Advertisement

Basic Biology of Plasma Cell Dyscrasias: Focus on the Role of the Tumor Microenviroment

  • Marc S. Raab
  • Kenneth C. Anderson
Part of the Contemporary Hematology book series (CH)

Introduction

B-cell development involves several mechanisms of remodeling Ig genes: VDJ recombination, somatic hypermutation, and Ig heavy chain (IgH) switch recombination. Once matured, B-cells reside in secondary lymphoid tissues. Antigen interaction induces proliferation and differentiation to lymphoblasts, leading to the generation of short-lived pregerminal center plasma cells. An antigen-activated lymphoblast entering a germinal center undergoes a unique modification of Ig genes through sequential rounds of somatic hypermutation and antigen selection, as well as by IgH switch recombination. Postgerminal center B-cells may become plasmablasts that have successfully completed somatic hypermutation and IgH switching before migrating to the bone marrow (BM), where stromal cells enable terminal differentiation into nonproliferating long-lived plasma cells.1,2

Multiple myeloma (MM) is a malignant disease of terminally differentiated B-cells that may be preceded by a premalignant...

References

  1. 1.
    Kuehi WM, Bergsagel PL. Multiple myeloma:Evolving genetic events and host interactions. Nat Rev Cancer 2002;2(3):175–187.Google Scholar
  2. 2.
    Rajkumar SV, Fonseca R, Dewald GW et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet 1999;113(1):73–77.PubMedGoogle Scholar
  3. 3.
    Cohen HJ, Crawford J, Rao MK, Pieper CF, Currie MS. Racial differences in the prevalence of monoclonal gammopathy in a community-based sample of the elderly. Am J Med 1998;104(5):439–444.PubMedGoogle Scholar
  4. 4.
    Kyle RA, Beard CM, O'Fallon WM, Kurland LT. Incidence of multiple myeloma in Olmsted County, Minnesota:1978 through 1990, with a review of the trend since 1945. J Clin Oncol 1994;12(8):1577–1583.PubMedGoogle Scholar
  5. 5.
    Kyle RA, Rajkumar SV. Monoclonal gammopathies of undetermined significance. Hematol Oncol Clin North Am 1999;13(6):1181–1202.PubMedGoogle Scholar
  6. 6.
    Chesi M, Nardini E, Brents LA et al. Frequent translocation t(4;14)Q,16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997;16(3):260–264.PubMedGoogle Scholar
  7. 7.
    Trudel S, Ely S, Farooqi YC et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 2004;103(9):3521–3528.PubMedGoogle Scholar
  8. 8.
    Gonzalez-Paz N, Chng WJ, McClure RF et al. Tumor suppressor p16 methylation in multiple myeloma:Biological and clinical implications. Blood 2007;109(3):1228–1232.PubMedGoogle Scholar
  9. 9.
    Pompeia C, Hodge DR, Plass C et al. Microarray analysis of epigenetic silencing of gene expression in the KAS-6/1 multiple myeloma cell line. Cancer Res 2004;64(10):3465–3473.PubMedGoogle Scholar
  10. 10.
    Carrasco DR, Tonon G, Huang Y et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006;9(4):313–325.PubMedGoogle Scholar
  11. 11.
    Takahashi T, Shivapurkar N, Reddy J et al. DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin Cancer Res 2004;10(9):2928–2935.PubMedGoogle Scholar
  12. 12.
    Smadja NV, Fruchart C, Isnard F et al. Chromosomal analysis in multiple myeloma:Cyto genetic evidence of two different diseases. Leukemia 1998;12(6):960–969.PubMedGoogle Scholar
  13. 13.
    Debes-Marun CS, Dewald GW, Bryant S et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003;17(2):427–436.PubMedGoogle Scholar
  14. 14.
    Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehi WM. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996;93(24):13931–13936.PubMedGoogle Scholar
  15. 15.
    Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001;98(7):2229–2238.PubMedGoogle Scholar
  16. 16.
    Bergsagel PL, Kuehi WM. Chromosome translocations in multiple myeloma. Oncogene 2001;20(40):5611–5622.PubMedGoogle Scholar
  17. 17.
    Bergsagel PL, Kuehi WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 2003;194:96–104.PubMedGoogle Scholar
  18. 18.
    Bergsagei PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J. Cyclin D dysregulation:An early and unifying pathogenic event in multiple myeloma. Blood 2005;106(1):296–303.Google Scholar
  19. 19.
    Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehi W M Dysregulation of cyclin Dl by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996;88(2):674–681.PubMedGoogle Scholar
  20. 20.
    Chesi M, Nardini E, Lim RS, Smith KID, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998;92(9):3025–3034.PubMedGoogle Scholar
  21. 21.
    Gabrea A, Bergsagel PL, Chesi M, Shou Y, Kuehi WM. Insertion of excised IgH switch sequences causes overexpression of cyclin Dl in a myeloma tumor cell. Mol Cell 1999;3(1):119–123.PubMedGoogle Scholar
  22. 22.
    Shaughnessy J, Jr., Gabrea A, Qi Y et al. Cyclin D3 at 6p2l is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001;98(1):217–223.PubMedGoogle Scholar
  23. 23.
    Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005;23(26):6333–6338.PubMedGoogle Scholar
  24. 24.
    Avet-Loiseau H, Daviet A, Brigaudeau C et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia:A study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 2001;97(3):822–825.PubMedGoogle Scholar
  25. 25.
    Fonseca R, Blood E, Rue M et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003;101(1l):4569–4575.PubMedGoogle Scholar
  26. 26.
    Zhan F, Huang Y, Colla S et al. The molecular classification of multiple myeloma. Blood 2006;108(6):2020–2028.PubMedGoogle Scholar
  27. 27.
    Hanamura I, Stewart JP, Huang Y et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization:incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006;108(5):1724–1732.PubMedGoogle Scholar
  28. 28.
    Shou Y, Martelli ML, Gabrea A et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000;97(l):228–233.PubMedGoogle Scholar
  29. 29.
    Stewart AK, Fonseca R. Prognostic and therapeutic significance of myeloma genetics and gene expression profiling. J Clin Oncol 2005;23(26):6339–6344.PubMedGoogle Scholar
  30. 30.
    Chng WJ, Winkler JM, Greipp PR et al. Ploidy status rarely changes in myeloma patients at disease progression. Leuk Res 2006;30(3):266–271.PubMedGoogle Scholar
  31. 31.
    Hurt EM, Wiestner A, Rosenwald A et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004;5(2):191–199.PubMedGoogle Scholar
  32. 32.
    Mitsiades CS, Koutsilieris M. Molecular biology and cellular physiology of refractoriness to androgen ablation therapy in advanced prostate cancer. Expert Opin Investig Drugs 2001;10(6):1099–1115.PubMedGoogle Scholar
  33. 33.
    van Kempen LC, Ruiter DJ, van Muijen GN, Coussens LM. The tumor microen-vironment:a critical determinant of neoplastic evolution. Eur J Cell Biol 2003;82(11):539–548.PubMedGoogle Scholar
  34. 34.
    Munk Pedersen I, Reed J. Microenvironmental interactions and survival of CLL B-cells. Leuk Lymphoma 2004;45(12):2365–2372.Google Scholar
  35. 35.
    Zhou J, Mauerer K, Farina L, Gribben JG. The role of the tumor microenvironment in hema-tological malignancies and implication for therapy. Front Biosci 2005;10:1581–1596.PubMedGoogle Scholar
  36. 36.
    Hideshima T, Chauhan D, Hayashi T et al. The biological sequelae of stromal cell-derived factor-1{alpha} in multiple myeloma. Mol Cancer Ther 2002;1(7):539–544.PubMedGoogle Scholar
  37. 37.
    Mitsiades CS, Mitsiades NS, McMullan CJ et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004;5(3):221–230.PubMedGoogle Scholar
  38. 38.
    Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P, Pantesco V, De Vos J, Jourdan E, Jauch A, Legouffe E, Moos M, Fiol G, Goldschmidt H, Rossi JF, Hose D, Klein B. The level of TAC1 gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood. 2005;106(3):1021–1030. Epub 2005 Apr 12.PubMedGoogle Scholar
  39. 39.
    Chauhan D, Catley L, Li G et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib [In Process Citation]. Cancer Cell 2005;8(5):407–419.PubMedGoogle Scholar
  40. 40.
    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR):Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999;93(5):1658–1667.PubMedGoogle Scholar
  41. 41.
    Akiyama M, Hideshima T, Hayashi T et al. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res 2002;62(13):3876–3882.PubMedGoogle Scholar
  42. 42.
    Chauhan D, Li G, Hideshima T et al. Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS341. Oncogene 2004;23(20):3597–3602.PubMedGoogle Scholar
  43. 43.
    Hideshima T, Catley L, Yasui H et al. Perifosine, an oral bio active novel alkyl-phospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107(10):4053–4062.PubMedGoogle Scholar
  44. 44.
    Mitsiades CS, Mitsiades NS, Munshi NC, Richardson PG, Anderson KC. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma:Interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 2006;42(11):1564–1573.PubMedGoogle Scholar
  45. 45.
    Freund GG, Kulas DT, Mooney RAet al. Insulin and TGF-1 increase mitogenesis and glucose metabolism in the multiple myeloma cell line, RPMI 8226. J Immunol 1993;151(4):1811–1820.PubMedGoogle Scholar
  46. 46.
    Vanderkerken K Asosingh K, Braet F, Van Riet I Van CB. Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood 1999;93(1):235–241.PubMedGoogle Scholar
  47. 47.
    Podar K, Tai YT, Davies FE et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001;98(2):428–435.PubMedGoogle Scholar
  48. 48.
    Podar K, Tai YT, Lin BK et al. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphati-dylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 2002;277(10):7875–7881.PubMedGoogle Scholar
  49. 49.
    L 'Hote CG, Knowles MA. Cell responses to FGFR3 signalling:Growth, differentiation and apoptosis. Exp Cell Res 2005;304(2):417–431.PubMedGoogle Scholar
  50. 50.
    Otsuki T, Yamada O, Yata K et al. Expression of fibroblast growth factor and FGF-receptor family genes in human myeloma cells, including lines possessing t(4;14)(q16.3;q32. 3) and FGFR3 translocation. Tnt J Oncol 1999;15(6):1205–1212.Google Scholar
  51. 51.
    Chauhan D, Uchiyama H, Akbarali Y et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996;87(3):1104–1112.PubMedGoogle Scholar
  52. 52.
    Hideshima T, Bergsagel PL, Kuehi WM, Anderson KC. Advances in biology of multiple myeloma:Clinical applications. Blood 2004;104(3):607–618.PubMedGoogle Scholar
  53. 53.
    Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002;2(12):927–937.PubMedGoogle Scholar
  54. 54.
    Roodman GD. New potential targets for treating myeloma bone disease. Clin Cancer Res 2006;12(20 Pt 2):6270s–6273s.PubMedGoogle Scholar
  55. 55.
    Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis 2004;32(2):290–292.PubMedGoogle Scholar
  56. 56.
    Ribatti D, Nico B, Vacca A. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 2006;25(31):4257–4266.PubMedGoogle Scholar
  57. 57.
    Jakob C, Sterz J, Zavrski I et al. Angiogenesis in multiple myeloma. Eur J Cancer 2006;42(1l):1581–1590.PubMedGoogle Scholar
  58. 58.
    De CE. Potential clinical applications of the CXCR4 antagonist bicyclam AMD3 100. Mini Rev Med Chem 2005;5(9):805–824.Google Scholar
  59. 59.
    Alsayed Y, Ngo H, Runnels J. Mechanisms of regulation of CXCR4/SDF-l (CXCL 12)-dependent migration and homing in multiple myeloma. Blood 2007;109(7):2708–217.PubMedGoogle Scholar
  60. 60.
    Landowski TH, Olashaw NE, Agrawal D, Dalton WS. Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 2003;22(16):2417–2421.PubMedGoogle Scholar
  61. 61.
    Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS. Adhesion to fibronectin via betal integrins regulates p27kipl levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000;19(38):4319–4327.PubMedGoogle Scholar
  62. 62.
    Damiano JS, Dalton WS. Integrin-mediated drug resistance in multiple myeloma. Leuk Lymphoma 2000;38(1-2):71–81.PubMedGoogle Scholar
  63. 63.
    Hazlehurst LA, Enkemann SA, Beam CA et al. Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model. Cancer Res 2003;63(22):7900–7906.PubMedGoogle Scholar
  64. 64.
    Yang Y, Yaccoby S, Liu W et al. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 2002;100(2):610–617.PubMedGoogle Scholar
  65. 65.
    Mahtouk K, Hose D, Raynaud P et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 2007;109(1l):4914–4923.PubMedGoogle Scholar
  66. 66.
    Mahtouk K, Cremer FW, Reme T et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene 2006;25(54):7180–7791.PubMedGoogle Scholar
  67. 67.
    Flideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma:therapeutic applications. Oncogene 2001;20(33):4519–4527.Google Scholar
  68. 68.
    Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced P13-K/Akt signaling in multiple myeloma. Oncogene 2001;20(42):5991–6000.PubMedGoogle Scholar
  69. 69.
    Pene F, Claessens YE, Muller O et al. Role of the phosphatidylinositol 3-kinase/Akt and mTORIP70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 2002;21(43):6587–6597.PubMedGoogle Scholar
  70. 70.
    Puthier D, Bataille R, Amiot M. IL-6 up-regulates mcl-1 in human myeloma cells through JAK/STAT rather than Ras/MAP kinase pathway. Eur J Immunol 1999;29(12):3945–3950.PubMedGoogle Scholar
  71. 71.
    Puthier D, Derenne S, Barille S et al. Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br J Haematol 1999;107(2):392–395.PubMedGoogle Scholar
  72. 72.
    Catlett-Falcone R, Landowski TH, Oshiro MM et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999;10(1):105–115.PubMedGoogle Scholar
  73. 73.
    Kiuchi N, Nakajima K, Ichiba M et al. STAT3 is required for the gpl3O-mediated full activation of the c-myc gene. J Exp Med 1999;189(1):63–73.PubMedGoogle Scholar
  74. 74.
    Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999;11(6):709–719.PubMedGoogle Scholar
  75. 75.
    Ge NL, Rudikoff S. Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 2000;96(8):2856–2861.PubMedGoogle Scholar
  76. 76.
    Abroun S, Ishikawa H, Tsuyama N et al. Receptor synergy of interleukin-6 (IL-6) and insulin-like growth factor-I in myeloma cells that highly express IL-6 receptor alpha. Blood 2004;103(6):2291–2298.PubMedGoogle Scholar
  77. 77.
    Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells:Roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000;60(23):6763–6770.PubMedGoogle Scholar
  78. 78.
    Rajkumar SV, Kyle RA. Angiogenesis in multiple myeloma. Semin Oncol 2001;28(6):560–564.PubMedGoogle Scholar
  79. 79.
    Xu JL, Lai R, Kinoshita T, Nakashima N, Nagasaka T. Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma:Correlation with the clinical stage and cytological grade. J Clin Pathol 2002;55(7):530–534.PubMedGoogle Scholar
  80. 80.
    Dankbar B, Padro T, Leo R et al. Vascular endothelial growth factor and inter-leukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000;95(8):2630–2636.PubMedGoogle Scholar
  81. 81.
    Gupta D, Treon SP, Shima Y et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion:Therapeutic applications. Leukemia 2001;15(12):1950–1961.PubMedGoogle Scholar
  82. 82.
    Le Gouill S, Podar K, Amiot M et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 2004;104(9):2886–2892.Google Scholar
  83. 83.
    Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies:Therapeutic implications. Blood 2005;105(4):1383–1395.PubMedGoogle Scholar
  84. 84.
    Vacca A, Ribatti D, Presta M et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999;93(9):3064–3073.PubMedGoogle Scholar
  85. 85.
    Kline M, Donovan K, Wellik L et al. Cytokine and chemokine profiles in multiple myeloma;significance of stromal interaction and correlation of IL-8 production with disease progression. Leuk Res 2007;31(5):591–598.PubMedGoogle Scholar
  86. 86.
    Singhal S, Mehta J, Desikan R et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341(21):1565–1571.PubMedGoogle Scholar
  87. 87.
    Dallas SL, Garrett IR, Oyajobi BO et al. Ibandronate reduces osteolytic lesions but not tumor burden in a murine model of myeloma bone disease. Blood 1999;93(5):1697–1706.PubMedGoogle Scholar
  88. 88.
    Callander NS, Roodman GD. Myeloma bone disease. Semin Hematol 2001;38(3):276–285.PubMedGoogle Scholar
  89. 89.
    Roodman GD. Biology of osteoclast activation in cancer. J Clin Oncol 2001;19(15):3562–3571.PubMedGoogle Scholar
  90. 90.
    Sezer O, Heider U, Zavrski I, Kuhne CA, Hofbauer LC. RANK ligand and osteo-protegerin in myeloma bone disease. Blood 2003;101(6):2094–2098.PubMedGoogle Scholar
  91. 91.
    Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004;292(4):490–495.PubMedGoogle Scholar
  92. 92.
    Shipman CM, Croucher PI. Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 2003;63(5):912–916.PubMedGoogle Scholar
  93. 93.
    Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 2001;98(13):3527–3533.PubMedGoogle Scholar
  94. 94.
    Giuliani N, Colla S, Rizzoli V. New insight in the mechanism of osteoclast activation and formation in multiple myeloma:Focus on the receptor activator of NF-kappaB ligand (RANKL). Exp Hematol 2004;32(8):685–691.PubMedGoogle Scholar
  95. 95.
    Croucher PI, Shipman CM, Lippitt J et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 2001;98(13):3534–3540.PubMedGoogle Scholar
  96. 96.
    Michigami T, Shimizu N, Williams PJ et al. Cell-cell contact between marrow stro-mal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 2000;96(5):1953–1960.PubMedGoogle Scholar
  97. 97.
    Pearse RN, Sordillo EM, Yaccoby S et al. Multiple myeloma disrupts the TRANCEL osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 2001;98(20):11581–11586.PubMedGoogle Scholar
  98. 98.
    Choi SJ, Oba Y, Gazitt Y et al. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest 2001;108(12):1833–1841.PubMedGoogle Scholar
  99. 99.
    Oba Y, Lee JW, Ehrlich LA et al. MIP-l alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp Hematol 2005;33(3):272–278.PubMedGoogle Scholar
  100. 100.
    Roodman GD, Kurihara N, Ohsaki Y et al. Interleukin 6. A potential autocrine/paracrine factor in Paget 's disease of bone. J Clin Invest 1992;89(1):46–52.PubMedGoogle Scholar
  101. 101.
    Nguyen AN, Stebbins EG, Henson M et al. Normalizing the bone marrow micro-environment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp Cell Res 2006; 312(10): 1909–1923.PubMedGoogle Scholar
  102. 102.
    Giuliani N, Colla S, Morandi F et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106(7):2472–2483.PubMedGoogle Scholar
  103. 103.
    Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition. Blood 2006; 108(13):3992–3996.PubMedGoogle Scholar
  104. 104.
    Karsenty G, Ducy P, Starbuck M. Cbfal as a regulator of osteoblast differentiation and function. Bone 1999; 25(1):107–108.PubMedGoogle Scholar
  105. 105.
    Ducy P, Karsenty G. Transcriptional control of osteoblast differentiation [Record Supplied By Aries Systems]. Endocrinologist 1999; 9(1):32–35.Google Scholar
  106. 106.
    Tian E, Zhan F, Walker R et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349(26):2483–2494.Google Scholar
  107. 107.
    Oshima T, Abe M, Asano J et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005; 106(9):3160–3165.PubMedGoogle Scholar
  108. 108.
    Standal T, Abildgaard N, Fagerli UM. HGF inhibits BMP-induced osteoblas-togenesis: Possible implications for the bone disease of multiple myeloma [In Process Citation]. Blood 2007; 109(7):3024–3330.PubMedGoogle Scholar
  109. 109.
    Franchimont N, Rydziel S, Canalis E. Transforming growth factor-beta increases interleukin-6 transcripts in osteoblasts. Bone 2000; 26(3):249–253.PubMedGoogle Scholar
  110. 110.
    Urashima M, Ogata A, Chauhan D et al. Transforming growth factor-betal: differential effects on multiple myeloma versus normal B cells. Blood 1996; 87(5) :1928–1938.PubMedGoogle Scholar
  111. 111.
    Ehrlich LA, Chung HY, Ghobrial I et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 2005; 106(4):1407–1414.PubMedGoogle Scholar
  112. 112.
    Garrett IR, Chen D, Gutierrez G et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 2003; 111(11):1771–1782. 26PubMedGoogle Scholar
  113. 113.
    Heider U, Kaiser M, Muller C et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 2006; 77(3):233–238.PubMedGoogle Scholar
  114. 114.
    Murray EJ, Bentley GV, Grisanti MS, Murray SS. The ubiquitin-proteasome system and cellular proliferation and regulation in osteoblastic cells. Exp Cell Res 1998; 242(2):460–469.PubMedGoogle Scholar
  115. 115.
    Berenson JR, Yang HH, Sadler K et al. Phase 1/11 trial assessing bortezomib and meiphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 2006; 24(6):937–944.PubMedGoogle Scholar
  116. 116.
    Orlowski RZ, Voorhees PM, Garcia RA et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005; 105(8):3058–3065.PubMedGoogle Scholar
  117. 117.
    Hideshima T, Mitsiades C, Akiyama M et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-34 1. Blood 2003; 101(4): 1530–1534.PubMedGoogle Scholar
  118. 118.
    Mitsiades N, Mitsiades CS, Richardson PG et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: Therapeutic applications. Blood 2003; 101(6):2377–2380.PubMedGoogle Scholar
  119. 119.
    Mitsiades CS, Mitsiades NS, McMullan CJ et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006; 107(3):1092–1100.PubMedGoogle Scholar
  120. 120.
    Mitsiades N, Mitsiades CS, Poulaki V et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Nati Acad Sci U S A 2002; 99(22):14374–14379.Google Scholar
  121. 121.
    Mitsiades N, Mitsiades CS, Poulaki V et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: Therapeutic implications. Blood 2002; 99(12):4525–4530.PubMedGoogle Scholar
  122. 122.
    Hideshima T, Bradner JE, Wong J. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 2005; 102(24):8567–8572.PubMedGoogle Scholar
  123. 123.
    Rajkumar SV, Hayman SR, Lacy MQ. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 2005; 106(13):4050–4053.PubMedGoogle Scholar
  124. 124.
    Dispenzieri A, Lacy MQ, Zeldenrust SR et al. The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis. Blood 2007; 109(2):465–470.PubMedGoogle Scholar
  125. 125.
    Tai YT, Li XF, Catley L. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD4O SGN-40-induced cytotoxicity in human multiple myeloma: Clinical implications. Cancer Res 2005; 65(24):11712–11720.PubMedGoogle Scholar
  126. 126.
    Raje N, Kumar S, Hideshima T et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 2004; 104(13):4188–4193.PubMedGoogle Scholar
  127. 127.
    Podar K, Tonon G, Sattler M et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A 2006; 103(51):19478–19483.PubMedGoogle Scholar
  128. 128.
    Podar K, Catley LP, Tai YT et al. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 2004; 103(9):3474–3479.PubMedGoogle Scholar
  129. 129.
    Podar K, Raab MS, Zhang J et al. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzas-taurin (LY3 17615.HC1). Blood 2007; 109(4):1669–1677.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marc S. Raab
    • 1
  • Kenneth C. Anderson
    • 2
  1. 1.Department of Medical Oncology, Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA
  2. 2.Department of Medical Oncology, Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations