Advertisement

Hyperkinetic Disorders in Childhood

  • Terence D. SangerEmail author
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Movement disorders in children are symptoms that can be caused by many different diseases. Movement disorders are typically classified into primary and secondary disorders [1]. Primary movement disorders are conditions in which the movement disorder is the major symptom of a genetic or presumed genetic disorder. Secondary movement disorders are conditions in which the movement disorder is an expression of an underlying disease that may include other signs and symptoms, and which may be due to an acquired injury, infection, toxin, or metabolic process. Most movement disorders in children are secondary. One of the particular complicating factors of movement disorders in childhood is that several different disorders may coexist in the same child, making diagnosis difficult. In addition, many different etiologies can lead to the same disorder, and the same etiology can lead to different movement disorders in different children, or in the same child at a different age. Nevertheless, a thorough understanding of the different types of movement disorder, their possible causes, and the different types of expression that may occur in children is essential to guiding clinical practice for both diagnosis and effective treatment.

Keywords

Cerebral Palsy Deep Brain Stimulation Movement Disorder Essential Tremor Juvenile Myoclonic Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

CASE 1 - Dystonia (mp4 10,912 KB)

CASE 2 - Myoclonus - Ataxia (mp4 6,420 KB)

CASE 3 - Generalized Hyperkinetic Movements (mp4 21,216 KB)

CASE 4 - Chin Tremor (mp4 1,626 KB)

CASE 5 - Rett Syndrome (mov 178,378 KB)

CASE 6 - Tremor / Dystonia (mov 12,571 KB)

CASE 6 - Tremor / Dystonia (mov 5,713 KB)

CASE 7 - Myoclonus (mp4 11,340 KB)

CASE 8 - Generalized Choreoathetosis (mov 83,524 KB)

References

  1. 1.
    Sanger TD. Pediatric movement disorders. Curr Opin Neurol. 2003;16(4):529–35.PubMedGoogle Scholar
  2. 2.
    Sanger TD, et al. Definition and classification of negative motor signs in childhood. Pediatrics. 2006;118:2159–67.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanger TD, et al. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111(1):e89–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Sanger TD, et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord. 2010;25(11):1538–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Ramos E, et al. Quantification of upper extremity function using kinematic analysis. Arch Phys Med Rehabil. 1997;78(5):491–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Bastian AJ, et al. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.PubMedGoogle Scholar
  7. 7.
    Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83(5):3019–30.PubMedGoogle Scholar
  8. 8.
    Bastian AJ. Cerebellar limb ataxia: abnormal control of self-generated and external forces. Ann N Y Acad Sci. 2002;978:16–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Michaelsen SM, et al. Compensation for distal impairments of grasping in adults with hemiparesis. Exp Brain Res. 2004;157(2):162–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Flowers KA. Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain. 1976;99(2):269–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Feys P, et al. The effect of changed visual feedback on intention tremor in multiple sclerosis. Neurosci Lett. 2006;394(1):17–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Campbell SK. Quantifying the effects of interventions for movement disorders resulting from cerebral palsy. J Child Neurol. 1996;11 Suppl 1:S61–70.PubMedGoogle Scholar
  13. 13.
    Lollar DJ, Simeonsson RJ, Nanda U. Measures of outcomes for children and youth. Arch Phys Med Rehabil. 2000;81(12 Suppl 2):S46–52.PubMedCrossRefGoogle Scholar
  14. 14.
    World Health Organization. Towards a common language for functioning, disability, and health: The International Classification of Functioning, Disability, and Health (ICF). Geneva: World Health Organization; 2002.Google Scholar
  15. 15.
    Marsden CD, Obeso JA, Rothwell JC. Clinical neurophysiology of muscle jerks: myoclonus, chorea, and tics. Adv Neurol. 1983;39:865–81.PubMedGoogle Scholar
  16. 16.
    Higgins DS Jr. Chorea and its disorders. Neurol Clin. 2001;19(3):707–22, vii.Google Scholar
  17. 17.
    Levy EJ, et al. Kinematics of chorea in Huntington disease. Soc Neurosci. 2003:SFN.Google Scholar
  18. 18.
    Bhidayasiri R, Truong DD. Chorea and related disorders. Postgrad Med J. 2004;80(947):527–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.PubMedCrossRefGoogle Scholar
  20. 20.
    DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Tian JR, et al. Postural control in Huntington’s disease (HD). Acta Otolaryngol Suppl. 1991;481:333–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee MS, Marsden CD. Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord. 1994;9(5):493–507.PubMedCrossRefGoogle Scholar
  23. 23.
    Albin RL, Young AB, Penney JB. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 1995;18(2):63–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Wichmann T, DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol. 1996;6:751–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Church AJ, et al. Anti-basal ganglia antibodies in acute and persistent Sydenham’s chorea. Neurology. 2002;59(2):227–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Martino D, Giovannoni G. Antibasal ganglia antibodies and their relevance to movement disorders. Curr Opin Neurol. 2004;17(4):425–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang HS, et al. Choreoathetosis as an initial sign of relapsing of herpes simplex encephalitis. Pediatr Neurol. 1994;11(4):341–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Gascon GG, et al. Chorea as a presentation of herpes simplex encephalitis relapse. Brain Dev. 1993;15(3):178–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004;3(8–9):1187–96.CrossRefGoogle Scholar
  30. 30.
    Tranchant C, et al. Phenotypic variability of aprataxin gene mutations. Neurology. 2003;60(5):868–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Shimazaki H, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology. 2002;59(4):590–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Moreira MC, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet. 2001;29(2):189–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Danek A, et al. Neuroacanthocytosis: new developments in a neglected group of dementing disorders. J Neurol Sci. 2005;229–230:171–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Jinnah HA, et al. Delineation of the motor disorder of Lesch-Nyhan disease. Brain. 2006;129(Pt 5):1201–17.PubMedCrossRefGoogle Scholar
  35. 35.
    Marson AM, et al. Neuroacanthocytosis: clinical, radiological, and neurophysiological findings in an Italian family. Neurol Sci. 2003;24(3):188–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Breedveld GJ, et al. Mutations in TITF-1 are associated with benign hereditary chorea. Hum Mol Genet. 2002;11(8):971–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Quinn N, Schrag A. Huntington’s disease and other choreas. J Neurol. 1998;245(11):709–16.PubMedCrossRefGoogle Scholar
  38. 38.
    Topper R, et al. Neurophysiological abnormalities in the Westphal variant of Huntington’s disease. Mov Disord. 1998;13(6):920–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Tost H, et al. Huntington’s disease: phenomenological diversity of a neuropsychiatric condition that challenges traditional concepts in neurology and psychiatry. Am J Psychiatry. 2004;161(1):28–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Jordan LC, Singer HS. Sydenham chorea in children. Curr Treat Options Neurol. 2003;5(4):283–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Jummani R, Okun M. Sydenham chorea. Arch Neurol. 2001;58(2):311–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Garvey MA, Swedo SE. Sydenham’s chorea. Clinical and therapeutic update. Adv Exp Med Biol. 1997;418:115–20.PubMedGoogle Scholar
  43. 43.
    Hayflick SJ, et al. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med. 2003;348(1):33–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Hayflick SJ, et al. Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol. 2006;27(6):1230–3.PubMedGoogle Scholar
  45. 45.
    Zolkipli Z, et al. Pantothenate kinase 2 mutation with classic pantothenate-kinase-associated neurodegeneration without ‘eye-of-the-tiger’ sign on MRI in a pair of siblings. Pediatr Radiol. 2006;36(8):884–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Danek A, Walker RH. Neuroacanthocytosis. Curr Opin Neurol. 2005;18(4):386–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Storch A, Kornhass M, Schwarz J. Testing for acanthocytosis A prospective reader-blinded study in movement disorder patients. J Neurol. 2005;252(1):84–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Chatterjee A, Frucht SJ. Tetrabenazine in the treatment of severe pediatric chorea. Mov Disord. 2003;18(6):703–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Asher SW, Aminoff MJ. Tetrabenazine and movement disorders. Neurology. 1981;31(8):1051–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Ondo WG, et al. Tetrabenazine treatment for Huntington’s disease-associated chorea. Clin Neuropharmacol. 2002;25(6):300–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Grove Jr VE, Quintanilla J, DeVaney GT. Improvement of Huntington’s disease with olanzapine and valproate. N Engl J Med. 2000;343(13):973–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Pena J, et al. Comparison of the efficacy of carbamazepine, haloperidol and valproic acid in the treatment of children with Sydenham’s chorea: clinical follow-up of 18 patients. Arq Neuropsiquiatr. 2002;60(2-B):374–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Genel F, et al. Sydenham’s chorea: clinical findings and comparison of the efficacies of sodium valproate and carbamazepine regimens. Brain Dev. 2002;24(2):73–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Kulkarni ML, Anees S. Sydenham’s chorea. Indian Pediatr. 1996;33(2):112–5.PubMedGoogle Scholar
  55. 55.
    Thompson PD, et al. Cortical myoclonus in Huntington’s disease. Mov Disord. 1994;9(6):633–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Recio MV, et al. Chorea in a patient with cerebral palsy: treatment with levetiracetam. Mov Disord. 2005;20(6):762–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Destee A, Petit H, Warot P. Effect of piracetam in Huntington’s chorea. Eur Neurol. 1984;23(2):89–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Bonelli RM, Wenning GK. Pharmacological management of Huntington’s disease: an evidence-based review. Curr Pharm Des. 2006;12(21):2701–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Gebremariam A. Sydenham’s chorea: risk factors and the role of prophylactic benzathine penicillin G in preventing recurrence. Ann Trop Paediatr. 1999;19(2):161–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Moore DP. Neuropsychiatric aspects of Sydenham’s chorea: a comprehensive review. J Clin Psychiatry. 1996;57(9):407–14.PubMedGoogle Scholar
  61. 61.
    Wilcox JA, Nasrallah H. Sydenham’s chorea and psychopathology. Neuropsychobiology. 1988;19(1):6–8.PubMedCrossRefGoogle Scholar
  62. 62.
    March JS. Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infection (PANDAS): implications for clinical practice. Arch Pediatr Adolesc Med. 2004;158(9):927–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Trifiletti RR, Packard AM. Immune mechanisms in pediatric neuropsychiatric disorders. Tourette’s syndrome, OCD, and PANDAS. Child Adolesc Psychiatr Clin N Am. 1999;8(4):767–75.PubMedGoogle Scholar
  64. 64.
    Snider LA, Swedo SE. PANDAS: current status and directions for research. Mol Psychiatry. 2004;9(10):900–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Chmelik E, et al. Varied presentation of PANDAS: a case series. Clin Pediatr (Phila). 2004;43(4):379–82.CrossRefGoogle Scholar
  66. 66.
    Pavone P, et al. Anti-brain antibodies in PANDAS versus uncomplicated streptococcal infection. Pediatr Neurol. 2004;30(2):107–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Swedo SE. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Mol Psychiatry. 2002;7 Suppl 2:S24–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Green LN. Corticosteroids in the treatment of Sydenham’s chorea. Arch Neurol. 1978;35(1):53–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Cardoso F, et al. Treatment of Sydenham chorea with corticosteroids. Mov Disord. 2003;18(11):1374–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Albanese A. The clinical expression of primary dystonia. J Neurol. 2003;250(10):1145–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Marsden CD. The pathophysiology of movement disorders. Neurol Clin. 1984;2(3):435–59.PubMedGoogle Scholar
  72. 72.
    Malfait N, Sanger TD. Does dystonia always include co-contraction? A study of unconstrained reaching in children with primary and secondary dystonia. Exp Brain Res. 2007;176(2):206–16.Google Scholar
  73. 73.
    Putzki N, et al. Kinesthesia is impaired in focal dystonia. Mov Disord. 2006;21(6):754–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Frima N, Rome SM, Grunewald RA. The effect of fatigue on abnormal vibration induced illusion of movement in idiopathic focal dystonia. J Neurol Neurosurg Psychiatry. 2003;74(8):1154–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Rome S, Grunewald RA. Abnormal perception of vibration-induced illusion of movement in dystonia. Neurology. 1999;53(8):1794–800.PubMedCrossRefGoogle Scholar
  76. 76.
    Blake DT, et al. Sensory representation abnormalities that parallel focal hand dystonia in a primate model. Somatosens Mot Res. 2002;19(4):347–57.PubMedCrossRefGoogle Scholar
  77. 77.
    McKenzie AL, et al. Somatosensory representation of the digits and clinical performance in patients with focal hand dystonia. Am J Phys Med Rehabil. 2003;82(10):737–49.PubMedCrossRefGoogle Scholar
  78. 78.
    Sanger TD, et al. Nonlinear sensory cortex response to simultaneous tactile stimuli in writer’s cramp. Mov Disord. 2002;17(1):105–11.PubMedCrossRefGoogle Scholar
  79. 79.
    Sanger TD, Tarsy D, Pascual-Leone A. Abnormalities of spatial and temporal sensory discrimination in writer’s cramp. Mov Disord. 2001;16(1):94–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Goyal V, Behari M. Dystonia as presenting manifestation of ataxia telangiectasia: a case report. Neurol India. 2002;50(2):187–9.PubMedGoogle Scholar
  81. 81.
    Woods CG, Taylor AM. Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Q J Med. 1992;82(298):169–79.PubMedGoogle Scholar
  82. 82.
    Vitek JL. Pathophysiology of dystonia: a neuronal model. Mov Disord. 2002;17 Suppl 3:S49–62.PubMedCrossRefGoogle Scholar
  83. 83.
    Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50:381–425.PubMedCrossRefGoogle Scholar
  84. 84.
    Segawa M, Nishiyama N, Nomura Y. DOPA-responsive dystonic parkinsonism–pathophysiologic considerations. Adv Neurol. 1999;80:389–400.PubMedGoogle Scholar
  85. 85.
    Segawa M, Nomura Y, Nishiyama N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol. 2003;54 Suppl 6:S32–45.PubMedCrossRefGoogle Scholar
  86. 86.
    Bressman SB, et al. The DYT1 phenotype and guidelines for diagnostic testing. Neurology. 2000;54(9):1746–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Kabakci K, et al. Mutations in DYT1: extension of the phenotypic and mutational spectrum. Neurology. 2004;62(3):395–400.PubMedCrossRefGoogle Scholar
  88. 88.
    Cif L, et al. Treatment of dystonic syndromes by chronic electrical stimulation of the internal globus pallidus. J Neurosurg Sci. 2003;47(1):52–5.PubMedGoogle Scholar
  89. 89.
    Krause M, et al. Pallidal stimulation for dystonia. Neurosurgery. 2004;55(6):1361–8, discussion 1368–70.Google Scholar
  90. 90.
    Coubes P, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg. 2004;101(2):189–94.PubMedCrossRefGoogle Scholar
  91. 91.
    Kyllerman M. Dyskinetic cerebral palsy. II. Pathogenetic risk factors and intra-uterine growth. Acta Paediatr Scand. 1982;71(4):551–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Krageloh-Mann I, et al. Bilateral lesions of thalamus and basal ganglia: origin and outcome. Dev Med Child Neurol. 2002;44(7):477–84.PubMedCrossRefGoogle Scholar
  93. 93.
    Volpe JJ. Neurology of the newborn. 4th ed. Philadelphia: WB Saunders; 2000.Google Scholar
  94. 94.
    Bhutani VK, et al. Kernicterus: epidemiological strategies for its prevention through systems-based approaches. J Perinatol. 2004;24(10):650–62.PubMedCrossRefGoogle Scholar
  95. 95.
    Rubaltelli FF. Current drug treatment options in neonatal hyperbilirubinaemia and the prevention of kernicterus. Drugs. 1998;56(1):23–30.PubMedCrossRefGoogle Scholar
  96. 96.
    Blackmon LR, Fanaroff AA, Raju TN. Research on prevention of bilirubin-induced brain injury and kernicterus: National Institute of Child Health and Human Development conference executive summary. 2003. Pediatrics. 2004;114(1):229–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Stevenson DK, et al. NICHD Conference on Kernicterus: Research on prevention of bilirubin-induced brain injury and kernicterus: bench-to-bedside–diagnostic methods and prevention and treatment strategies. J Perinatol. 2004;24(8):521–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Govaert P, et al. Changes in globus pallidus with (pre)term kernicterus. Pediatrics. 2003;112(6 Pt 1):1256–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Johnston MV, Hoon Jr AH. Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. J Child Neurol. 2000;15(9):588–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Shapiro SM. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol. 2005;25(1):54–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Opal P, et al. Intrafamilial phenotypic variability of the DYT1 dystonia: from asymptomatic TOR1A gene carrier status to dystonic storm. Mov Disord. 2002;17(2):339–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Dalvi A, Fahn S, Ford B. Intrathecal baclofen in the treatment of dystonic storm. Mov Disord. 1998;13(3):611–2.PubMedCrossRefGoogle Scholar
  103. 103.
    Kyriagis M, et al. Status dystonicus and Hallervorden-Spatz disease: treatment with intrathecal baclofen and pallidotomy. J Paediatr Child Health. 2004;40(5–6):322–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Angelini L, et al. Life-threatening dystonia-dyskinesias in a child: successful treatment with bilateral pallidal stimulation. Mov Disord. 2000;15(5):1010–2.PubMedCrossRefGoogle Scholar
  105. 105.
    Pourcher E, et al. Neuroleptic associated tardive dyskinesias in young people with psychoses. Br J Psychiatry. 1995;166(6):768–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Burke RE, et al. Tardive dystonia and inappropriate use of neuroleptic drugs. Lancet. 1982;1(8284):1299.PubMedCrossRefGoogle Scholar
  107. 107.
    Nygaard TG, Marsden CD, Duvoisin RC. Dopa-responsive dystonia. Adv Neurol. 1988;50:377–84.PubMedGoogle Scholar
  108. 108.
    Klein C, et al. Genetic testing for early-onset torsion dystonia (DYT1): introduction of a simple screening method, experiences from testing of a large patient cohort, and ethical aspects. Genet Test. 1999;3(4):323–8.PubMedCrossRefGoogle Scholar
  109. 109.
    O’Riordan S, et al. Age at onset as a factor in determining the phenotype of primary torsion dystonia. Neurology. 2004;63(8):1423–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Bandmann O, Wood NW. Dopa-responsive dystonia—the story so far. Neuropediatrics. 2002;33(1):1–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Nyhan WL. Clinical features of the Lesch-Nyhan syndrome. Introduction–clinical and genetic features. Fed Proc. 1968;27(4):1027–33.PubMedGoogle Scholar
  112. 112.
    Nyhan WL. Lesch-Nyhan syndrome. Summary of clinical features. Fed Proc. 1968;27(4):1034–41.PubMedGoogle Scholar
  113. 113.
    Nyhan WL. Clinical features of the Lesch-Nyhan syndrome. Arch Intern Med. 1972;130(2):186–92.PubMedCrossRefGoogle Scholar
  114. 114.
    Sheehy EC, et al. Self-inflicted injury in a case of Hallervorden-Spatz disease. Int J Paediatr Dent. 1999;9(4):299–302.PubMedCrossRefGoogle Scholar
  115. 115.
    Hallett M. Analysis of abnormal voluntary and involuntary movements with surface electromyography. Adv Neurol. 1983;39:907–14.PubMedGoogle Scholar
  116. 116.
    Fahn S, Williams DT. Psychogenic dystonia. Adv Neurol. 1988;50:431–55.PubMedGoogle Scholar
  117. 117.
    Thomas M, Jankovic J. Psychogenic movement disorders: diagnosis and management. CNS Drugs. 2004;18(7):437–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Kirsch DB, Mink JW. Psychogenic movement disorders in children. Pediatr Neurol. 2004;30(1):1–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Ozekmekci S, et al. Psychogenic movement disorders in two children. Mov Disord. 2003;18(11):1395–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Pringsheim T, Lang AE. Psychogenic dystonia. Rev Neurol (Paris). 2003;159(10 Pt 1):885–91.Google Scholar
  121. 121.
    Miyasaki JM, et al. Psychogenic movement disorders. Can J Neurol Sci. 2003;30 Suppl 1:S94–100.PubMedGoogle Scholar
  122. 122.
    Feinstein A, et al. Psychiatric outcome in patients with a psychogenic movement disorder: a prospective study. Neuropsychiatry Neuropsychol Behav Neurol. 2001;14(3):169–76.PubMedGoogle Scholar
  123. 123.
    Bentivoglio AR, et al. Phenotypic variability of DYT1-PTD: does the clinical spectrum include psychogenic dystonia? Mov Disord. 2002;17(5):1058–63.PubMedCrossRefGoogle Scholar
  124. 124.
    Bandmann O, et al. Dopa-responsive dystonia in British patients: new mutations of the GTP-cyclohydrolase I gene and evidence for genetic heterogeneity. Hum Mol Genet. 1996;5(3):403–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Bandmann O, et al. Dopa-responsive dystonia: a clinical and molecular genetic study. Ann Neurol. 1998;44(4):649–56.PubMedCrossRefGoogle Scholar
  126. 126.
    Furukawa Y, et al. Dopa-responsive dystonia due to a large deletion in the GTP cyclohydrolase I gene. Ann Neurol. 2000;47(4):517–20.PubMedCrossRefGoogle Scholar
  127. 127.
    Hwang WJ, et al. The long-term response to levodopa in dopa-responsive dystonia. Parkinsonism Relat Disord. 2001;8(1):1–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Nutt JG, Nygaard TG. Response to levodopa treatment in dopa-responsive dystonia. Arch Neurol. 2001;58(6):905–10.PubMedCrossRefGoogle Scholar
  129. 129.
    Brunstrom JE, et al. Motor benefit from levodopa in spastic quadriplegic cerebral palsy. Ann Neurol. 2000;47(5):662–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Burke RE, Fahn S, Marsden CD. Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology. 1986;36(2):160–4.PubMedCrossRefGoogle Scholar
  131. 131.
    Hoon Jr AH, et al. Age-dependent effects of trihexyphenidyl in extrapyramidal cerebral palsy. Pediatr Neurol. 2001;25(1):55–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Sanger TD, et al. Prospective open-label clinical trial of trihexyphenidyl in children with secondary dystonia due to cerebral palsy. J Child Neurol. 2007;22(5):530–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Roach ES, et al. Carbamazepine trial for Lesch-Nyhan self-mutilation. J Child Neurol. 1996;11(6):476–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Saito Y, Takashima S. Neurotransmitter changes in the pathophysiology of Lesch-Nyhan syndrome. Brain Dev. 2000;22 Suppl 1:S122–31.PubMedCrossRefGoogle Scholar
  135. 135.
    Cusumano FJ, Penna KJ, Panossian G. Prevention of self-mutilation in patients with Lesch-Nyhan syndrome: review of literature. ASDC J Dent Child. 2001;68(3):175–8.PubMedGoogle Scholar
  136. 136.
    Swash M, et al. Treatment of involuntary movement disorders with tetrabenazine. J Neurol Neurosurg Psychiatry. 1972;35(2):186–91.PubMedCrossRefGoogle Scholar
  137. 137.
    Jankovic J, et al. Lesch-Nyhan syndrome: a study of motor behavior and cerebrospinal fluid neurotransmitters. Ann Neurol. 1988;23(5):466–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Kang UJ, Burke RE, Fahn S. Natural history and treatment of tardive dystonia. Mov Disord. 1986;1(3):193–208.PubMedCrossRefGoogle Scholar
  139. 139.
    Boyd RN, Morris ME, Graham HK. Management of upper limb dysfunction in children with cerebral palsy: a systematic review. Eur J Neurol. 2001;8 Suppl 5:150–66.PubMedCrossRefGoogle Scholar
  140. 140.
    Graham HK, Boyd RN, Fehlings D. Does intramuscular botulinum toxin A injection improve upper-limb function in children with hemiplegic cerebral palsy? Med J Aust. 2003;178(2):95–6.PubMedGoogle Scholar
  141. 141.
    Ozelius LJ, et al. The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Genomics. 1999;62(3):377–84.PubMedCrossRefGoogle Scholar
  142. 142.
    Bressman SB, et al. Dystonia in Ashkenazi Jews: clinical characterization of a founder mutation. Ann Neurol. 1994;36(5):771–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Coubes P, et al. Treatment of dystonia syndrome by chronic electric stimulation of the internal globus pallidus. Arch Pediatr. 2002;9 Suppl 2:84s–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Krack P, Vercueil L. Review of the functional surgical treatment of dystonia. Eur J Neurol. 2001;8(5):389–99.PubMedCrossRefGoogle Scholar
  145. 145.
    Teive HA, et al. Bilateral pallidotomy for generalized dystonia. Arq Neuropsiquiatr. 2001;59(2-B):353–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Albright AL, et al. Continuous intrathecal baclofen infusion for symptomatic generalized dystonia. Neurosurgery. 1996;38(5):934–8, discussion 938–9.Google Scholar
  147. 147.
    Albright AL, et al. Infusion of intrathecal baclofen for generalized dystonia in cerebral palsy. J Neurosurg. 1998;88(1):73–6.PubMedCrossRefGoogle Scholar
  148. 148.
    Albright AL, et al. Intrathecal baclofen for generalized dystonia. Dev Med Child Neurol. 2001;43(10):652–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Butler C, Campbell S. Evidence of the effects of intrathecal baclofen for spastic and dystonic cerebral palsy. AACPDM Treatment Outcomes Committee Review Panel. Dev Med Child Neurol. 2000;42(9):634–45.PubMedCrossRefGoogle Scholar
  150. 150.
    Ford B, et al. Intrathecal baclofen in the treatment of dystonia. Adv Neurol. 1998;78:199–210.PubMedGoogle Scholar
  151. 151.
    Turny F, Jedynak P, Agid Y. Athetosis or dystonia? Rev Neurol (Paris). 2004;160:759–64.CrossRefGoogle Scholar
  152. 152.
    Morris JG, et al. Athetosis II: the syndrome of mild athetoid cerebral palsy. Mov Disord. 2002;17(6):1281–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Morris JG, et al. Athetosis I: historical considerations. Mov Disord. 2002;17(6):1278–80.PubMedCrossRefGoogle Scholar
  154. 154.
    Nygaard TG, Duvoisin RC. Hereditary dystonia-parkinsonism syndrome of juvenile onset. Neurology. 1986;36(11):1424–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Wein T, et al. Exquisite sensitivity of paroxysmal kinesigenic choreathetosis to carbamazepine. Neurology. 1996;47:1104–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Micheli F, et al. Paroxysmal dystonia responsive to anticholinergic drugs. Clin Neuropharmacol. 1987;10:365–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Shibasaki H, et al. Electroencephalographic correlates of myoclonus. Adv Neurol. 1986;43:357–72.PubMedGoogle Scholar
  158. 158.
    Shibasaki H. Electrophysiological studies of myoclonus. Muscle Nerve. 2000;23(3):321–35.PubMedCrossRefGoogle Scholar
  159. 159.
    Lance J, Adams R. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain. 1963;86:111.PubMedCrossRefGoogle Scholar
  160. 160.
    Asmus F, Gasser T. Inherited myoclonus-dystonia. Adv Neurol. 2004;94:113–9.PubMedGoogle Scholar
  161. 161.
    Lang AE. Essential myoclonus and myoclonic dystonia. Mov Disord. 1997;12(1):127.PubMedCrossRefGoogle Scholar
  162. 162.
    Dooley JM, Hayden JD. Benign febrile myoclonus in childhood. Can J Neurol Sci. 2004;31:504–5.PubMedGoogle Scholar
  163. 163.
    Kinsbourne M. Myoclonic encephalopathy of infants. J Neurol. 1962;25:271.Google Scholar
  164. 164.
    Warrier RP, et al. Opsomyoclonus and neuroblastoma. Clin Pediatr (Phila). 1985;24(1):32–4.CrossRefGoogle Scholar
  165. 165.
    Connolly AM, et al. Serum autoantibodies in childhood opsoclonus-myoclonus syndrome: an analysis of antigenic targets in neural tissues. J Pediatr. 1997;130(6):878–84.PubMedCrossRefGoogle Scholar
  166. 166.
    Tate ED, et al. Neuroepidemiologic trends in 105 US Cases of pediatric opsoclonus-myoclonus syndrome. J Pediatr Oncol Nurs. 2005;22(1):8–19.PubMedCrossRefGoogle Scholar
  167. 167.
    Sheth RD, et al. Opsoclonus myoclonus syndrome secondary to Epstein-Barr virus infection. J Child Neurol. 1995;10(4):297–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Quinn NP. Essential myoclonus and myoclonic dystonia. Mov Disord. 1996;11(2):119–24.PubMedCrossRefGoogle Scholar
  169. 169.
    Fahn S, Sjaastad O. Hereditary essential myoclonus in a large Norwegian family. Mov Disord. 1991;6(3):237–47.PubMedCrossRefGoogle Scholar
  170. 170.
    Shibasaki H, Hallett M. Electrophysiological studies of myoclonus. Muscle & Nerve. 2005;31(2):157–174.Google Scholar
  171. 171.
    Caviness JN, Brown P. Myoclonus: current concepts and recent advances. Lancet Neurol. 2004;3(10):598–607.PubMedCrossRefGoogle Scholar
  172. 172.
    Furukawa Y, Rajput AH. Inherited myoclonus-dystonia: how many causative genes and clinical phenotypes? Neurology. 2002;59(8):1130–1.PubMedCrossRefGoogle Scholar
  173. 173.
    Schule B, et al. Genetic heterogeneity in ten families with myoclonus-dystonia. J Neurol Neurosurg Psychiatry. 2004;75(8):1181–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Valente EM, et al. Analysis of the epsilon-sarcoglycan gene in familial and sporadic myoclonus-dystonia: evidence for genetic heterogeneity. Mov Disord. 2003;18(9):1047–51.PubMedCrossRefGoogle Scholar
  175. 175.
    Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord. 1998;13 Suppl 3:2–23.Google Scholar
  176. 176.
    Makabe H, Sakamoto K. Evaluation of postural tremor of finger for neuromuscular diseases and its application to the classification. Electromyogr Clin Neurophysiol. 2002;42(4):205–18.PubMedGoogle Scholar
  177. 177.
    Takanokura M, Kokuzawa N, Sakamoto K. The origins of physiological tremor as deduced from immersions of the finger in various liquids. Eur J Appl Physiol. 2002;88(1–2):29–41.PubMedCrossRefGoogle Scholar
  178. 178.
    Elble RJ. Essential tremor frequency decreases with time. Neurology. 2000;55(10):1547–51.PubMedCrossRefGoogle Scholar
  179. 179.
    Findley LJ, Gresty MA, Halmagyi GM. Tremor, the cogwheel phenomenon and clonus in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1981;44(6):534–46.PubMedCrossRefGoogle Scholar
  180. 180.
    O’Suilleabhain PE, Matsumoto JY. Time-frequency analysis of tremors. Brain. 1998;121(11):2127–34.PubMedCrossRefGoogle Scholar
  181. 181.
    Kim YJ, Pakiam AS, Lang AE. Historical and clinical features of psychogenic tremor: a review of 70 cases. Can J Neurol Sci. 1999;26(3):190–5.PubMedGoogle Scholar
  182. 182.
    Zeuner KE, et al. Accelerometry to distinguish psychogenic from essential or parkinsonian tremor. Neurology. 2003;61(4):548–50.PubMedCrossRefGoogle Scholar
  183. 183.
    Leung GK, Fan YW, Ho SL. Rubral tremor associated with cavernous angioma of the midbrain. Mov Disord. 1999;14(1):191–3.PubMedCrossRefGoogle Scholar
  184. 184.
    Tan H, et al. Rubral tremor after thalamic infarction in childhood. Pediatr Neurol. 2001;25(5):409–12.PubMedCrossRefGoogle Scholar
  185. 185.
    Stremmel W, et al. Wilson disease: clinical presentation, treatment, and survival. Ann Intern Med. 1991;115(9):720–6.PubMedGoogle Scholar
  186. 186.
    Saito T. Presenting symptoms and natural history of Wilson disease. Eur J Pediatr. 1987;146(3):261–5.PubMedCrossRefGoogle Scholar
  187. 187.
    Louis ED, Dure LS IV, Pullman S. Essential tremor in childhood: a series of nineteen cases. Mov Disord. 2001;16(5):921–3.Google Scholar
  188. 188.
    Jankovic J, Madisetty J, Vuong KD. Essential tremor among children. Pediatrics. 2004;114(5):1203–5.PubMedCrossRefGoogle Scholar
  189. 189.
    Paulson GW. Benign essential tremor in childhood: symptoms, pathogenesis, treatment. Clin Pediatr (Phila). 1976;15(1):67–70.CrossRefGoogle Scholar
  190. 190.
    Rajput A, Robinson CA, Rajput AH. Essential tremor course and disability: a clinicopathologic study of 20 cases. Neurology. 2004;62(6):932–6.PubMedCrossRefGoogle Scholar
  191. 191.
    Gironell A, et al. A randomized placebo-controlled comparative trial of gabapentin and ­propranolol in essential tremor. Arch Neurol. 1999;56(4):475–80.PubMedCrossRefGoogle Scholar
  192. 192.
    Yuill GM. Suppression of “rubral” tremor with levodopa. Br Med J. 1980;281(6252):1428.PubMedCrossRefGoogle Scholar
  193. 193.
    Findley LJ, Gresty MA. Suppression of “rubral” tremor with levodopa. Br Med J. 1980;281(6247):1043.PubMedCrossRefGoogle Scholar
  194. 194.
    Jacob PC, Pratap Chand R. Posttraumatic rubral tremor responsive to clonazepam. Mov Disord. 1998;13(6):977–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Nikkhah G, et al. Deep brain stimulation of the nucleus ventralis intermedius for Holmes (rubral) tremor and associated dystonia caused by upper brainstem lesions. Report of two cases. J Neurosurg. 2004;100(6):1079–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Child Neurology, and BiokinesiologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations