Cardiac CT: Contemporary Clinical Image Data Display, Analysis, and Quantification

  • Moritz H. Albrecht
  • Marwen Eid
  • Pal Spruill SuranyiEmail author
Part of the Contemporary Medical Imaging book series (CMI)


One of the most significant breakthroughs in cardiac CT imaging was being able to acquire isotropic resolution datasets with sufficient temporal resolution to take “snapshots” of this dynamic, ever-moving organ. Isotropic three-dimensional (3D) datasets acquired with either prospective triggering or retrospective gating, and further complicated by the dimension of time within the cardiac cycle, effectively yielding four-dimensional (4D) datasets, allow for a variety of post-processing techniques useful for advanced visualization of cardiovascular anatomy and pathology. Some of these techniques are fancy, colorful, and eye-pleasing or just serve as an aid to student or patient education, but others have become a crucial part of our clinical routine when evaluating cardiac CT images and discussing findings with non-radiology physicians.


Cardiac CT Isotropic resolution datasets in cardiac CT 3D volume rendering techniques Segmentation of the heart in cardiac CT Multi-planar reformatting images in cardiac CT Coronary artery calcium scoring Plaque composition analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fishman EK, Ney DR, Heath DG, et al. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 2006;26:905–22.CrossRefGoogle Scholar
  2. 2.
    van Ooijen PMA, Ho KY, Dorgelo J, Oudkerk M. Coronary artery imaging with multidetector CT: visualization issues. Radiographics. 2003;23:e16.CrossRefGoogle Scholar
  3. 3.
    Geyer LL, Glenn GR, De Cecco CN, et al. CT evaluation of small-diameter coronary artery stents: effect of an integrated circuit detector with iterative reconstruction. Radiology. 2015;276:706–14.CrossRefGoogle Scholar
  4. 4.
    Hecht HS. Coronary artery calcium scanning. JACC Cardiovasc Imaging. 2015;8:579–96.CrossRefGoogle Scholar
  5. 5.
    Busch S, Johnson TRC, Nikolaou K, et al. Visual and automatic grading of coronary artery stenoses with 64-slice CT angiography in reference to invasive angiography. Eur Radiol. 2007;17:1445–51.CrossRefGoogle Scholar
  6. 6.
    Arbab-Zadeh A, Hoe J. Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography. JACC Cardiovasc Imaging. 2011;4:191–202.CrossRefGoogle Scholar
  7. 7.
    Boogers MJ, Schuijf JD, Kitslaar PH, et al. Automated quantification of stenosis severity on 64-slice CT. JACC Cardiovasc Imaging. 2010;3:699–709.CrossRefGoogle Scholar
  8. 8.
    Stein PD, Yaekoub AY, Matta F, Sostman HD. 64-slice CT for diagnosis of coronary artery disease: a systematic review. Am J Med. 2008;121:715–25.CrossRefGoogle Scholar
  9. 9.
    Janne d’Othée B, Siebert U, Cury R, et al. A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease. Eur J Radiol. 2008;65:449–61.CrossRefGoogle Scholar
  10. 10.
    Cury RC, Abbara S, Achenbach S, et al. CAD-RADS™: coronary artery disease – reporting and data system. J Am Coll Radiol. 2016;13(12 Pt A):1458–1466.e9.CrossRefGoogle Scholar
  11. 11.
    Gaur S, Taylor CA, Jensen JM, et al. FFR derived from coronary CT angiography in nonculprit lesions of patients with recent STEMI. JACC Cardiovasc Imaging. 2016;10:424–33.CrossRefGoogle Scholar
  12. 12.
    Gitsioudis G, Schüssler A, Nagy E, et al. Combined assessment of high-sensitivity troponin T and noninvasive coronary plaque composition for the prediction of cardiac outcomes. Radiology. 2015;276:73–81.CrossRefGoogle Scholar
  13. 13.
    Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243–52.CrossRefGoogle Scholar
  14. 14.
    Lardo AC. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113:394–404.CrossRefGoogle Scholar
  15. 15.
    Gerber BL. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation. 2006;113:823–33.CrossRefGoogle Scholar
  16. 16.
    Bandula S, White SK, Flett AS, et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology. 2013;269:396–403.CrossRefGoogle Scholar
  17. 17.
    Spearman JV, Meinel FG, Schoepf UJ, et al. Automated quantification of epicardial adipose tissue using CT angiography: evaluation of a prototype software. Eur Radiol. 2014;24:519–26.CrossRefGoogle Scholar
  18. 18.
    Truong QA, Thai W, Wai B, et al. Myocardial scar imaging by standard single-energy and dual-energy late enhancement CT: comparison with pathology and electroanatomic map in an experimental chronic infarct porcine model. J Cardiovasc Comput Tomogr. 2015;9:313–20.CrossRefGoogle Scholar
  19. 19.
    Thilo C, Schoepf UJ, Gordon L, et al. Integrated assessment of coronary anatomy and myocardial perfusion using a retractable SPECT camera combined with 64-slice CT: initial experience. Eur Radiol. 2009;19:845–56.CrossRefGoogle Scholar
  20. 20.
    Cochet H, Dubois R, Sacher F, et al. Cardiac arrhythmias: multimodal assessment integrating body surface ECG mapping into cardiac imaging. Radiology. 2014;271:239–47.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Moritz H. Albrecht
    • 1
  • Marwen Eid
    • 2
  • Pal Spruill Suranyi
    • 2
    • 3
    Email author
  1. 1.Department of Diagnostic and Interventional RadiologyUniversity Hospital FrankfurtFrankfurt am MainGermany
  2. 2.Division of Cardiovascular Imaging, Department of Radiology and Radiological ScienceMedical University of South CarolinaCharlestonUSA
  3. 3.Division of CardiologyDepartment of Medicine, Medical University of South CarolinaCharlestonUSA

Personalised recommendations