Advertisement

Future Directions in Food Safety

  • Ross C. Beier
  • Suresh D. Pillai
Chapter
Part of the Infectious Disease book series (ID)

Abstract

The recent success that the USDA Food Safety Inspection Service has had in 2003 and 2004 of reversing the steadily increasing trend in Class 1 recalls is welcomed. In agreement with those statistics are the FSIS microbiological results for Escherichia coli O157:H7 in raw ground beef, which also showed a decrease in 2003. But there is much work to be done in food safety and much more to achieve. It is imperative that while addressing food-safety issues, we should understand the role that the environmental microbiology, public health epidemiology, aerobiology, molecular microbial ecology, occupational health, industrial processes, municipal water quality, and animal health have on food safety. Although it is a difficult task, a concerted effort by industry, academic, and governmental researchers can accomplish the goal. Here we discuss the future directions and applications in the distribution and spread of foodborne hazards, methods for microbial detection and differentiation, intervention strategies for farm pathogen reduction, targeting waste at animal production sites, considerations on antimicrobial resistance, food-safety storage and preparation strategies, food irradiation, new and emerging food-safety hazards, and quantitative microbial food-safety risk assessment. Although this does not comprise an exhaustive list of food-safety issues, these are the areas that, we think, require considerable attention by researchers. Not only we need to strive to improve food safety through new strategies, processes, and applications, but we also need to be flexible and observant to readily handle the new and emerging food-safety problems, whether they are within our borders or global. At present, the United States has one of the safest food-safety systems in place. However, although this is not a time for complacency, our research endeavors should be designed to keep pace with the food-safety needs of the future.

Keywords

Food Safety Bovine Spongiform Encephalopathy Enteric Virus Contemporary Issue Foodborne Illness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    USDHHS-CDC (US Department of Health and Human Services-Centers for Disease Control and Prevention). (1996) Surveillance for foodborne-disease outbreaks: United States, 1988-1992. Centers for Disease Control and Prevention Surveillance Summary. Morb. Mort. Wkly Rep. 45, SS–5.Google Scholar
  2. 2.
    Mead, P. S., Slutsker, L., Dietz, V., et al. (1999) Food-related illness and death in the United States. Emer. Infect. Dis. 5, 607–625.CrossRefGoogle Scholar
  3. 3.
    Buzby, J. C. and Roberts, T. (1997) Economic costs and trade impacts of microbial foodborne illness. World Health Stat. Q. 50(1-2), 57–66.PubMedGoogle Scholar
  4. 4.
    Lax, A. J., Barrow, P. A., Jones, P. W., and Wallis, T. S. (1995) Current perspectives in salmonellosis. Br. Vet. J. 151, 351–377.PubMedGoogle Scholar
  5. 5.
    Frenzen, P. D., Riggs, T. L., Buzby, J. C., et al. (1999) Salmonella cost estimate updated using FoodNet data. FoodReview 22(2), 10–15.Google Scholar
  6. 6.
    Waghela, S. D. (2004) Pathogenic Escherichia coli. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 13–25.Google Scholar
  7. 7.
    Crump, J. A., Braden, C. R., Dey, M. E., et al. (2003) Outbreaks of Escherichia coli O157 infections at multiple county agricultural fairs: a hazard of mixing cattle, concession stands and children. Epidemiol. Infect. 131, 1055–1062.PubMedCrossRefGoogle Scholar
  8. 8.
    Castell-Perez, M. E. and Moreira, R. G. (2004) Decontamination systems. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 337–347.Google Scholar
  9. 9.
    USDA-FSIS (US Department of Agriculture-Food Safety Inspection Service). (2002) Pathogen Reduction; Hazard Analysis and Critical Control Point (HACCP) Systems. Title 9 Code of Federal Regulations, Parts 304, 308, 310, 320, 327, 381, 416, and 417. Government Printing Office, Washington, DC.Google Scholar
  10. 10.
    Federal Register. (1996) Pathogen Reduction; Hazard Analysis and Critical Control Point (HACCP) Systems; Final Rule. United States Department of Agriculture-Food Safety and Inspection Service. Title 9 CFR, Parts 304, 308, 310, 320, 327, 381, 416, and 417. Fed. Regist. 61, 38,805–38,989.Google Scholar
  11. 11.
    Sperber, W. H. (2004) Advancing the food safety agenda. Food Saf. Mag. 10(3), 32, 34-36.Google Scholar
  12. 12.
    Stevenson, K. E. and Bernard, D. T. (1999) Introduction to hazard analysis and critical control point systems. In: HACCP: A Systematic Approach to Food Safety, 3rd edn, The Food Processors Institute, Washington, DC, pp. 1–4.Google Scholar
  13. 13.
    Mortimore, S. and Wallace, C. (2001) Food Industry Briefing Series: HACCP, Iowa State University Press/Blackwell Science, Ames, IA.Google Scholar
  14. 14.
    Keeton, J. T. and Harris, K. B. (2004) The hazard analysis and critical control point system and importance of verification procedures. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT Press/Blackwell, Ames, IA, pp. 257–269.Google Scholar
  15. 15.
    USDA-FSIS (US Department of Agriculture-Food Safety Inspection Service). (2003) Enhancing public health: strategies for the future. Available at http://www.fsis.usda.gov/Frame/ FrameRedirect.asp?main=/oa/speeches/2003/em_sma.htm (accessed on 16 September 2004).
  16. 16.
    USDA-FSIS (US Department of Agriculture-Food Safety and Inspection Service). (2004) Fulfilling the vision: initiatives in protecting public health. Available at http://www.fsis.usda.gov (accessed on 31 August 2004), p. 5.
  17. 17.
    USDA-FSIS (US Department of Agriculture-Food Safety and Inspection Service). (2003) Microbiological results of raw ground beef products analyzed for Escherichia coli O157:H7. Available at http://www.fsis.usda.gov/Science/Ground_Beef_E.Coli_Testing_Results/index.asp (accessed on 13 September 2004).
  18. 18.
    Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L. (eds.) (2004) Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions, IFT/Blackwell, Ames, IA.Google Scholar
  19. 19.
    CAST (Council for Agricultural Science and Technology). (2004) Intervention Strategies for the Microbiological Safety of Foods of Animal Origin. Issue Paper 25. Council for Agricultural Science and Technology, Ames, IA.Google Scholar
  20. 20.
    Rosenblum, L. S., Mirkin, I. R., Allen, D. T., et al. (1990) A multifocal outbreak of hepatitis A traced to commercially distributed lettuce. Am. J. Public Health 80, 1076–1079.CrossRefGoogle Scholar
  21. 21.
    Dato, V., Weltman, A., Waller, K., et al. (2003) Hepatitis A outbreak associated with green onions at a restaurant-Monaca, Pennsylvania, 2003. Morb. Mort. Wkly Rep. 52, 1155–1157.Google Scholar
  22. 22.
    Strategic Consulting. (2000) Pathogen Testing in the US Food Industry. Strategic Consulting, Woodstock, VT.Google Scholar
  23. 23.
    Pillai, S. D. (2004) Molecular methods for microbial detection. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 289–302.Google Scholar
  24. 24.
    Richards, G. P. (2001) Enteric virus contamination of foods through industrial practices: a primer on intervention strategies. J. Ind. Microbiol. Biotechnol. 27, 117–125.PubMedCrossRefGoogle Scholar
  25. 25.
    Frankhauser, R. L., Monroe, S. S., Noel, J. S., et al. (2002) Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States. J. Infect. Dis. 186, 1–7.CrossRefGoogle Scholar
  26. 26.
    Goyal, S. M. (2004) Viruses in food. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 101–117.Google Scholar
  27. 27.
    Foley, S. L. and Walker, R. D. (2004) Methods for differentiation among bacterial foodborne pathogens. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 303–316.Google Scholar
  28. 28.
    Keys, C., Kemper, S., and Keim, P. (2002) MLVA: a novel typing system for E. coli O157:H7. Abstracts of the American Society for Microbiology General Meeting, May 19–23, Salt Lake City, UT.Google Scholar
  29. 29.
    Keys, C., Jay, Z., Fleishman, A., et al. (2003) VNTR Mutations in E. coli O157:H7-rates, products and allelic effects. Abstracts of the American Society for Microbiology General Meeting, May 18-22, Washington, DC.Google Scholar
  30. 30.
    Keim, P., Smith, K. L., Keys, C., et al. (2001) Molecular investigation of the Aum Shinrikyo anthrax release in Kameido, Japan. J. Clin. Microbiol. 39, 4566–4567.PubMedCrossRefGoogle Scholar
  31. 31.
    Fouet, A., Smith, K. L., Keys, C., et al. (2002) Diversity among French Bacillus anthracis isolates. J. Clin. Microbiol. 40, 4732–4734.PubMedCrossRefGoogle Scholar
  32. 32.
    Takahashi, H., Keim, P., Kaufmann, A. F., et al. (2004) Bacillus anthracis incident, Kameido, Tokyo, 1993. Emerg. Infect Dis. 10, 117–120PubMedGoogle Scholar
  33. 33.
    Hume, M. E., Corrier, D. E., Nisbet, D. J., and DeLoach, J. R. (1996) Reduction of Salmonella crop and cecal colonization by a characterized competitive exclusion culture in broilers during growout. J. Food Protect. 59, 688–693.Google Scholar
  34. 34.
    Nisbit, D. J., Corrier, D. E., and DeLoach, J. R. (1997) Probiotic for control of Salmonella in fowl produced by continuous culture of fecal/cecal material. US Patent No. 5,604,127.Google Scholar
  35. 35.
    Bailey, J. S., Cason, J. A., and Cox, N. A. (1998) Effect of Salmonella in young chicks on competitive exclusion treatment. Poult. Sci. 77, 394–399.PubMedGoogle Scholar
  36. 36.
    Harvey, R. B., Droleskey, R. E., Hume, M. E., et al. (2002) In vitro inhibition of Salmonella enterica serovars Choleraesuis and Typhimurium, Escherichia coli F-18, and Escherichia coli O157:H7 by a porcine continuous-flow competitive exclusion culture. Curr. Microbiol. 45, 226–229.PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson, R. C., Stanker, L. H., Young, C. R., et al. (1999) Effect of competitive exclusion treatment on colonization of early-weaned pigs by Salmonella serovar Choleraesuis. Swine Health Prod. 7, 155–160.Google Scholar
  38. 38.
    Genovese, K. J., Harvey, R. B., Anderson, R. C., and Nisbet, D. J. (2001) Protection of suckling neonatal pigs against infection with an enterotoxigenic Escherichia coli expressing 987P fimbriae by the administration of a bacterial competitive exclusion culture. Microb. Ecol. Health Dis. 13, 223–228.CrossRefGoogle Scholar
  39. 39.
    Harvey, R. B., Ebert, R. C., Schmitt, C. S., et al. (2003). Use of a porcine-derived, defined culture of commensal bacteria as an alternative to antibiotics to control E. coli disease in weaned pigs: field trial results. Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, Banff, AB, Canada, Vol. 2, pp. 72–74.Google Scholar
  40. 40.
    Genovese, K. J., Anderson, R. C., Harvey, R. B., and Nisbet, D. J. (2000) Competitive exclusion treatment reduces the mortality and fecal shedding associated with enterotoxigenic Escherichia coli infection in nursery-raised neonatal pigs. Can. J. Vet. Res. 64, 204–207.PubMedGoogle Scholar
  41. 41.
    Tamási, G. and Lantos, Z. (1983) Influence of nitrate reductases on survival of Escherichia coli and Salmonella enterititdis in liquid manure in the presence and absence of chlorate. Agric. Wastes 6, 91–97.CrossRefGoogle Scholar
  42. 42.
    Brenner, D. J. (1984) Enterobacteriaceae. In: Bergey’s Manual of Systematic Bacteriology (Krieg, N. R. and Holt, J. G., eds.), Vol. 1, Williams & Wilkins, Baltimore, MD, pp. 408–420.Google Scholar
  43. 43.
    Stewart, V. (1988) Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52, 190–232.PubMedGoogle Scholar
  44. 44.
    Anderson, R. C., Buckley, S. A., Callaway, T. R., et al. (2001) Effect of sodium chlorate on Salmonella Typhimurium concentrations in the weaned pig gut. J. Food Prot. 64, 255–258.PubMedGoogle Scholar
  45. 45.
    Jung, Y. S., Anderson, R. C., Byrd, J. A., et al. (2003) Reduction of Salmonella Typhimurium in experimentally challenged broilers by nitrate adaptation and chlorate supplementation in drinking water. J. Food Prot. 66, 660–663.PubMedGoogle Scholar
  46. 46.
    Anderson, R. C., Callaway, T. R., Buckley, S. A., et al. (2001) Effect of oral sodium chlorate administration on Escherichia coli O157:H7 in the gut of experimentally infected pigs. Int. J. Food Microbiol. 71, 125–130.PubMedCrossRefGoogle Scholar
  47. 47.
    Callaway, T. R., Edrington, T. S., Anderson, R. C., et al. (2003) Escherichia coli O157:H7 populations in sheep can be reduced by chlorate supplementation. J. Food Prot. 66, 194–199.PubMedGoogle Scholar
  48. 48.
    Edrington, T. S., Callaway, T. R., Anderson, R. C., et al. (2003) Reduction of E. coli O157:H7 populations in sheep by supplementation of an experimental sodium chlorate product. Small Ruminant Res. 49, 173–181.CrossRefGoogle Scholar
  49. 49.
    Tyrrel, S. F. and Quinton, J. N. (2003) Overland flow transport of pathogens from agricultural land receiving faecal wastes. J. Appl. Microbiol. 94, 87S–93S.PubMedCrossRefGoogle Scholar
  50. 50.
    Nicholson, F. A., Hutchinson, M. C., Smith, K. A., et al. (2000) A Study on Farm Manure Application to Agricultural Land and an Assessment of the Risks of Pathogens Transfer into the Food Chain. Project Number FS2526, Final Report to the Ministry of Agriculture, Fisheries and Food, London.Google Scholar
  51. 51.
    Humenik, F. J., Rice, J. M., Baird, C. L., and Koelsch, R. (2004) Environmentally superior technologies for swine waste management. Water Sci. Technol. 49(5-6), 15–22.PubMedGoogle Scholar
  52. 52.
    Ali, S. H. (2004) A socio-ecological autopsy of the E. coli O157:H7 outbreak in Walkerton, ON, Canada. Soc. Sci. Med. 58, 2601–2612.PubMedCrossRefGoogle Scholar
  53. 53.
    Bruce-Grey-Owen Sound Health Unit. (2000) The Investigative Report of the Walkerton Outbreak of Waterborne Gastroenteritis, May-June, 2000. Released on 10 October 2000 during a public meeting, Walkerton, ON.Google Scholar
  54. 54.
    Kelley, T. R., Pancorbo, O. C., Merka, W. C., and Barnhart, H. M. (1998) Antibiotic resistance of bacterial litter isolates. Poult. Sci. 77, 243–247.PubMedGoogle Scholar
  55. 55.
    Rajashekara, G., Haverly, E., Halvorson, D. A., et al. (2000) Multidrug-resistant Salmonella typhimurium DT104 in poultry. J. Food Protect. 63, 155–161.Google Scholar
  56. 56.
    Teuber, M. (2001) Veterinary use and antibiotic resistance. Curr. Opin. Microbiol. 4, 493–499.PubMedCrossRefGoogle Scholar
  57. 57.
    Price, D. (2000) Real antibiotics issue cannot be overlooked. Feedstuffs 72, 8, 18.Google Scholar
  58. 58.
    Levy, S. B. (2001) Antibacterial household products: cause for concern. Emerg. Infect. Dis. 7, 512–515.PubMedGoogle Scholar
  59. 59.
    Regös, J., Zak, O., Solf, R., et al. (1979) Antimicrobial spectrum of triclosan, a broadspectrum antimicrobial agent for topical application. II. Comparison with some other antimicrobial agents. Dermatologica 158, 72–79.PubMedCrossRefGoogle Scholar
  60. 60.
    Heath, R. J., Li, J., Roland, G. E., and Rock, C. O. (2000) Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J. Biol. Chem. 275, 4654–4659.PubMedCrossRefGoogle Scholar
  61. 61.
    Heath, R. J. and Rock, C. O. (2000) A triclosan-resistant bacterial enzyme. Nature 406, 145–146.PubMedCrossRefGoogle Scholar
  62. 62.
    Levy, C. W., Roujeinikova, A., Sedelnikova, S., et al. (1999) Molecular basis of triclosan activity. Nature 398, 383–384.PubMedCrossRefGoogle Scholar
  63. 63.
    Chuanchuen, R., Beinlich, K., Hoang, T. T., et al. (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob. Agents Chemother. 45, 428–432.CrossRefGoogle Scholar
  64. 64.
    Lambert, R. J. W., Joynson, J., and Forbes, B. (2001) The relationships and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonas aeruginosa to some antibiotics and biocides. J. Appl. Microbiol. 91, 972–984.PubMedCrossRefGoogle Scholar
  65. 65.
    White, D. G. and McDermott, P. F. (2001) Biocides, drug resistance and microbial evolution. Curr. Opin. Microbiol. 4, 313–317.PubMedCrossRefGoogle Scholar
  66. 66.
    Beier, R. C., Bischoff, K. M., and Poole, T. L. (2004) Disinfectants (biocides) used in animal production: antimicrobial resistance considerations. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 201–211.Google Scholar
  67. 67.
    Schweizer, H. P. (1998) Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob. Agents Chemother. 42, 394–398.PubMedGoogle Scholar
  68. 68.
    Beier, R. C., Bischoff, K. M., Ziprin, R. L., et al. (2005) Chlorhexidine susceptibility, virulence factors and antibiotic resistance of beta-hemolytic Escherichia coli isolated from neonatal swine with diarrhea. Bull. Environ. Contam. Toxicol. 75(5), 835–844.PubMedCrossRefGoogle Scholar
  69. 69.
    Albrecht, J. (1995) Food safety knowledge and practices of consumers in the US. J. Cons. Stud. Home Econ. 19, 103–118.Google Scholar
  70. 70.
    Anderson, J. B., Shuster, T. A., Gee, E., et al. (2001) A camera’s view of consumer food handling and preparation practices. Safe Food Institute Online, Utah State University, Logan. Available at http://www.safefoodinstitute.org/finding.htm (accessed on 15 September 2004).Google Scholar
  71. 71.
    McIntosh, W. A. (2004) Food safety risk communication and consumer food-handling behavior. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 405–414.Google Scholar
  72. 72.
    Josephson, E. S. (1983) An historic review of food irradiation. J. Food Saf. 5, 161–190.CrossRefGoogle Scholar
  73. 73.
    Pillai, S. D. (2004) Food irradiation: a solution to combat worldwide food-borne illnesses. Proceedings of the International Congress of Bioprocessing in the Food Industry, July 11–13, Clermont-Ferrand, France.Google Scholar
  74. 74.
    Pillai, S. D. (2004) Food irradiation. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 375–387.Google Scholar
  75. 75.
    Seyfarth, A. M., Wegener, H. C., and Frimodt-Møller, N. (1997) Antimicrobial resistance in Salmonella enterica subsp. enterica serovar Typhimurium from humans and production animals. J. Antimicrob. Chemother. 40, 67–75.PubMedCrossRefGoogle Scholar
  76. 76.
    Aarestrup, F. M. and Wegener, H. C. (1999) The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli. Microbes Infect. 1, 639–644.PubMedCrossRefGoogle Scholar
  77. 77.
    Ferber, D. (2000) Superbugs on the hoof? Science 288, 792–794.PubMedCrossRefGoogle Scholar
  78. 78.
    Mølbak, K., Baggesen, D. L., Aarestrup, F. M., et al. (1999) An outbreak of multidrugresistant, quinolone-resistant Salmonella enterica serotype Typhimurium DT104. N. Engl. J. Med. 341, 1420–1425.PubMedCrossRefGoogle Scholar
  79. 79.
    CIDRAP (Center for Infectious Disease Research & Policy). (2004) Links between human and animal disease surveillance growing. University of Minnesota, Minneapolis-St. Paul, MN. Available at http://www.cidrap.umn.edu/cidrap/content/bt/bioprep/news/sept2104vetspub_rev.html (accessed on 22 September 2004).Google Scholar
  80. 80.
    Schmerr, M. J. (2004) Do animal transmissible spongiform encephalopathies pose a risk for human health? In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 173–187.Google Scholar
  81. 81.
    Bruce, M. E., Will, R. G., Ironside, J. W., et al. (1997) Transmissions to mice indicate that “new variant” CJD is caused by the BSE agent. Nature 389, 498–501.PubMedCrossRefGoogle Scholar
  82. 82.
    Hill, A. F., Desbruslais, M., Joiner, S., et al. (1997) The same prion strain causes vCJD and BSE. Nature 389, 448–450.PubMedCrossRefGoogle Scholar
  83. 83.
    Scott, M. R., Will, R., Ironside, J., et al. (1999) Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc. Natl Acad. Sci. USA 96, 15,137–15,142.PubMedCrossRefGoogle Scholar
  84. 84.
    APHIS (Animal and Plant Health Inspection Services). (2004) Chronic wasting disease. Available at http://www.aphis.usda.gov/vs/nahps/cwd/ (accessed on 23 September 2004).
  85. 85.
    CWDA (Chronic Wasting Disease Alliance). (2004) Chronic wasting disease: implications and challenges for wildlife managers. Available at http://www.cwd-info.org/index.php/fuseaction/about.overview (accessed on 23 September 2004).
  86. 86.
    Hamir, A. N., Miller, J. M., Cutlip, R. C., et al. (2004) Transmission of sheep scrapie to elk (Cervus elaphus nelsoni) by intracerebral inoculation: final outcome of the experiment. J. Vet. Diagn. Invest. 16, 316–321.PubMedGoogle Scholar
  87. 87.
    Hibler, C. P., Wilson, K. L., Spraker, T. R., et al. (2003) Field validation and assessment of an enzyme-linked immunosorbent assay for detecting chronic wasting disease in mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus), and Rocky Mountain elk (Cervus elaphus nelsoni). J. Vet. Diagn. Invest. 15, 311–319.PubMedGoogle Scholar
  88. 88.
    Bio-Rad Laboratories. (2004) BSE testing. Available at http://www.bio-rad.com (Food/Animal/Environmental Testing?TSE Testing?BSE Testing; accessed on 28 October 2004).
  89. 89.
    CAST (Council for Agricultural Science and Technology). (2001) Johne’s Disease in Cattle. Issue Paper No. 17. Council for Agricultural Science and Technology, Ames, IA.Google Scholar
  90. 90.
    Ficht, T. A., Adams, L. G., Khare, S., et al. (2004) Global analysis of the Mycobacterium avium subsp. paratuberculosis genome and model systems exploring host-agent interactions. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/ Blackwell, Ames, IA, pp. 87–99.Google Scholar
  91. 91.
    Johne, H. A. and Frothigham, L. (1895) Ein eigenthumlicher fall von tuberkulose beim rind. D. Z. Thmd. 21, 438–454.Google Scholar
  92. 92.
    Ott, S. L., Wells, S. J., and Wagner, B. A. (1999) Herd-level economic losses associated with Johne’s disease on US dairy operations. Prev. Vet. Med. 40, 179–192.PubMedCrossRefGoogle Scholar
  93. 93.
    YourMedicalSource.com. (2004) What is Crohn’s disease (CD)? Available at http://health.yahoo.com/Health/Centers/Digestive/71.html (accessed on 20 September 2004).
  94. 94.
    AgriNews. (2004) Johne’s stalks dairy, beef. Rochester, MN. Available at http://webstar.postbulletin.com/agrinews/39098956185410.bsp (accessed on 22 September 2004).
  95. 95.
    Chiodini, R. J. and Hermon-Taylor, J. (1993) The thermal resistance of Mycobacterium paratuberculosis in raw milk under conditions simulating pasteurization. J. Vet. Diagn. Invest. 5, 629–631.PubMedGoogle Scholar
  96. 96.
    Sung, N. and Collins, M. T. (1998) Thermal tolerance of Mycobacterium paratuberculosis. Appl. Environ. Microbiol. 64, 999–1005.PubMedGoogle Scholar
  97. 97.
    NRC (National Research Council). (1994) Science and Judgment in Risk Assessment. National Academy, Washington, DC.Google Scholar
  98. 98.
    Mena, K. D., Rose, J. B., and Gerba, C. P. (2004) Addressing microbial food safety issues quantitatively: a risk assessment approach. In: Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Beier, R. C., Pillai, S. D., Phillips, T. D., and Ziprin, R. L., eds.), IFT/Blackwell, Ames, IA, pp. 415–426.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Ross C. Beier
    • 1
  • Suresh D. Pillai
    • 2
  1. 1.Southern Plains Agriculture Research Center, Agricultural Research ServiceUS Department of AgricultureCollege Station
  2. 2.Departments of Nutrition and Food Science and Poultry ScienceTexas A&M UniversityCollege Station

Personalised recommendations