryland, USA. October 7, 2002. J Am Coll Cardiol. 2003;41:1856–917.Google Scholar
  46. 46.
    Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–40.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Hiroyoshi Mori
    • 1
  • Frank D. Kolodgie
    • 1
  • Aloke V. Finn
    • 2
  • Renu Virmani
    • 1
    Email author
  1. 1.CVPath InstituteGaithersburgUSA
  2. 2.CVPath Institute, University of MarylandGaithersburgUSA

Personalised recommendations