Advertisement

The PI3 Kinase/Akt Pathway as a Therapeutic Target in Multiple Myeloma

  • R. Donald Harvey
  • Jeannine Silberman
  • Sagar Lonial
Part of the Contemporary Hematology book series (CH)

Introduction

The development of novel therapies for multiple myeloma (MM) depends on a comprehensive understanding of the events leading to cellular proliferation and survival. Controlling pathways that regulate growth signals is an emerging and complementary approach to myeloma treatment. Dysregulation of the phosphotidylinositol 3-kinase (PI3K)/Akt pathway has been implicated in malignant transformation and progression of a number of cancers, including MM. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 When activated, the PI3K/Akt pathway leads to downstream activators of cellular proliferation, adhesion, migration, survival, angiogenesis, and drug resistance (Fig. 1). 11, 12The PI3K/Akt pathway is a central gatekeeper for these critical cellular functions. Established proteins and genes such as mTOR (mammalian target of rapamycin), p53, NF-κB (nuclear factor kappa B), and BAD (Bcl-2 antagonist of cell death) are all regulated through PI3K and Akt activation, making them attractive targets for broad...

Keywords

Multiple Myeloma Myeloma Cell PI3K Activation Murine Double Minute Farnesyl Transferase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lim, W.T., et al, PTEN and phosphorylated AKT expression and prognosis in early- and late-stage non-small cell lung cancer. Oncol Rep, 2007. 17(4): 853–7.PubMedGoogle Scholar
  2. 2.
    Bahlis, N.J., et al, CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood, 2007. 109(11): 5002–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Govindarajan, B., et al, Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest, 2007. 117(3): 719–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Meng, Q., et al, Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal, 2006. 18(12): 2262–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Opel, D., et al, Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res, 2007. 67(2): 735–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Tazzari, P.L., et al, Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia, 2007. 21(3): 427–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Tokunaga, E., et al, Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer, 2006. 13(2): 137–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Uddin, S., et al, Role of phosphatidylinositol 3″-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood, 2006. 108(13): 4178–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Cantrell, DA., Phosphoinositide 3-kinase signalling pathways. J Cell Sci, 2001. 114(Pt 8): 1439–45.PubMedGoogle Scholar
  10. 10.
    Chang, F., et al, Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003. 17(3): 590–603.PubMedCrossRefGoogle Scholar
  11. 11.
    Testa, J.R., et al and Bellacosa, A., AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA, 2001. 98(20): 10983–10985.PubMedCrossRefGoogle Scholar
  12. 12.
    Carpten, J., et al, A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 2007. 448: 439–444.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng, J.Q., Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Update, 5: 131–146.Google Scholar
  14. 14.
    Arlt, A., et al, Role of NF- βB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 2003. 22: 3242–3251.Google Scholar
  15. 15.
    Kneufermann, C., et al, HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 2003. 22: 3205–3512.CrossRefGoogle Scholar
  16. 16.
    Yuan, Z.-Q., et al, AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: Implication of AKT2 in chemoresistance. J Biol Chem, 2003. 19: 2324–2330.Google Scholar
  17. 17.
    Nagata, Y., et al, PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 2004. 6: 117–127.PubMedCrossRefGoogle Scholar
  18. 18.
    Athanassiadou, P., et al, The prognostic value of PTEN, p53, and beta-catenin in endometrial carcinoma: A prospective immunocytochemical study. Int J Gynecol Cancer, 2007. 17(3): 697–704.PubMedCrossRefGoogle Scholar
  19. 19.
    Bepler, G., et al, RRM1 and PTEN as prognostic parameters for overall and disease-free survival in patients with non-small-cell lung cancer. J Clin Oncol, 2004. 22(10): 1878–1885.PubMedCrossRefGoogle Scholar
  20. 20.
    Edwards, L.A., et al, Inhibition of ILK in PTEN-mutant human glioblas-tomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene, 2005. 24(22): 3596–3605.PubMedCrossRefGoogle Scholar
  21. 21.
    Ferraro, B., et al, EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J Clin Oncol, 2005. 23(9): 1921–1926.PubMedCrossRefGoogle Scholar
  22. 22.
    Schmitz, M., et al, Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer, 2007. 120(6): 1284–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Sui, L., et al, Alteration and clinical relevance of PTEN expression and its correlation with survivin expression in epithelial ovarian tumors. Oncol Rep, 2006. 15(4): 773–8.PubMedGoogle Scholar
  24. 24.
    Tsutsui, S., et al, Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology, 2005. 68(4–6): 398–404.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, J., et al, Preferential killing of PTEN-null myelomas by PI3K inhibitors through Akt pathway. Oncogene, 2003. 22(40): 6289–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Eng, C., PTEN: One gene, many syndromes. Hum Mutat, 2003. 22(3): 183–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Feng, Z., et al, The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res, 2007. 67(7): 3043–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Blanco-Aparicio, C., et al, PTEN, more than the AKT pathway. Carcinogenesis, 2007. 28(7): 1379–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Fruman, D.A., Meyers, R.E., and Cantley, L.C., Phosphoinositide kinases. Annu Rev Biochem, 1998. 67: 481–507.PubMedCrossRefGoogle Scholar
  30. 30.
    Wymann, M.P., and Marone, R., Phosphoinositide 3-kinase in disease: Timing, location, and scaffolding. Current Opinion in Cell Biology, 2005. 17(2): 141–149.PubMedCrossRefGoogle Scholar
  31. 31.
    Hunter, T., Signaling—2000 and beyond. Cell, 2000. 100(1): 113–27.PubMedCrossRefGoogle Scholar
  32. 32.
    Datta, S.R., Brunet, A., and Greenberg, M.E., Cellular survival: a play in three Akts. Genes Dev, 1999. 13(22): 2905–27.PubMedCrossRefGoogle Scholar
  33. 33.
    Hay, N., and Sonenberg, N., Upstream and downstream of mTOR. Genes Dev, 2004. 18(16): 1926–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Brunn, G.J., et al, Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J, 1996. 15(19): 5256–67.PubMedGoogle Scholar
  35. 35.
    Cho, D., et al, The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res, 2007. 13(2 Pt 2): 758s–763s.PubMedCrossRefGoogle Scholar
  36. 36.
    Smolewski, P., Recent developments in targeting the mammalian target of rapamy-cin (mTOR) kinase pathway. Anticancer Drugs, 2006. 17(5): 487–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Sun, S.Y., Fu, H., and Khuri, F.R., Targeting mTOR signaling for lung cancer therapy. J Thorac Oncol, 2006. 1(2): 109–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Sun, S.Y., et al, Activation of Akt and eIF4E survival pathways by rapamycin-medi-ated mammalian target of rapamycin inhibition. Cancer Res, 2005. 65(16): 7052–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Hay, N., The Akt-mTOR tango and its relevance to cancer. Cancer Cell, 2005. 8(3): 179–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Franke, T.F., et al, PI3K/Akt and apoptosis: Size matters. Oncogene, 2003. 22(56): 8983–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Downward, J., PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol, 2004. 15(2): 177–82.PubMedCrossRefGoogle Scholar
  42. 42.
    Liang, J., et al, PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med, 2002. 8(10): 1153–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Paik, J.H., et al, FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell, 2007. 128(2): 309–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Dong, X.Y., et al, FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res, 2006. 66(14): 6998–7006.PubMedCrossRefGoogle Scholar
  45. 45.
    Mayo, L.D., and Donner, D.B., A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A, 2001. 98(20): 11598–603.PubMedCrossRefGoogle Scholar
  46. 46.
    Mayo, L.D., et al, PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem, 2002. 277(7): 5484–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou, M., et al, PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res, 2003. 63(19): 6357–62.PubMedGoogle Scholar
  48. 48.
    Hino, S., et al, Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol, 2005. 25(20): 9063–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Cross, D.A., et al, Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995. 378(6559): 785–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Workman, P., Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett, 2004. 206(2): 149–157.PubMedCrossRefGoogle Scholar
  51. 51.
    Fujita, N., et al, Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem, 2002. 277(12): 10346–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Basso, A.D., et al, Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene, 2002. 21(8): 1159–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Hideshima, T., et al, Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene, 2001. 20(42): 5991–6000.PubMedCrossRefGoogle Scholar
  54. 54.
    Tu, Y., Gardner, A., and Lichtenstein, A., The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: Roles in cytokine-dependent survival and proliferative responses. Cancer Res, 2000. 60(23): 6763–70.PubMedGoogle Scholar
  55. 55.
    Pene, F., et al, Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene, 2002. 21(43): 6587–97.PubMedCrossRefGoogle Scholar
  56. 56.
    Yan, H., et al, Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res, 2006. 66(4): 2305–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Tai, Y.T., et al, CD40 induces human multiple myeloma cell migration via phosphati-dylinositol 3-kinase/AKT/NF-kappa B signaling. Blood, 2003. 101(7): 2762–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Descamps, G., et al, The magnitude of Akt/phosphatidylinositol 3″-kinase proliferating signaling is related to CD45 expression in human myeloma cells. J Immunol, 2004. 173(8): 4953–9.PubMedGoogle Scholar
  59. 59.
    Gomez-Manzano, C., et al, Mechanisms underlying PTEN regulation of vascular endothelial growth factor and angiogenesis. Ann Neurol, 2003. 53(1): 109–17.PubMedCrossRefGoogle Scholar
  60. 60.
    Saito, Y., et al, Adenovirus-mediated PTEN treatment combined with caffeine produces a synergistic therapeutic effect in colorectal cancer cells. Cancer Gene Ther, 2003. 10(11): 803–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Yi, H.-K., et al, Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells. Biochem Biophys Res Commun, 2005. 330(3): 760–767.PubMedCrossRefGoogle Scholar
  62. 62.
    Hyun, T., et al, Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood, 2000. 96(10): 3560–8.PubMedGoogle Scholar
  63. 63.
    Garlich, J., Development of a vascular targeted pan-PI3K inhibitor for cancer therapy. 3rd Focused Meeting on P13K signalling and disease Bath, UK 6–8 November 2006.Google Scholar
  64. 64.
    Bezieau, S., et al, High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat, 2001. 18: 212–242.PubMedCrossRefGoogle Scholar
  65. 65.
    Liu, P., et al, Activating mutations of N and K-Ras in multiple myeloma show different clinical associations: Analysis of the Eastern Cooperative Oncology Group phase III trial. Blood, 1996. 88: 2699–2706.PubMedGoogle Scholar
  66. 66.
    David, E., et al, The combination of farnesyl transferase inhibitor lonafarnib and the proteosome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood, 2005. 106: 4322–4329.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhu, K., Blood et al, 2005. 105: 4759–4766. Farnesyl transferase inhibitor R115777 (Zarnestra, Tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest and to inhibit tumor growth of multiple myeloma cells.Google Scholar
  68. 68.
    Tai, Y.T., et al, Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood, 2007. 110: 1656–1663.PubMedCrossRefGoogle Scholar
  69. 69.
    Hideshima, T., et al, Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood, 2003. 101: 703–705.PubMedCrossRefGoogle Scholar
  70. 70.
    Hideshima, T., et al, p38 MAPK inhibition enhances PS-341 (bortezomib) induced cytotoxicity against multiple myeloma cells. Oncogene, 2004. 23: 8766–8776.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang, S., et al, Optimizing immunotherapy in multiple myeloma: Restoring the function of patients' monocyte derived dentritic cells by inhibiting p38 or activating MEK/ERK/MAPK and neutralizing IL-6 in progenitor cells. Blood, 2006. 108: 4071–4077.PubMedCrossRefGoogle Scholar
  72. 72.
    Garlich, J.R., et al, A vascular targeted pan phosphoinositide 3-kinase inhibitor prodng, SF1126, with antitumor and antiangiogenic activity. Cancer Res, 2008 68(1): 206–15.PubMedCrossRefGoogle Scholar
  73. 73.
    Ruiter, G.A., et al, Anti-cancer alkyl-lysophospholipids inhibit the phosphati-dylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs, 2003. 14(2): 167–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Giuliani, N., et al, Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia, 2004. 18(3): 628–35.PubMedCrossRefGoogle Scholar
  75. 75.
    Ihle, N.T., et al, Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther, 2004. 3(7): 763–72.PubMedGoogle Scholar
  76. 76.
    Ohta, T., et al, Inhibition of phosphatidylinositol 3-kinase increases efficacy of cisplatin in in vivo ovarian cancer models. Endocrinology, 2006. 147(4): 1761–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Fujiwara, Y., et al, Blockade of the phosphatidylinositol-3-kinase-Akt signaling pathway enhances the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the pathway is constitutively activated. Mol Cancer Ther, 2007. 6(3): 1133–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Catley, L., et al, Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model. Exp Hematol, 2007. 35(7): 1038–46.PubMedCrossRefGoogle Scholar
  79. 79.
    Gajate, C., and Mollinedo, F., Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood, 2007. 109(2): 711–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Hideshima, T., et al, Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood, 2006. 107(10): 4053–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Richardson, P., et al, A Multicenter Phase II Study of perifosine (KRX-0401) alone and in combination with dexamethasone (Dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM). ASH Annual Meeting Abstracts, 2006. 108(11): Abstract 3582.Google Scholar
  82. 82.
    Dees, E.C., et al, A phase I and pharmacokinetic study of short infusions of UCN-01 in patients with refractory solid tumors. Clin Cancer Res, 2005. 11(2 Pt 1): 664–71.PubMedGoogle Scholar
  83. 83.
    Sausville, E.A., et al, Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol, 2001. 19(8): 2319–33.PubMedGoogle Scholar
  84. 84.
    Dai, Y., Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation. Blood, 2007. 109(10): 4415–23.PubMedCrossRefGoogle Scholar
  85. 85.
    Jiang, K., et al, The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol, 2000. 20(1): 139–48.PubMedCrossRefGoogle Scholar
  86. 86.
    Yanamandra, N., et al, Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clin Cancer Res, 2006. 12(2): 591–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Donald Harvey
    • 1
  • Jeannine Silberman
    • 1
  • Sagar Lonial
    • 1
  1. 1.Emory University School of MedicineWinship Cancer InstituteAtlantaUSA

Personalised recommendations