Gastroenteric Viruses

  • Miren Iturriza-Gómara
  • Chris I. Gallimore
  • Jim Gray
Part of the Infectious Disease book series (ID)


In recent years, viruses have been recognized increasingly as an important cause of foodborne infections. More than 160 enteric viruses are excreted in the feces of infected individuals, and some may also be present in the vomitus. Food and water are directly contaminated with fecal material, through the use of sewage sludge in agriculture, sewage pollution of shellfish culture beds, or may be contaminated by infected food-handlers.


Severe Acute Respiratory Syndrome Enteric Virus Severe Acute Respiratory Syndrome Viral Gastroenteritis Foodborne Outbreak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gallimore, C. I., Cubitt, D., du Plessis, N., and Gray, J. J. (2004) Asymptomatic and symptomatic excretion of noroviruses during a hospital outbreak of gastroenteritis. J. Clin. Microbiol. 42, 2271–2274.PubMedGoogle Scholar
  2. 2.
    Gallimore, C. I., Richards, A., and Gray, J. J. (2003) Molecular diversity of noroviruses associated with outbreaks on cruise ships: comparisons with strains circulating in the UK. Comm. Dis. Pub. Health 6, 285–293.Google Scholar
  3. 3.
    Parashar, U. D., Bresee, J. S., Gentsch, J. R., and Glass, R. I. (1998) Rotavirus. Emerg. Infect. Dis. 4, 561–570.PubMedGoogle Scholar
  4. 4.
    Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A., and Glass, R. I. (2003) Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9, 565–572.PubMedGoogle Scholar
  5. 5.
    MMWR. (2000) Foodborne outbreak of Group A rotavirus gastroenteritis among college students-District of Columbia, March-April. Morb. Mort. Wkly Rep. 49, 1131–1133.Google Scholar
  6. 6.
    Caul, E. O., Paver, W. K., and Clarke, S. K. R. (1975) Coronavirus particles in faeces from patients with gastroenteritis. Lancet 1, 1192.PubMedGoogle Scholar
  7. 7.
    Clarke, S. K. R., Caul, E. O., and Egglestone, S. I. (1979) The human enteric corona-viruses. Postgrad. Med. J. 55, 135–142.PubMedGoogle Scholar
  8. 8.
    Koopmans, M. and Horzinek, M. C. (1994) Toroviruses of animals and humans: a review. Adv. Virus. Res. 43, 233–273.PubMedGoogle Scholar
  9. 9.
    Koopmans, M. P., Goosen, E. S., Lima, A. A., et al. (1997) Association of torovirus with acute and persistent diarrhea in children. Pediatr. Infect. Dis. J. 16, 504–507.PubMedGoogle Scholar
  10. 10.
    Leung, W. K., To, K. E, Chan, P. K., et al. (2003) Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125, 1011–1017.PubMedGoogle Scholar
  11. 11.
    Ludert, J. E. and Liprandi, F. (1993) Identification of viruses with bi-and trisegmented double-stranded RNA genome in faeces of children with gastroenteritis. Res. Virol. 144, 219–224.PubMedGoogle Scholar
  12. 12.
    Gallimore, C. I., Appleton, H., Lewis, D., Green, J., and Brown, D. W. G. (1995) Detection and characterisation of bisegmented dsRNA viruses (picobirnaviruses) in human faeces. J. Med. Virol. 45, 135–140.PubMedGoogle Scholar
  13. 13.
    Gallimore, C. I., Lewis, D., and Brown, D. W. G. (1993) Detection and characterization of a novel bisegmented double-stranded RNA virus (picobirnavirus) from rabbit faeces. Arch. Virol. 133, 63–73.PubMedGoogle Scholar
  14. 14.
    Grohmann, G. S., Glass, R. I., Pereira, H. G., et al. (1993) Enteric viruses and diarrhea in HIV-infected patients. N. Engl. J. Med. 329, 14–20.PubMedGoogle Scholar
  15. 15.
    Pereira, H. G., Fialho, A. M., Flewett, T. H., Teixeira, J. M. S., and Andrade, Z. P. (1988) Novel viruses in human faeces. Lancet 2, 103–104.PubMedGoogle Scholar
  16. 16.
    Yamashita, T., Kobayashi, S., Sakae, K., et al. (1991) Isolation of cytopathic small round viruses with BC-C-1 cells from patients with gastroenteritis. J. Infect. Dis. 164, 954–957.PubMedGoogle Scholar
  17. 17.
    Caul, E. O. and Appleton, H. (1982) The electron microscopical and physical characteristics of small round structured fecal viruses: an interim scheme for classification. J. Med. Virol. 9, 257–265.PubMedGoogle Scholar
  18. 18.
    Koopmans, M., van Strien, E., and Vennema, H. (2003). Molecular epidemiology of human caliciviruses. In: Viral Gastroenteritis. Prespectives in Medical Virology (Desselberger, U. and Gray, J. J., eds.), Elsevier, Amsterdam, pp. 523–554.Google Scholar
  19. 19.
    Green, K. Y., Ando, T., Balayan, M. S., et al. (2000) Taxonomy of the caliciviruses. J. Infect. Dis. 181, S322–S330.PubMedGoogle Scholar
  20. 20.
    Mayo, M. A. (2002) A summary of taxonomic changes recently approved by ICTV. Arch. Virol. 147, 1655–1663.PubMedGoogle Scholar
  21. 21.
    Green, K., Chanock, R., and Kapilian, A. (2001) Human caliciviruses. In: Fields Virology (Knipe, D. M., Howeley, M. M., et al., eds.), 4th edn. Lippincott Williams and Wilkins, Philadelphia: 841–874.Google Scholar
  22. 22.
    Berke, T., Golding, B., Jiang, X., et al. (1997) Phylogenetic analysis of the caliciviruses. J. Med. Virol. 52, 419–424.PubMedGoogle Scholar
  23. 23.
    Jiang, X., Cubitt, W. D., Berke, T., et al. (1997) Sapporo-like human caliciviruses are genetically and antigenically diverse. Arch. Virol. 142, 1813–1827.PubMedGoogle Scholar
  24. 24.
    Noel, J. S., Liu, B. L., Humphrey, C. D., et al. (1997) Parkville virus: a novel genetic variant of human calicivirus in the Sapporo virus clade, associated with an outbreak of gastroenteritis in adults. J. Med. Virol. 52, 173–178.PubMedGoogle Scholar
  25. 25.
    Estes, M. (2001) Rotaviruses and their replication. In: Fields Virology (Knipe, D. M., Howley, P. M., et al., eds.), 4th edn, Lippincott Williams & Wilkins, Philadelphia, pp. 1747–1785.Google Scholar
  26. 26.
    Lee, T. W. and Kurtz, J. B. (1994) Prevalence of human astrovirus serotypes in the Oxford region 1976-92, with evidence for two new serotypes. Epidemiol. Infect. 112, 187–193.PubMedGoogle Scholar
  27. 27.
    Noel, J. S., Lee, T. W., Kurtz, J. B., Glass, R. I., and Monroe, S. S. (1995) Typing of human astroviruses from clinical isolates by enzyme immunoassay and nucleotide sequencing. J. Clin. Microbiol. 33, 797–801.PubMedGoogle Scholar
  28. 28.
    van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., et al. (2000) Virus Taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses, Academic, San Diego, CA.Google Scholar
  29. 29.
    Desselberger, U. and Gray, J. (2004) Viruses associated with acute diarrhoeal disease. In: Principles and Practice of Clinical Virology (Zuckerman, A. J., Banatvala J. E., Pattison, J. R., Griffiths, P., and Schoub B., eds.), 5th edn, Wiley, Chichester, UK, pp. 249–270.Google Scholar
  30. 30.
    Echevarria, M. (2004) Adenovirus. In: Principles and Practice of Clinical Virology (Zuckerman, A. J., Banatvala J. E., Pattison, J. R., Griffiths, P., and Schoub B., eds.), 5th edn, Wiley, Chichester, UK, pp. 249–270.Google Scholar
  31. 31.
    Zhu, G. and Chen, H. W. (2004) Monophyletic relationship between severe acute respiratory syndrome coronavirus and group 2 coronaviruses. J. Infect. Dis. 189, 1676–1678.PubMedGoogle Scholar
  32. 32.
    Yamashita, T., Sakae, K., Tsuzuki, H., et al. (1998) Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J. Virol. 72, 8408–8412.PubMedGoogle Scholar
  33. 33.
    Yamashita, T., Ito, M., Kabashima, Y., Tsuzuki, H., Fujiura, A., and Sakae, K. (2003) Isolation and characterization of a new species of kobuvirus associated with cattle. J. Gen. Virol. 84, 3069–3077.PubMedGoogle Scholar
  34. 34.
    Paver, W. K., Ashley, C. R., Caul, E. O., and Clarke, S. K. R. (1973) A small virus in human faeces. Lancet 1, 237–239.PubMedGoogle Scholar
  35. 35.
    Paver, W. K. and Clarke, S. K. R. (1976) Comparison of human fecal and serum parvo-like viruses. J. Clin. Microbiol. 4, 67–70.PubMedGoogle Scholar
  36. 36.
    Dubois, E., Agier, C., Traore, O., et al. (2002) Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture. J. Food. Prot. 65, 1962–1969.PubMedGoogle Scholar
  37. 37.
    Atmar, R. L., Neill, F. H., Romalde, J. L., et al. (1995) Detection of Norwalk virus and hepatitis A virus in shellfish tissues with the PCR. Appl. Environ. Microbiol. 61, 3014–3018.PubMedGoogle Scholar
  38. 38.
    Atmar, R. L., Metcalf, T. G., Neill, F. H., and Estes, M. K. (1993) Detection of enteric viruses in oysters by using the polymerase chain reaction. Appl. Environ. Microbiol. 59, 631–635.PubMedGoogle Scholar
  39. 39.
    Atmar, R. L., Neill, F. H., Woodley, C. M., et al. (1996) Collaborative evaluation of a method for the detection of Norwalk virus in shellfish tissues by PCR. Appl. Environ. Microbiol. 62, 254–258.PubMedGoogle Scholar
  40. 40.
    Le Guyader, F., Haugarreau, L., Miossec, L., Dubois, E., and Pommepuy, M. (2000) Three-year study to assess human enteric viruses in shellfish. Appl. Environ. Microbiol. 66, 3241–3248.PubMedGoogle Scholar
  41. 41.
    Schwab, K. J., Neill, F. H., Fankhauser, R. L., et al. (2000) Development of methods to detect “Norwalk-like viruses” (NLVs) and hepatitis A virus in delicatessen foods: application to a food-borne NLV outbreak. Appl. Environ. Microbiol. 66, 213–218.PubMedGoogle Scholar
  42. 42.
    Curry, A., Bryden, A., Morgan-Capner, P., et al. (1999) A rationalised virological electron microscope specimen testing policy. PHLS North West Viral Gastroenteritis and Electron Microscopy Subcommittee. J. Clin. Path. 52, 471–474.PubMedGoogle Scholar
  43. 43.
    Lewis, D., Ando, T., Humphrey, C. D., Monroe, S. S., and Glass, R. I. (1995) Use of solid-phase immune electron microscopy for classification of Norwalk-like viruses into six antigenic groups from 10 outbreaks of gastroenteritis in the United States. J. Clin. Microbiol. 33, 501–504.PubMedGoogle Scholar
  44. 44.
    Hale, A. D., Crawford, S. E., Ciarlet, M., et al. (1999) Expression and self-assembly of Grimsby virus: antigenic relationship to Norwalk and Mexico virus. Clin. Diag. Lab. Immunol. 6, 142–145.Google Scholar
  45. 45.
    Richards, A. F., Lopman, B. A., Gunn, A., et al. (2003) Evaluation of a commercial ELISA for detecting Norwalk-like virus antigen in faeces. J. Clin. Virol. 26, 109–115.PubMedGoogle Scholar
  46. 46.
    Vipond, I. B., Pelosi, E., Williams, J., et al. (2000) A diagnostic EIA for detection of the prevalent SRSV strain in United Kingdom outbreaks of gastroenteritis. J. Med. Virol. 61, 132–137.PubMedGoogle Scholar
  47. 47.
    Ando, T., Monroe, S. S., Gentsch, J. R., et al. (1995) Detection and differentiation of antigenically distinct small round structured viruses (Norwalk-like viruses) by reverse transcription PCR and Southern hybridization. J. Clin. Microbiol. 33, 64–71.PubMedGoogle Scholar
  48. 48.
    Green, J., Gallimore, C. I., Norcott, J. P., Lewis, D., and Brown, D. W. G. (1995) Broadly reactive reverse transcriptase polymerase chain reaction (RT-PCR) for the diagnosis of SRSV-associated gastroenteritis. J. Med. Virol. 47, 392–398.PubMedGoogle Scholar
  49. 49.
    Green, S. M., Lambden, P. R., Deng, Y., et al. (1995) Polymerase chain reaction detection of small round-structured viruses from two related hospital outbreaks of gastroenteritis using inosine-containing primers. J. Med. Virol. 45, 197–202.PubMedGoogle Scholar
  50. 50.
    Matson, D. O., Zhong, W., Nakata, S., et al. (1995) Molecular characterisation of a human calicivirus with sequence relationships closer to animal caliciviruses than other known human caliciviruses. J. Med. Virol. 45, 215–222.PubMedGoogle Scholar
  51. 51.
    Vinje, J., Deijl, H., van der Heide, R., et al. (2000) Molecular detection and epidemiology of Sapporo-like viruses. J. Clin. Microbiol. 44, 113–118.Google Scholar
  52. 52.
    Green, J., Henshilwood, K., Gallimore, C. I., Brown, D. W. G., and Lees, D. N. (1998) A nested reverse transcriptase PCR assay for detection of small round-structured viruses in environmentally contaminated molluscan shellfish. Appl. Environ. Microbiol. 64, 858–863.PubMedGoogle Scholar
  53. 53.
    Henshilwood, K., Green, J., Gallimore, C. I., Brown, D. W. G., and Lees, D. N. (1998) The development of polymerase chain reaction assays for detection of small round structured and other human enteric viruses in molluscan shellfish. J. Shellfish Res. 17, 1675–1678.Google Scholar
  54. 54.
    Le Guyader, F. S., Neill, F. H., Dubois, E., et al. (2003) A semiquantitative approach to estimate Norwalk-like virus contamination of oysters implicated in an outbreak. Int. J. Food Microbiol. 87, 107–112.PubMedGoogle Scholar
  55. 55.
    Lees, D. (2000) Viruses and bivalve shellfish. Int. J. Food Microbiol. 59, 81–116.PubMedGoogle Scholar
  56. 56.
    Lees, D. N., Henshilwood, K., Gallimore, C. I., Green, J., and Brown, D. W. G. (1995) Detection of small round structured viruses in shellfish by RT-PCR. Appl. Environ. Microbiol. 61, 4418–4424.PubMedGoogle Scholar
  57. 57.
    Nishida, T., Kimura, H., Saitoh, M., et al. (2003) Detection, quantitation, and phylogenetic analysis of noroviruses in Japanese oysters. Appl. Environ. Microbiol. 69, 5782–5786.PubMedGoogle Scholar
  58. 58.
    Ponka, A., Maunula, L., von Bonsdorff, C. H., and Lyytikainen, O. (1999) An outbreak of calicivirus associated with consumption of frozen raspberries. Epidemiol. Infect. 123, 469–474.PubMedGoogle Scholar
  59. 59.
    Gouvea, V., Santos, N., do Carmo Timenetsky, M., and Estes, M. K. (1994) Identification of Norwalk virus in artificially seeded shellfish and selected foods. J. Virol. Meth. 48, 177–187.Google Scholar
  60. 60.
    Sair, A. I., D’Souza, D. H., Moe, C. L., and Jaykus, L. A. (2002) Improved detection of human enteric viruses in foods by RT-PCR. J. Virol. Meth. 100, 57–69.Google Scholar
  61. 61.
    Schwab, K., J., Neill, F. H., Le Guyader, F., Estes, M. K., and Atmar, R. L. (2001) Development of a reverse transcription-PCR-DNA enzyme immunoassay for detection of “Norwalk-like” viruses and hepatitis A virus in stool and shellfish. Appl. Environ. Microbiol. 67, 742–749.PubMedGoogle Scholar
  62. 62.
    Iturriza-Gómara, M., Green, J., and Gray, J. J. (2000) Methods of rotavirus detection, sero-and genotyping, sequencing and phylogenetic analysis. In: Rotaviruses: Methods and Protocols. Methods in Molecular Medicine (Gray, J. J. and Desselberger, U., eds.), Humana, Totowa, NJ, pp. 189–217.Google Scholar
  63. 63.
    Iturriza-Gómara, M., Wong, C., Blome, S., Desselberger, U., and Gray, J. (2002) Molecular characterisation of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J. Virol. 76, 6596–6601.PubMedGoogle Scholar
  64. 64.
    Simpson, R., Aliyu, S., Iturriza-Gómara, M., Desselberger, U., and Gray, J. (2003) Infantile viral gastroenteritis: on the way to closing the diagnostic gap. J. Med. Virol. 70, 258–262.PubMedGoogle Scholar
  65. 65.
    Kang, G., Iturriza-Gómara, M., Wheeler, J. G., et al. (2004) Quantitation of Group A rotavirus RNA by real time reverse-transcription polymerase chain reaction: correlation with clinical severity in children in South India. J. Med. Virol. 73, 118–122.PubMedGoogle Scholar
  66. 66.
    Muniain-Mujika, I., Girones, R., and Lucena, F. (2000) Viral contamination of shellfish: evaluation of methods and analysis of bacteriophages and human viruses. J. Virol. Meth. 89, 109–118.Google Scholar
  67. 67.
    Villena, C., El-Senousy, W. M., Abad, F. X., Pinto, R. M., and Bosch, A. (2003) Group A rotavirus in sewage samples from Barcelona and Cairo: emergence of unusual genotypes. Appl. Environ. Microbiol. 69, 3919–3923.PubMedGoogle Scholar
  68. 68.
    Jean, J., Blais, B., Darveau, A., and Fliss, I. (2002). Rapid detection of human rotavirus using colorimetric nucleic acid sequence-based amplification (NASBA)-enzyme-linked immunosorbent assay in sewage treatment effluent. FEMS Microbiol. Lett. 210, 143–147.PubMedGoogle Scholar
  69. 69.
    Appleton, H., Buckley, M., Thom, B. T., Cotton, J. L., and Henderson, S. (1977) Virus-like particles in winter vomiting disease. Lancet 19, 409–411.Google Scholar
  70. 70.
    Madeley, C. R. and Cosgrove, B. P. (1975) 28 nm particles in faeces in infantile gastroenteritis. Lancet 6, 451–452.Google Scholar
  71. 71.
    Herrmann, J. E., Nowak, N. A., Perron-Henry, D. M., Hudson, R. W., Cubitt, W. D., and Blacklow, N. R. (1990) Diagnosis of astrovirus gastroenteritis by antigen detection with monoclonal antibodies. J. Infect. Dis. 161, 226–229.PubMedGoogle Scholar
  72. 72.
    Jonassen, T. O., Monceyron, C., Lee, T. W., Kurtz, J. B., and Grinde, B. (1995) Detection of all serotypes of human astrovirus by the polymerase chain reaction. J. Virol. Methods. 52, 327–334.PubMedGoogle Scholar
  73. 73.
    Saito, K., Ushijima, H., Nishio, O., et al. (1995) Detection of astroviruses from stool samples in Japan using reverse transcription and polymerase chain reaction amplification. Microbiol. Immunol. 39, 825–828.PubMedGoogle Scholar
  74. 74.
    Flewett, T. H., Bryden, A. S., Davies, H. A., and Morris, C. A. (1973) Epidemic viral enteritis in a long-stay children’s ward. Lancet 1, 4–5.Google Scholar
  75. 75.
    Madeley, C. R., Cosgrove, B. P., Bell, E. J., and Fallon, R. J. (1977) Stool viruses in babies in Glasgow. I. Hospital admissions with diarrhoea. J. Hyg. 78, 261–273.Google Scholar
  76. 76.
    Takiff, H. E., Straus, S. E., and Garon, C. F. (1981) Propagation and in vitro studies of previously non-cultivable enteral adenoviruses in 293 cells. Lancet 17, 832–834.Google Scholar
  77. 77.
    de Jong, J. C. (2003) Epidemiology of enteric adenoviruses 40 and 41 and other adenoviruses in immunocompetent and immunodeficient individuals. In: Viral Gastroenteritis. Prespectives in Medical Virology (Desselberger, U. and Gray, J. J., eds.), Elsevier, Amsterdam, pp. 407–446.Google Scholar
  78. 78.
    Allard, A., Albinsson, B., and Wadell, G. (2001) Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. J. Clin. Microbiol. 39, 498–505.PubMedGoogle Scholar
  79. 79.
    Tiemessen, C. T. and Nel, M. J. (1996) Detection and typing of subgroup F adenoviruses using the polymerase chain reaction. J. Virol. Meth. 59, 73–82.Google Scholar
  80. 80.
    Yamashita, T., Sugiyama, M., Tsuzuki, H., Sakae, K., Suzuki, Y., and Miyazaki, Y. (2000) Application of a reverse transcription-PCR for identification and differentiation of Aichi virus, a new member of the Picornavirus family associated with gastroenteritis in humans. J. Clin. Microbiol. 38, 2955–2961.PubMedGoogle Scholar
  81. 81.
    Yamashita, T., Ito, M., Tsuzuki, H., and Sakae, K. (2001) Identification of Aichi virus infection by measurement of immunoglobulin responses in an enzyme-linked immunosorbent assay. J. Clin. Microbiol. 39, 4178–4180.PubMedGoogle Scholar
  82. 82.
    Beards, G. M., Green, J., Hall, C., and Flewett, T. H. (1984) An enveloped virus in stools of children and adults with gastroenteritis that resembles the Breda virus of calves. Lancet 1, 1050–1052.PubMedGoogle Scholar
  83. 83.
    Beards, G. M., Brown, D. W. G., Green, J., and Flewett, T. H. (1986) Preliminary characterisation of torovirus-like particles of humans: comparison with Berne virus of horses and Breda virus of calves. J. Med. Virol. 20, 67–78.PubMedGoogle Scholar
  84. 84.
    Pereira, H. G., Flewett, T. H., Candeias, J. A. N., and Barth, O. M. (1988) A virus with a bisegmented double-stranded RNA genome in rat (Oryzomys nigripes) intestines. J. Gen. Virol. 69, 2749–2754.PubMedCrossRefGoogle Scholar
  85. 85.
    Duckmanton, L., Luan, B., Devenish, J., Tellier, R., and Petric, M. (1997) Characterization of torovirus from human fecal specimens. Virology 239, 158–168.PubMedGoogle Scholar
  86. 86.
    Rosen, B. I., Fang, Z. Y., Glass, R. I., and Monroe, S. S. (2000) Cloning of human picobirnavirus genomic segments and development of an RT-PCR detection assay. Virology 277, 316–329.PubMedGoogle Scholar
  87. 87.
    Oliver, S. L., Dastjerdi, A. M., Wong, S., et al. (2003) Molecular characterization of bovine enteric caliciviruses: a distinct third genogroup of noroviruses (Norwalk-like viruses) unlikely to be of risk to humans. J. Virol. 77, 2789–2798.PubMedGoogle Scholar
  88. 88.
    Cook, N., Bridger, J., Kendall, K., Iturriza-Gómara, M. I., El-Attar, L., and Gray, J. (2004) The zoonotic potential of rotavirus. J. Infect. 48, 289–302.PubMedGoogle Scholar
  89. 89.
    Nakagomi, T. and Nakagomi, O. (2000) Human rotavirus HCR3 possesses a genomic RNA constellation indistinguishable from that of feline and canine rotaviruses. Arch. Virol. 145, 2403–2409.PubMedGoogle Scholar
  90. 90.
    Iturriza-Gómara, M., Desselberger, U., and Gray, J. J. (2003) Molecular epidemiology of rotaviruses: genetic mechanisms associated with diversity. In: Viral Gastroenteritis. Prespectives in Medical Virology (Desselberger, U. and Gray, J. J., eds.), Elsevier, Amsterdam, pp. 317–344.Google Scholar
  91. 91.
    Guan, Y., Zheng, B. J., He, Y. Q., et al. (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278.PubMedGoogle Scholar
  92. 92.
    Gaulin, C., Frigon, M., Poirier, D., and Fournier, C. (1999) Transmission of calicivirus by a foodhandler in the pre-symptomatic phase of illness. Epidemiol. Infect. 123, 475–478.PubMedGoogle Scholar
  93. 93.
    Lo, S. V., Connolly, A. M., Palmer, S. R., Wright, D., Thomas, P. D., and Joynson, D. (1994) The role of pre-symptomatic food handler in a common source of food-borne SRSV gastroenteritis in a group of hospitals. Epidemiol. Infect. 113, 513–521.PubMedGoogle Scholar
  94. 94.
    Parashar, U. D., Dow, L., Fankhauser, R. L., et al. (1998). An outbreak of viral gastroenteritis associated with consumption of sandwiches: implications for the control of transmission by food handlers. Epidemiol. Infect. 121, 615–621.PubMedGoogle Scholar
  95. 95.
    Patterson, T., Hutchings, P., and Palmer, S. (1993) Outbreak of SRSV gastroenteritis at an international conference traced to food handled by a post-symptomatic caterer. Epidemiol. Infect. 111, 157–162.PubMedGoogle Scholar
  96. 96.
    Patterson, W., Haswell, P., Fryers, P. T., and Green, J. (1997) Outbreak of small round structured virus gastroenteritis arose after kitchen assistant vomited. Comm. Dis. Rep. 7, R101–R103.Google Scholar
  97. 97.
    Desselberger, U., Iturriza-Gómara, M., and Gray, J. J. (2001) Rotavirus epidemiology and surveillance. In: Chadwick, D., Goode, J., eds. Novartis Foundation Symposium No. 238. In: Viral Gastroenteritis. Chichester: John Wiley & Sons,: 125–147.Google Scholar
  98. 98.
    Kuritsky, J. N., Osterholm, M. T., Greenberg, H. B., et al. (1984) Norwalk gastroenteritis: a community outbreak associated with bakery product consumption. Ann. Int. Med. 100, 519–521.PubMedGoogle Scholar
  99. 99.
    Fleissner, M. L., Herrman, J. E., Booth, J. W., Blacklow, N. R., and Nowak, N. A. (1989) Role of Norwalk virus in two foodborne outbreaks of gastroenteritis: definitive virus association. Am. J. Epidemiol. 129, 165–172.PubMedGoogle Scholar
  100. 100.
    Herwaldt, B. L., Lew, J. F., Moe, C. L., et al. (1994) Characterization of a variant strain of Norwalk virus from a food-borne outbreak of gastroenteritis on a cruise ship in Hawaii. J. Clin. Microbiol. 32, 861–866.PubMedGoogle Scholar
  101. 101.
    Kilgore, P. E., Belay, E. D., Hamlin, D. M., et al. (1996) A university outbreak of gastroenteritis due to a small round structured virus: application of molecular diagnosis to identify the etiologic agent and patterns of transmission. J. Infect. Dis. 173, 787–793.PubMedGoogle Scholar
  102. 102.
    Christensen, B. F., Lees, D. N., Henshilwood, K., Bjergskov, T., and Green, J. (1998) Human enteric viruses in oysters causing a large outbreak of human foodborne infection in 1996/97. J. Shellfish Res. 17, 1633–1635.Google Scholar
  103. 103.
    Dowell, S. E, Groves, C., Kirkland, K. B., et al. (1995). A multistate outbreak of oyster-associated gastroenteritis: implications for interstate tracing of contaminated shellfish. J. Infec. Dis. 171, 1497–1503.Google Scholar
  104. 104.
    McDonnell, S., Kirkland, K. B., Hlady, W. G., et al. (1997) Failure of cooking to prevent shellfish-associated viral gastroenteritis. Arch. Int. Med. 157, 111–116.Google Scholar
  105. 105.
    Otsu, R. (1999) Outbreaks of gastroenteritis caused by SRSVs from 1987 to 1992 in Kyushu, Japan: four outbreaks associated with oyster consumption. Eur. J. Epidemiol. 15, 175–180.PubMedGoogle Scholar
  106. 106.
    Simmons, G., Greening, G., Gao, W., and Campbell, D. (2001) Raw oyster consumption and outbreaks of viral gastroenteritis in New Zealand: evidence for risk to the public’s health. Aust. N Z J Public Health 25, 234–240.PubMedGoogle Scholar
  107. 107.
    Sugieda, M., Nakajima, K., and Nakajima, S. (1996) Outbreaks of Norwalk-like virus associated gastroenteritis traced to shellfish: coexistence of two genotypes in one specimen. Epidemiol. Infect. 116, 339–346.PubMedCrossRefGoogle Scholar
  108. 108.
    Oishi, I., Yamazaki, K., Kimoto, T., et al. (1994) A large outbreak of acute gastroenteritis associated with astrovirus among students and teachers in Osaka, Japan. J. Infect. Dis. 170, 439–443.PubMedGoogle Scholar
  109. 109.
    Villena, C., Gabrieli, R., Pinto, R. M., et al. (2003) A large infantile gastroenteritis outbreak in Albania caused by multiple emerging rotavirus genotypes. Epidemiol. Infect. 131, 1105–1110.PubMedGoogle Scholar
  110. 110.
    Yamashita, T., Sakae, K., Ishihara, Y., Isomura, S., and Utagawa, E. (1993) Prevalence of newly isolated, cytopathic small round virus (Aichi strain) in Japan. J. Clin. Microbiol. 31, 2938–2943.PubMedGoogle Scholar
  111. 111.
    Michelangeli, E and Ruiz, M. C. (2003) Physiology and pathophysiology of the gut in relation to viral diarrhoea. In: Viral Gastroenteritis. Prespectives in Medical Virology (Desselberger, U. and Gray, J. J., eds.), Elsevier, Ámsterdam, pp. 23–50.Google Scholar
  112. 112.
    Estes, M. K. (2003) The rotavirus NSP4 enterotoxin: current status and challenges. In: Viral Gastroenteritis. Prespectives in Medical Virology, (Desselberger, U. and Gray, J. J., eds.), Elsevier, Amsterdam, pp. 207–224.Google Scholar
  113. 113.
    Ball, J. M., Tian, P., Zeng, C. Q., Morris, A. P., and Estes, M. K. (1996) Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272, 101–104.PubMedGoogle Scholar
  114. 114.
    Tian, P., Hu, Y., Schilling, W. P., Lindsay, D. A, Eiden, J., and Estes, M. K. (1994) The non-structural glycoprotein of rotavirus affects intracellular calcium levels. J. Virol. 68, 251–257.PubMedGoogle Scholar
  115. 115.
    Tian, P., Estes, M. K., Hu, Y., Ball, J. M., Zeng, C. Q., and Schilling, W. P. (1995) The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J. Virol. 69, 5763–5772.PubMedGoogle Scholar
  116. 116.
    Zhang, M., Zeng, C. Q., Morris, A. P, and Estes, M. K. (2000) A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J. Virol. 74, 11,663–11,670.PubMedGoogle Scholar
  117. 117.
    Lundgren, O., Peregrin, A. T., Persson, K., Kordasti, S., Uhnoo, I., and Svensson, L. (2000) Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 287, 491–495.PubMedGoogle Scholar
  118. 118.
    Kaplan, J. E., Gary, G. W., Baron, R. C., et al. (1982) Epidemiology of Norwalk gastroenteritis and the role of Norwalk virus in outbreaks of acute nonbacterial gastroenteritis. Ann. Int. Med. 96, 756–761.PubMedGoogle Scholar
  119. 119.
    Kaplan, J. E., Schonberger, L. B., Varano, G., Jackman, N., Bied, J., and Gary, G. W. (1982) An outbreak of acute nonbacterial gastroenteritis in a nursing home. Demonstration of person-to-person transmission by temporal clustering of cases. Am. J. Epidemiol. 116, 940–948.PubMedGoogle Scholar
  120. 120.
    Rockx, B., De Wit, M., Vennema, H., et al. (2002) Natural history of human calicivirus infection: a prospective cohort study. Clin. Infect. Dis. 35, 246–253.PubMedGoogle Scholar
  121. 121.
    Lynch, M., Lee, B., Azimi, P., et al. (2001) Rotavirus and central nervous system symptoms: cause or contaminant? Case reports and review. Clin. Infect. Dis. 33, 932–938.PubMedGoogle Scholar
  122. 122.
    Iturriza-Gómara, M., Auchterlonie, I. A., Zaw, W., Molyneaux, P., Desselberger, U., and Gray, J. (2002) Rotavirus gastroenteritis and CNS infection: detection and characterisation of the VP7 and VP4 genes of rotavirus strains isolated from paired faecal and CSF samples from a child with CNS symptoms. J. Clin. Microbiol. 40, 4797–4799.PubMedGoogle Scholar
  123. 123.
    Koopmans, M., Vennema, H., Heersma, H., et al. (2003). Early identification of common-source foodborne virus outbreaks in Europe. Emerg. Infect. Dis. 9, 1136–1142.PubMedGoogle Scholar
  124. 124.
    Lopman, B., Van Duynhoven, Y., Hanon, F. X., Reacher, M., Koopmans, M., and Brown, D. W. (2002) Laboratory capability in Europe for foodborne viruses. Euro. Surv. 7, 61–65.Google Scholar
  125. 125.
    Lindqvist, R., Andersson, Y., Lindback, J., et al. (2001) A one-year study of foodborne illnesses in the municipality of Uppsala, Sweden. Emerg. Infect. Dis. 7, 588–592.PubMedCrossRefGoogle Scholar
  126. 126.
    Mead, P. S, Slutsker, L., Dietz, V., et al. (1999) Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625.PubMedCrossRefGoogle Scholar
  127. 127.
    Muniain-Mujika, I., Calvo, M., Lucena, F., and Girones, R. (2003) Comparative analysis of viral pathogens and potential indicators in shellfish. Int J Food Microbiol. 83,(1):75–85.PubMedGoogle Scholar
  128. 128.
    Gallimore, C. I., Green, J., Lewis, D., et al. (2004) Diversity of noroviruses cocirculating in the North of England from 1998 to 2001. J. Clin. Microbiol. 42, 1396–1401.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Miren Iturriza-Gómara
    • 1
  • Chris I. Gallimore
    • 1
  • Jim Gray
    • 1
  1. 1.Enteric Virus Unit, Virus Reference DepartmentCentre for Infections,Health Protection AgencyLondonUK

Personalised recommendations