Advertisement

Antibody and Other Immune-Based Therapies for Myeloma

  • Nikhil C. Munshi
  • Yu-Tzu Tai
Part of the Contemporary Hematology book series (CH)

Introduction

Antibodies against tumor-associated markers are increasingly recognized as important biological agents for the detection and treatment of cancer.1 After almost three decades of studies and advancement in production methods, monoclonal antibodies (mAbs) are now established as an important therapeutic modality in various malignancies. Since the first approval of rituximab targeting CD20 by the US Food and Drug Administration (US FDA) for the treatment of B-cell non-Hodgkin's lymphoma (NHL) in 1997, at least one anticancer mAb has been approved each year.2However, because of the heterogenicity in myeloma with a wide variety of genetic aberrations, the complexity of bone marrow (BM) microenvironment influences, and the lack of universal multiple myeloma (MM) markers specifically expressed on malignant MM cells, there is still no mAb-based therapy approved for treatment of MM. By 2000, there were relatively few surface antigens on the plasma cells (PCs) suitable for...

Keywords

Natural Killer Cell Multiple Myeloma Maximum Tolerate Dose Myeloma Cell Bone Marrow Microenvironment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Houghton AN, Scheinberg DA. Monoclonal antibody therapies—a ‘constant’ threat to cancer. Nat Med 2000;6(4):373–4.PubMedGoogle Scholar
  2. 2.
    Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007;6(5):349–56.PubMedGoogle Scholar
  3. 3.
    Korte W, Jost C, Cogliatti S, Hess U, Cerny T. Accelerated progression of multiple myeloma during anti-CD20 (Rituximab) therapy. Ann Oncol 1999;10(10): 1249–50.PubMedGoogle Scholar
  4. 4.
    Treon SP, Shima Y, Preffer FI, et al. Treatment of plasma cell dyscrasias by antibody-mediated immunotherapy. Semin Oncol 1999;26(5 Suppl 14):97–106.PubMedGoogle Scholar
  5. 5.
    Treon SP, Shima Y, Grossbard ML, et al. Treatment of multiple myeloma by antibody mediated immunotherapy and induction of myeloma selective antigens. Ann Oncol 2000;11 Suppl 1:107–11.PubMedGoogle Scholar
  6. 6.
    Treon SP, Raje N, Anderson KC. Immunotherapeutic strategies for the treatment of plasma cell malignancies. Semin Oncol 2000;27(5):598–613.PubMedGoogle Scholar
  7. 7.
    Stevenson FK, Bell AJ, Cusack R, et al. Preliminary studies for an immunothera-peutic approach to the treatment of human myeloma using chimeric anti-CD38 antibody. Blood 1991;77(5):1071–9.PubMedGoogle Scholar
  8. 8.
    Goldmacher VS, Bourret LA, Levine BA,. Anti-CD38-blocked ricin: an immuno-toxin for the treatment of multiple myeloma. Blood 1994;84(9):3017–25.PubMedGoogle Scholar
  9. 9.
    Ellis JH, Barber KA, Tutt A, et al. Engineered anti-CD38 monoclonal antibodies for immunotherapy of multiple myeloma. J Immunol 1995;155(2):925–37.PubMedGoogle Scholar
  10. 10.
    Chan HT, Hughes D, French RR,. CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res 2003;63(17):5480–9.PubMedGoogle Scholar
  11. 11.
    Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene 2005;24(13):2121–43.PubMedGoogle Scholar
  12. 12.
    Zhang N, Khawli LA, Hu P, Epstein AL. Generation of rituximab polymer may cause hyper-cross-linking-induced apoptosis in non-Hodgkin's lymphomas. Clin Cancer Res 2005;11(16):5971–80.PubMedGoogle Scholar
  13. 13.
    Zahalka MA, Okon E, Naor D. Blocking lymphoma invasiveness with a monoclonal antibody directed against the beta-chain of the leukocyte adhesion molecule (CD18). J Immunol 1993;150(10):4466–77.PubMedGoogle Scholar
  14. 14.
    Ruan HH, Scott KR, Bautista E, Ammons WS. ING-1(heMAb), a monoclonal antibody to epithelial cell adhesion molecule, inhibits tumor metastases in a murine cancer model. Neoplasia 2003;5(6):489–94.PubMedGoogle Scholar
  15. 15.
    Bautista DS, Xuan JW, Hota C, Chambers AF, Harris JF. Inhibition of Arg-Gly-Asp (RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. J Biol Chem 1994;269(37):23280–5.PubMedGoogle Scholar
  16. 16.
    Lutterbuese P, Brischwein K, Hofmeister R, et al. Exchanging human Fcgamma1 with murine Fcgamma2a highly potentiates anti-tumor activity of anti-EpCAM antibody adecatumumab in a syngeneic mouse lung metastasis model. Cancer Immunol Immunother 2007;56(4):459–68.PubMedGoogle Scholar
  17. 17.
    Holmberg LA, Maloney D, Bensinger W. Immunotherapy with rituximab/inter-leukin-2 after autologous stem cell transplantation as treatment for CD20 + non-Hodgkin's lymphoma. Clin Lymphoma Myeloma 2006;7(2):135–9.PubMedGoogle Scholar
  18. 18.
    Khan KD, Emmanouilides C, Benson DM, Jr., et al. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma. Clin Cancer Res 2006;12(23):7046–53.PubMedGoogle Scholar
  19. 19.
    Gluck WL, Hurst D, Yuen A, et al. Phase I studies of interleukin (IL)-2 and rituximab in B-cell non-hodgkin's lymphoma: IL-2 mediated natural killer cell expansion correlations with clinical response. Clin Cancer Res 2004;10(7):2253–64.PubMedGoogle Scholar
  20. 20.
    Parihar R, Dierksheide J, Hu Y, Carson WE. IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells. J Clin Invest 2002;110(7):983–92.PubMedGoogle Scholar
  21. 21.
    Ansell SM, Geyer SM, Maurer MJ, et al. Randomized phase II study of interleukin-12 in combination with rituximab in previously treated non-Hodgkin's lymphoma patients. Clin Cancer Res 2006;12(20 Pt 1):6056–63.PubMedGoogle Scholar
  22. 22.
    Ansell SM, Witzig TE, Kurtin PJ, et al. Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma. Blood 2002;99(1):67–74.PubMedGoogle Scholar
  23. 23.
    Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, Ottman E, Czuczman MS. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res 2005;11(16):5984–92.Google Scholar
  24. 24.
    Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 2005;65(24):11712–20.PubMedGoogle Scholar
  25. 25.
    Xagoraris I, Paterakis G, Zolota B, Zikos P, Maniatis A, Mouzaki A. Expression of granzyme B and perforin in multiple myeloma. Acta Haematol 2001;105(3):125–9.PubMedGoogle Scholar
  26. 26.
    Dong M, Blobe GC. Role of transforming growth factor-beta in hematologic malignancies. Blood 2006;107(12):4589–96.PubMedGoogle Scholar
  27. 27.
    Robillard N, Avet-Loiseau H, Garand R, et al. CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood 2003;102(3):1070–1.PubMedGoogle Scholar
  28. 28.
    Treon SP, Pilarski LM, Belch AR, et al. CD20-directed serotherapy in patients with multiple myeloma: biologic considerations and therapeutic applications. J Immunother 2002;25(1):72–81.PubMedGoogle Scholar
  29. 29.
    Zojer N, Kirchbacher K, Vesely M, Hubl W, Ludwig H. Rituximab treatment provides no clinical benefit in patients with pretreated advanced multiple myeloma. Leuk Lymphoma 2006;47(6):1103–9.PubMedGoogle Scholar
  30. 30.
    Hofer S, Hunziker S, Dirnhofer S, Ludwig C. Rituximab effective in a patient with refractory autoimmune haemolytic anaemia and CD20-negative multiple myeloma. Br J Haematol 2003;122(4):690–1.PubMedGoogle Scholar
  31. 31.
    Moreau P, Voillat L, Benboukher L, et al. Rituximab in CD20 positive multiple myeloma. Leukemia 2007;21(4):835–6.PubMedGoogle Scholar
  32. 32.
    Gozzetti A, Fabbri A, Lazzi S, Bocchia M, Lauria F. Reply to Rituximab activity in CD20 positive multiple myeloma. Leukemia 2007;21(8):1842–3.Google Scholar
  33. 33.
    Musto P, Carella AM, Jr., Greco MM, et al. Short progression-free survival in myeloma patients receiving rituximab as maintenance therapy after autologous transplantation. Br J Haematol 2003;123(4):746–7.PubMedGoogle Scholar
  34. 34.
    Frassanito MA, Cusmai A, Iodice G, Dammacco F. Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 2001;97(2):483–9.PubMedGoogle Scholar
  35. 35.
    Bataille R, Klein B. Role of interleukin-6 in multiple myeloma. Ann Med Interne (Paris) 1992;143 Suppl 1:77–9.Google Scholar
  36. 36.
    Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007;7(8):585–98.PubMedGoogle Scholar
  37. 37.
    Klein B, Zhang XG, Jourdan M, Portier M, Bataille R. Interleukin-6 is a major myeloma cell growth factor in vitro and in vivo especially in patients with terminal disease. Curr Top Microbiol Immunol 1990;166:23–31.PubMedGoogle Scholar
  38. 38.
    Lauta VM. A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer 2003;97(10):2440–52.PubMedGoogle Scholar
  39. 39.
    Hargreaves PG, Wang F, Antcliff J, et al. Human myeloma cells shed the interleukin-6 receptor: inhibition by tissue inhibitor of metalloproteinase-3 and a hydroxamate-based metalloproteinase inhibitor. Br J Haematol 1998 ; 101 (4) : 694–702.PubMedGoogle Scholar
  40. 40.
    Gaillard JP, Bataille R, Brailly H, et al. Increased and highly stable levels of functional soluble interleukin-6 receptor in sera of patients with monoclonal gammopathy. Eur J Immunol 1993;23(4):820–4.PubMedGoogle Scholar
  41. 41.
    Van Zaanen HC, Lokhorst HM, Aarden LA, Rensink HJ, Warnaar SO, Van Oers MH. Blocking interleukin-6 activity with chimeric anti-IL6 monoclonal antibodies in multiple myeloma: effects on soluble IL6 receptor and soluble gp130. Leuk Lymphoma 1998;31(5–6):551–8.PubMedGoogle Scholar
  42. 42.
    Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001;20(42):5991–6000.PubMedGoogle Scholar
  43. 43.
    Hideshima T, Chauhan D, Hayashi T, et al. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 2003;22(52):8386–93.PubMedGoogle Scholar
  44. 44.
    Tai YT, Fulciniti M, Hideshima T, et al. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 2007;110(5):1656–63.PubMedGoogle Scholar
  45. 45.
    Tupitsyn N, Kadagidze Z, Gaillard JP, et al. Functional interaction of the gp80 and gp130 IL-6 receptors in human B cell malignancies. Clin Lab Haematol 1998;20(6):345–52.PubMedGoogle Scholar
  46. 46.
    Rebouissou C, Wijdenes J, Autissier P, et al. A gp130 interleukin-6 transducer-dependent SCID model of human multiple myeloma. Blood 1998;91(12):4727–37.PubMedGoogle Scholar
  47. 47.
    Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000;275(36):27845–50.PubMedGoogle Scholar
  48. 48.
    Hideshima T, Chauhan D, Teoh G, et al. Characterization of signaling cascades triggered by human interleukin-6 versus Kaposi's sarcoma-associated herpes virus-encoded viral interleukin 6. Clin Cancer Res 2000;6(3):1180–9.PubMedGoogle Scholar
  49. 49.
    Podar K, Gouill SL, Zhang J, et al. A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 2007 July 23; [Epub ahead of print].Google Scholar
  50. 50.
    Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, et al. Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood 2004;103(1):242–51.PubMedGoogle Scholar
  51. 51.
    Jourdan M, De Vos J, Mechti N, Klein B. Regulation of Bcl-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1. Cell Death Differ 2000;7(12):1244–52.PubMedGoogle Scholar
  52. 52.
    Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood 2002;100(1):194–9.PubMedGoogle Scholar
  53. 53.
    Jourdan M, Veyrune JL, De Vos J, Redal N, Couderc G, Klein B. A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene 2003;22(19):2950–9.PubMedGoogle Scholar
  54. 54.
    Klein B, Wijdenes J, Zhang XG, et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991 ; 78 (5) : 1198–204.PubMedGoogle Scholar
  55. 55.
    Bataille R, Barlogie B, Lu ZY, et al. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 1995;86(2):685–91.PubMedGoogle Scholar
  56. 56.
    Moreau P, Harousseau JL, Wijdenes J, Morineau N, Milpied N, Bataille R. A combination of anti-interleukin 6 murine monoclonal antibody with dexametha-sone and high-dose melphalan induces high complete response rates in advanced multiple myeloma. Br J Haematol 2000;109(3):661–4.PubMedGoogle Scholar
  57. 57.
    Rossi JF, Fegueux N, Lu ZY, et al. Optimizing the use of anti-interleukin-6 monoclonal antibody with dexamethasone and 140 mg/m2 of melphalan in multiple myeloma: results of a pilot study including biological aspects. Bone Marrow Transplant 2005;36(9):771–9.PubMedGoogle Scholar
  58. 58.
    Lu ZY, Brailly H, Wijdenes J, Bataille R, Rossi JF, Klein B. Measurement of whole body interleukin-6 (IL-6) production: prediction of the efficacy of anti-IL-6 treat ments. Blood 1995;86(8):3123–31.PubMedGoogle Scholar
  59. 59.
    Moreau P, Hullin C, Garban F, et al. Tandem autologous stem cell transplantation in high-risk de novo multiple myeloma: final results of the prospective and randomized IFM 99–04 protocol. Blood 2006;107(1):397–403.PubMedGoogle Scholar
  60. 60.
    van Zaanen HC, Koopmans RP, Aarden LA, et al. Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop. J Clin Invest 1996;98(6):1441–8.PubMedGoogle Scholar
  61. 61.
    van Zaanen HC, Lokhorst HM, Aarden LA, et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol 1998;102(3):783–90.PubMedGoogle Scholar
  62. 62.
    Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 2003;9(13):4653–65.PubMedGoogle Scholar
  63. 63.
    Nishimoto N, Sasai M, Shima Y, et al. Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 2000;95(1):56–61.PubMedGoogle Scholar
  64. 64.
    Brochier J, Liautard J, Jacquet C, Gaillard JP, Klein B. Optimizing therapeutic strategies to inhibit circulating soluble target molecules with monoclonal antibodies: example of the soluble IL-6 receptors. Eur J Immunol 2001;31(1):259–64.PubMedGoogle Scholar
  65. 65.
    Honemann D, Chatterjee M, Savino R, et al. The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer 2001;93(5):674–80.PubMedGoogle Scholar
  66. 66.
    Tassone P, Galea E, Forciniti S, Tagliaferri P, Venuta S. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells. Int J Oncol 2002;21(4): 867–73.PubMedGoogle Scholar
  67. 67.
    Tassone P, Neri P, Burger R, et al. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu in vivo model of human multiple myeloma. Clin Cancer Res 2005;11(11):4251–8.PubMedGoogle Scholar
  68. 68.
    Tassone P, Forciniti S, Galea E, et al. Synergistic induction of growth arrest and apoptosis of human myeloma cells by the IL-6 super-antagonist Sant7 and Dexamethasone. Cell Death Differ 2000;7(3):327–8.PubMedGoogle Scholar
  69. 69.
    Nishimoto N. [Humanized anti-human IL-6 receptor antibody, tocilizumab]. Nippon Rinsho 2007;65(7):1218–25.PubMedGoogle Scholar
  70. 70.
    Nishimoto N, Hashimoto J, Miyasaka N, et al. Study of active controlled mono-therapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis 2007;66(9):1162–7.PubMedGoogle Scholar
  71. 71.
    Yoshio-Hoshino N, Adachi Y, Aoki C, Pereboev A, Curiel DT, Nishimoto N. Establishment of a new interleukin-6 (IL-6) receptor inhibitor applicable to the gene therapy for IL-6-dependent tumor. Cancer Res 2007;67(3):871–5.Google Scholar
  72. 72.
    Nishimoto N, Kishimoto T. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol 2004;4(4):386–91.PubMedGoogle Scholar
  73. 73.
    Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004;5(3):221–30.PubMedGoogle Scholar
  74. 74.
    Stromberg T, Ekman S, Girnita L, et al. IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 2006;107(2):669–78.PubMedGoogle Scholar
  75. 75.
    Menu E, Kooijman R, Van Valckenborgh E, et al. Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. Br J Cancer 2004;90(5):1076–83.PubMedGoogle Scholar
  76. 76.
    Tai YT, Podar K, Catley L, et al. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res 2003;63(18):5850–8.PubMedGoogle Scholar
  77. 77.
    Menu E, Jernberg-Wiklund H, Stromberg T,. Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 2006;107(2):655–60.PubMedGoogle Scholar
  78. 78.
    Cohen BD, Baker DA, Soderstrom C, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005;11(5):2063–73.PubMedGoogle Scholar
  79. 79.
    Chauhan D, Uchiyama H, Urashima M, Yamamoto K, Anderson KC. Regulation of interleukin 6 in multiple myeloma and bone marrow stromal cells. Stem Cells 1995;13 Suppl 2:35–9.PubMedGoogle Scholar
  80. 80.
    Westendorf JJ, Ahmann GJ, Lust JA, et al. Molecular and biological role of CD40 in multiple myeloma. Curr Top Microbiol Immunol 1995;194:63–72.PubMedGoogle Scholar
  81. 81.
    Tai YT, Catley LP, Mitsiades CS,. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 2004;64(8):2846–52.PubMedGoogle Scholar
  82. 82.
    Hock BD, McKenzie JL, Patton NW, et al. Circulating levels and clinical significance of soluble CD40 in patients with hematologic malignancies. Cancer 2006;106(10):2148–57.PubMedGoogle Scholar
  83. 83.
    Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC. CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 1995;85(7):1903–12.PubMedGoogle Scholar
  84. 84.
    Teoh G, Urashima M, Greenfield EA, et al. The 86-kD subunit of Ku autoantigen mediates homotypic and heterotypic adhesion of multiple myeloma cells. J Clin Invest 1998;101(6):1379–88.PubMedGoogle Scholar
  85. 85.
    Tai YT, Podar K, Kraeft SK, et al. Translocation of Ku86/Ku70 to the multiple myeloma cell membrane: functional implications. Exp Hematol 2002;30(3):212–20.PubMedGoogle Scholar
  86. 86.
    Urashima M, Ogata A, Chauhan D,. Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood 1996;87(5):1928–38.PubMedGoogle Scholar
  87. 87.
    Tai YT, Podar K, Gupta D, et al. CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 2002;99(4):1419–27.PubMedGoogle Scholar
  88. 88.
    Tai YT, Podar K, Mitsiades N, et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 2003;101(7):2762–9.PubMedGoogle Scholar
  89. 89.
    Tai YT, Li X, Tong X, et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 2005;65(13):5898–906.PubMedGoogle Scholar
  90. 90.
    Law CL, Gordon KA,Collier J,etal.Preclinicalantilymphomaactivityofahuman-ized anti-CD40 monoclonal antibody, SGN-40. Cancer Res 2005;65(18):8331–8.PubMedGoogle Scholar
  91. 91.
    Mohamad A, Hussein JRB, Niesvizky R, Munshi NC, Matous J, Harrop K, Drachman JG. Results of a phase I trial of SGN-40 (Anti-huCD40 mAb) in patients with relapsed multiple myeloma. Blood 2006;108:3576.Google Scholar
  92. 92.
    Bensinger W, Jagannath S, Becker PS, Anderson KC, Stadtmauer EA, Aukerman L, Fox J, Girish S, Bilic S, Guzy S, Solinger A, Dort S, Wang Y, Hurst D. A phase 1 dose escalation study of a fully human, antagonist anti-CD40 antibody, HCD122 (formerly CHIR-12.12) in patients with relapsed and refractory multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2006;108(11):3575–3575.Google Scholar
  93. 93.
    Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98(1):210–6.PubMedGoogle Scholar
  94. 94.
    Hsi ED, Steinle R, Balasa B, Draksharapu A, Shum B, Huseni M, Powers D, Nanisetti A, Williams M, Vexler V, Hussein M, Afar D. CS1: A potential new therapeutic target for the treatment of multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2006;108:3457.Google Scholar
  95. 95.
    Szmania S, Balasa B, Malaviarachchi P, Zhan F, Huang Y, Draksharapu A, Vexler V, Shaughnessy, Jr., Barlogie B, Tricot G, Afar D, van Rhee F. CS1 is expressed on myeloma cells from early stage, late stage, and drug-treated multiple myeloma patients, and is selectively targeted by the HuLuc63 antibody. Blood 2006;108:660.Google Scholar
  96. 96.
    Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, Lee AI, Podar K, Hideshima T, Rice AG, van Abbema A, Jesaitis L, Caras I, Law D, Weller E, Xie W, Richardson P, Munshi NC, Mathiot C, Avet-Loiseau H, Afar DE, Anderson KC. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008 Aug 15;112(4):1329–1337. Epub 2007 Sep 28.PubMedGoogle Scholar
  97. 97.
    Rice A, Dillon M, van Abbema A, Jesaitis L, Wong M, Lawson S, Liu G, Zhang Y, Powers D, Rhodes S, Caras I, Law D, Afar D. Eradication of tumors in pre-clinical models of multiple myeloma by anti-CS1 monoclonal antibody HuLuc63: mechanism of action studies. Blood (ASH Annual Meeting Abstracts) 2006;108:3503.Google Scholar
  98. 98.
    Stevenson GT. CD38 as a therapeutic target. Mol Med 2006;12(11–12):345–6.PubMedGoogle Scholar
  99. 99.
    Rodig SJ, Abramson JS, Pinkus GS,. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res 2006;12(23):7174–9.PubMedGoogle Scholar
  100. 100.
    Stanglmaier M, Reis S, Hallek M. Rituximab and alemtuzumab induce a non-classic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol 2004;83(10):634–45.PubMedGoogle Scholar
  101. 101.
    Villamor N, Montserrat E, Colomer D. Mechanism of action and resistance to monoclonal antibody therapy. Semin Oncol 2003;30(4):424–33.PubMedGoogle Scholar
  102. 102.
    Golay J, Gramigna R, Facchinetti V, Capello D, Gaidano G, Introna M. Acquired immunodeficiency syndrome-associated lymphomas are efficiently lysed through complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by rituximab. Br J Haematol 2002;119(4):923–9.PubMedGoogle Scholar
  103. 103.
    Keating MJ, Cazin B, Coutre S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol 2002;20(1):205–13.PubMedGoogle Scholar
  104. 104.
    Lundin J, Osterborg A, Brittinger G, CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin's lymphomas: a phase II multicenter study. European Study Group of CAMPATH-1H Treatment in Low-Grade Non-Hodgkin's Lymphoma. J Clin Oncol 1998;16(10):3257–63.PubMedGoogle Scholar
  105. 105.
    Osterborg A, Dyer MJ, Bunjes D, Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. J Clin Oncol 1997;15(4):1567–74.PubMedGoogle Scholar
  106. 106.
    Kumar S, Kimlinger TK, Lust JA, Donovan K, Witzig TE. Expression of CD52 on plasma cells in plasma cell proliferative disorders. Blood 2003;102(3):1075–7.PubMedGoogle Scholar
  107. 107.
    Carlo-Stella C, Guidetti A, Di Nicola M, et al. CD52 antigen expressed by malignant plasma cells can be targeted by alemtuzumab in vivo in NOD/SCID mice. Exp Hematol 2006;34(6):721–7.Google Scholar
  108. 108.
    Westermann J, Maschmeyer G, van Lessen A, Dorken B, Pezzutto A. CD52 is not a promising immunotherapy target for most patients with multiple myeloma. Int J Hematol 2005;82(3):248–50.PubMedGoogle Scholar
  109. 109.
    Rawstron AC, Laycock-Brown G, Hale G, et al. CD52 expression patterns in myeloma and the applicability of alemtuzumab therapy. Haematologica 2006;91(11):1577–8.PubMedGoogle Scholar
  110. 110.
    Kottaridis PD, Milligan DW, Chopra R, et al. In vivo CAMPATH-1H prevents GvHD following nonmyeloablative stem-cell transplantation. Cytotherapy 2001;3(3):197–201.PubMedGoogle Scholar
  111. 111.
    Piccaluga PP, Martinelli G, Malagola M, et al. Anti-leukemic and anti-GVHD effects of campath-1H in acute lymphoblastic leukemia relapsed after stem-cell transplantation. Leuk Lymphoma 2004;45(4):731–3.PubMedGoogle Scholar
  112. 112.
    Wandroo F, Auguston B, Cook M, Craddock C, Mahendra P. Successful use of Campath-1H in the treatment of steroid refractory liver GvHD. Bone Marrow Transplant 2004;34(3):285–7.PubMedGoogle Scholar
  113. 113.
    Harada H, Kawano MM, Huang N, et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993;81(10):2658–63.PubMedGoogle Scholar
  114. 114.
    Tassone P, Gozzini A, Goldmacher V, et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2'-deacetyl-N2'-(3-mercapto-1-oxopropyl)-maytansine against CD56 + multiple myeloma cells. Cancer Res 2004;64(13):4629–36.PubMedGoogle Scholar
  115. 115.
    Chanan-Khan AA, Jagannath S, Schlossman RL, Fram RJ, Falzone RM, Ruberti MF, Welch SK, DePaolo D, Anderson KC, Munshi NC. Phase I study of BB-10901 (huN901-DM1) in patients with relapsed and relapsed/refractory CD56-positive multiple myeloma. Blood 2006;108:3574.Google Scholar
  116. 116.
    Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 2002;99(4):1405–10.PubMedGoogle Scholar
  117. 117.
    Borset M, Hjertner O, Yaccoby S, Epstein J, Sanderson RD. Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins. Blood 2000;96(7):2528–36.PubMedGoogle Scholar
  118. 118.
    Dhodapkar MV, Abe E, Theus A, et al. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 1998;91(8):2679–88.PubMedGoogle Scholar
  119. 119.
    Seidel C, Borset M, Hjertner O, et al. High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 2000;96(9):3139–46.PubMedGoogle Scholar
  120. 120.
    Yang Y, Yaccoby S, Liu W, et al. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 2002;100(2):610–7.PubMedGoogle Scholar
  121. 121.
    Langford JK, Yang Y, Kieber-Emmons T, Sanderson RD. Identification of an invasion regulatory domain within the core protein of syndecan-1. J Biol Chem 2005;280(5):3467–73.PubMedGoogle Scholar
  122. 122.
    Seidel C, Sundan A, Hjorth M, et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 2000;95(2):388–92.PubMedGoogle Scholar
  123. 123.
    Mahtouk K, Hose D, Raynaud P, et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 2007;109(11):4914–23.PubMedGoogle Scholar
  124. 124.
    Tassone P, Goldmacher VS, Neri P, et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138 + multiple myeloma cells. Blood 2004;104(12):3688–96.PubMedGoogle Scholar
  125. 125.
    Ozaki S, Kosaka M, Wakatsuki S, Abe M, Koishihara Y, Matsumoto T. Immunotherapy of multiple myeloma with a monoclonal antibody directed against a plasma cell-specific antigen, HM1.24. Blood 1997;90(8):3179–86.PubMedGoogle Scholar
  126. 126.
    Matsuda A, Suzuki Y, Honda G, et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 2003;22(21):3307–18.PubMedGoogle Scholar
  127. 127.
    Ono K, Ohtomo T, Yoshida K, et al. The humanized anti-HM1.24 antibody effectively kills multiple myeloma cells by human effector cell-mediated cytotoxicity. Mol Immunol 1999;36(6):387–95.PubMedGoogle Scholar
  128. 128.
    Ozaki S, Kosaka M, Wakahara Y, et al. Humanized anti-HM1.24 antibody mediates myeloma cell cytotoxicity that is enhanced by cytokine stimulation of effector cells. Blood 1999;93(11):3922–30.PubMedGoogle Scholar
  129. 129.
    Kawai S, Yoshimura Y, Iida S, et al. Antitumor activity of humanized monoclonal antibody against HM1.24 antigen in human myeloma xenograft models. Oncol Rep 2006;15(2):361–7.PubMedGoogle Scholar
  130. 130.
    Jalili A, Ozaki S, Hara T, et al. Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma. Blood 2005;106(10):3538–45.PubMedGoogle Scholar
  131. 131.
    Rew SB, Peggs K, Sanjuan I, et al. Generation of potent antitumor CTL from patients with multiple myeloma directed against HM1.24. Clin Cancer Res 2005;11(9):3377–84.PubMedGoogle Scholar
  132. 132.
    Chiriva-Internati M, Liu Y, Weidanz JA, et al. Testing recombinant adeno-asso-ciated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 2003;102(9):3100–7.Google Scholar
  133. 133.
    Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001;98(3):795–804.PubMedGoogle Scholar
  134. 134.
    Spencer A, Yeh SL, Koutrevelis K, Baulch-Brown C. TRAIL-induced apoptosis of authentic myeloma cells does not correlate with the procaspase-8/cFLIP ratio. Blood 2002;100(8):3049; author reply 50–1.PubMedGoogle Scholar
  135. 135.
    Menoret E, Gomez-Bougie P, Geffroy-Luseau A, et al. Mcl-1L cleavage is involved in TRAIL-R1- and TRAIL-R2-mediated apoptosis induced by HGS-ETR1 and HGS-ETR2 human mAbs in myeloma cells. Blood 2006;108(4):1346–52.PubMedGoogle Scholar
  136. 136.
    Trudel S, Ely S, Farooqi Y, et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 2004;103(9):3521–8.PubMedGoogle Scholar
  137. 137.
    Pollett JB, Trudel S, Stern D, Li ZH, Stewart AK. Overexpression of the myeloma-associated oncogene fibroblast growth factor receptor 3 confers dexa-methasone resistance. Blood 2002;100(10):3819–21.PubMedGoogle Scholar
  138. 138.
    Xin X, Abrams TJ, Hollenbach PW, et al. CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clin Cancer Res 2006;12(16):4908–15.PubMedGoogle Scholar
  139. 139.
    Trudel S, Stewart AK, Rom E, et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood 2006;107(10):4039–46.PubMedGoogle Scholar
  140. 140.
    Lewiecki EM. RANK ligand inhibition with denosumab for the management of osteoporosis. Expert Opin Biol Ther 2006;6(10):1041–50.PubMedGoogle Scholar
  141. 141.
    Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89(2):309–19.PubMedGoogle Scholar
  142. 142.
    Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 2001;98(13):3527–33.PubMedGoogle Scholar
  143. 143.
    Terpos E, Szydlo R, Apperley JF, et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003;102(3):1064–9.PubMedGoogle Scholar
  144. 144.
    Schwarz EM, Ritchlin CT. Clinical development of anti-RANKL therapy. Arthritis Res Ther 2007;9 Suppl 1:S7.PubMedGoogle Scholar
  145. 145.
    Bekker PJ, Holloway DL, Rasmussen AS, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmeno-pausal women. J Bone Miner Res 2004;19(7):1059–66.PubMedGoogle Scholar
  146. 146.
    McClung MR, Lewiecki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006;354(8):821–31.PubMedGoogle Scholar
  147. 147.
    Body JJ, Facon T, Coleman RE, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006;12(4):1221–8.PubMedGoogle Scholar
  148. 148.
    Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003;349(26):2483–94.PubMedGoogle Scholar
  149. 149.
    Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD, Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007;109(5):2106–11.PubMedGoogle Scholar
  150. 150.
    Podar K, Anderson KC. Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle 2007;6(5):538–42.PubMedGoogle Scholar
  151. 151.
    Kumar S, Witzig TE, Timm M, et al. Expression of VEGF and its receptors by myeloma cells. Leukemia 2003;17(10):2025–31.PubMedGoogle Scholar
  152. 152.
    Podar K, Tonon G, Sattler M, et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A 2006;103(51):19478–83.PubMedGoogle Scholar
  153. 153.
    Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005;333(2):328–35.PubMedGoogle Scholar
  154. 154.
    Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothe-lial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999;59(14):3374–8.PubMedGoogle Scholar
  155. 155.
    Goldman B. For investigational targeted drugs, combination trials pose challenges. J Natl Cancer Inst 2003;95(23):1744–6.PubMedGoogle Scholar
  156. 156.
    Hoyer RJ, Leung N, Witzig TE, Lacy MQ. Treatment of diuretic refractory pleural effusions with bevacizumab in four patients with primary systemic amyloidosis. Am J Hematol 2007;82(5):409–13.PubMedGoogle Scholar
  157. 157.
    Tai YT, Li XF, Breitkreutz I, et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2006;66(13):6675–82.PubMedGoogle Scholar
  158. 158.
    Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004;103(8):3148–57.PubMedGoogle Scholar
  159. 159.
    Abe M, Kido S, Hiasa M, et al. BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 2006;20(7):1313–5.PubMedGoogle Scholar
  160. 160.
    Moreaux J, Cremer FW, Reme T, et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005;106(3):1021–30.PubMedGoogle Scholar
  161. 161.
    Munafo A, Priestley A, Nestorov I, Visich J, Rogge M. Safety, pharmacokinetics and pharmacodynamics of atacicept in healthy volunteers. Eur J Clin Pharmacol 2007;63(7):647–56.PubMedGoogle Scholar
  162. 162.
    Rossi JF, Moreaux J, Rose M, Picard M, Ythier A, Rossier C, Sievers E, Klein B. A Phase I/II study of atacicept (TACI-Ig) to neutralize APRIL and BLyS in patients with refractory or relapsed multiple myeloma (MM) or active previously treated Waldenstrom's Macroglobulinemia (WM). Blood 2006;108:3578.Google Scholar
  163. 163.
    Tai Y-T, Xu J, Li X-F, Breitkreutz I, Podar K, Hideshima T, Schlossman R, Richardson P, Munshi NC, Anderson KC. The BAFF inhibitor AMG523 blocks adhesion and survival of human multiple myeloma cells in the bone marrow microenvironment: clinical implication. Blood 2006;108:3452.Google Scholar
  164. 164.
    164.Carlo-Stella C, Guidetti A, Di Nicola M, et al. IFN-gamma enhances the antimy-eloma activity of the fully human anti-human leukocyte antigen-DR monoclonal antibody 1D09C3. Cancer Res 2007;67(7):3269–75.Google Scholar
  165. 165.
    Sekimoto E, Ozaki S, Ohshima T, et al. A single-chain Fv diabody against human leukocyte antigen-A molecules specifically induces myeloma cell death in the bone marrow environment. Cancer Res 2007;67(3):1184–92.PubMedGoogle Scholar
  166. 166.
    Asvadi P, Jones DR, Dunn RD, Choo ABH, Raison MJ, Raison RL. A monoclonal antibody specific for free human kappa light chains induces apoptosis of multiple myeloma cells and exhibits anti-tumor activity in vivo. Blood (ASH Annual Meeting Abstracts) 2004;104:2416.Google Scholar
  167. 167.
    Sainz IM, Isordia-Salas I, Espinola RG, Long WK, Pixley RA, Colman RW. Multiple myeloma in a murine syngeneic model: modulation of growth and angiogenesis by a monoclonal antibody to kininogen. Cancer Immunol Immunother 2006;55(7):797–807.PubMedGoogle Scholar
  168. 168.
    Zand MS, Vo T, Pellegrin T, et al. Apoptosis and complement-mediated lysis of myeloma cells by polyclonal rabbit antithymocyte globulin. Blood 2006;107(7):2895–903.PubMedGoogle Scholar
  169. 169.
    Kroger N, Shaw B, Iacobelli S, Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligant mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol 2005;129:631–643.PubMedGoogle Scholar
  170. 170.
    Rha S, Tolcher A, Stephenson J, et al. A phase I study of brevarex, a murine monoclonal antibody directed at the MUC1 antigen, in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2000;19:abstr 1868Google Scholar
  171. 171.
    Somlo G, Bellamy W, Zimmerman TM, et al. Phase II randomized trial of beva-cizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma. Blood 2005;106:abstract 2571.Google Scholar
  172. 172.
    Sapra P, Stein R, Pickett J, Qu Z, Govindan SV, Cardillo TM, Hansen HJ, Horak ID, Griffiths GL, Goldenberg DM.Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005 Jul 15;11(14):5257–5264.PubMedGoogle Scholar
  173. 173.
    Rankin CT, Veri MC, Gorlatov S, Tuaillon N, Burke S, Huang L, Inzunza HD, Li H, Thomas S, Johnson S, Stavenhagen J, Koenig S, Bonvini E.CD32B, the human inhibitory Fc-gamma receptor IIB, as a target for monoclonal antibody therapy of B-cell lymphoma.Blood. 2006 Oct 1;108(7):2384–2391.PubMedGoogle Scholar
  174. 174.
    Yang J, Qian J, Wezeman M, Wang S, Lin P, Wang M, Yaccoby S, Kwak LW, Barlogie B, Yi Q. Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell. 2006 Oct;10(4):295–307.PubMedGoogle Scholar
  175. 175.
    Coleman EJ, Brooks KJ, Smallshaw JE, Vitetta ES. The Fc portion of UV3, an anti-CD54 monoclonal antibody, is critical for its antitumor activity in SCID mice with human multiple myeloma or lymphoma cell lines. J Immunother. 2006 Sep–Oct;29(5):489–498.PubMedGoogle Scholar
  176. 176.
    Nimmanapalli R, Lyu MA, Du M, Keating MJ, Rosenblum MG, Gandhi V. The growth factor fusion construct containing B-lymphocyte stimulator (BLyS) and the toxin rGel induces apoptosis specifically in BAFF-R-positive CLL cells. Blood. 2007 Mar 15;109(6):2557–2564. Epub 2006 Nov 21.PubMedGoogle Scholar
  177. 177.
    Glennie MJ, van de Winkel JG. Renaissance of cancer therapeutic antibodies. Drug Discov Today. 2003 Jun 1;8(11):503–510. ReviewPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nikhil C. Munshi
    • 1
  • Yu-Tzu Tai
  1. 1.Dana-Farber Cancer InstituteBostonUSA

Personalised recommendations