Skip to main content

Animal Models for Atherosclerosis, Restenosis, and Endovascular Aneurysm Repair

  • Chapter
Book cover Sourcebook of Models for Biomedical Research

Abstract

Animal models have significantly advanced the understanding of mechanisms involved in atherosclerosis and restenosis and have allowed the evaluation of therapeutic options. The current focus of research is to develop strategies to prevent restenosis. These include pharmacological and biological interventions directed primarily against smooth muscle cell proliferation, endovascular devices for recanalization and/or drug delivery, and an integrated approach using both devices and pharmacobiological agents. Devices aimed at the percutaneous endoluminal exclusion of aortic aneurysms have also generated a great deal of interest. Experience over many decades with animal models for vascular research has established that a single, ideal model for atherosclerosis, restenosis, or aneurysm formation does not exist, although recent development of transgenic variants of currently available models has widened the available options. Nevertheless, an appreciation of the individual features of natural or stimulated disease in each species is of the utmost importance for the proper design and execution of relevant experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gimbrone MA Jr. Vascular endothelium, hemodynamic forces, and atherogenesis. Am J Pathol 1999;155:1–5.

    PubMed  Google Scholar 

  2. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–126.

    Article  PubMed  CAS  Google Scholar 

  3. Reardon CA, Getz GS. Mouse models of atherosclerosis. Curr Opin Lipidol 2001;12:167–173.

    Article  PubMed  CAS  Google Scholar 

  4. Rekhter M. Vulnerable atherosclerotic plaque: Emerging challenge for animal models. Curr Opin Cardiol 2002;17:626–632.

    Article  PubMed  Google Scholar 

  5. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001;104:365–372.

    PubMed  CAS  Google Scholar 

  6. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weisberg P. Cell surface trafficking of Fas: A rapid mechanism of p53-mediated apoptosis. Science 1998;282:290–293.

    Article  PubMed  CAS  Google Scholar 

  7. Boyle JJ, Bowyer DE, Weissberg PL, Bennett MR. Human bloodderived macrophages induce apoptosis in human plaque-derived vascular smooth muscle cells by Fas-ligand/Fas interactions. Arterioscler Thromb Vasc Biol 2001;21:1402–1407.

    Article  PubMed  CAS  Google Scholar 

  8. Libby P, Geng YJ, Aikawa M, Schoenbeck U, Mach F, Clinton SK, Sukhova GK, Lee RT. Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 1996;7:330–335.

    PubMed  CAS  Google Scholar 

  9. Aikawa M, Rabkin E, Sugiyama S, Voglic SJ, Fukumoto Y, Furukawa Y, Shiomi M, Schoen FJ, Libby P. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001;103:276–283.

    PubMed  CAS  Google Scholar 

  10. Cullen P, Baetta R, Bellosta S, Bernini F, Chinetti G, Cignarella A, von Eckardstein A, Exley A, Goddard M, Hofker M, Hurt-Camejo E, Kanters E, Kovanen P, Lorkowski S, McPheat W, Pentikainen M, Rauterberg J, Ritchie A, Staels B, Weitkamp B, deWinther M; MAFAPS Consortium. Rupture of the atherosclerotic plaque: Does a good animal model exist? Arterioscler Thromb Vasc Biol 2003;23:535–542.

    Article  PubMed  CAS  Google Scholar 

  11. Fan J, Watanabe T. Cholesterol-fed and transgenic rabbits for the study of atherosclerosis. J Atheroscler Thromb 2000;7:26–32.

    PubMed  CAS  Google Scholar 

  12. Herrera VL, Makrides SC, Xie HX, Adari H, Krauss RM, Ryan US, Ruiz-Opazo N. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat Med 1999;5:1383–1389.

    Article  PubMed  CAS  Google Scholar 

  13. Russel JC, Graham SE, Richardson M. Cardiovascular disease in the JCR:LA-cp rat. Mol Cell Biochem 1998;188:113–126.

    Article  Google Scholar 

  14. Drobnik J, Dabrowski R, Szczepanowska A, Giernat L, Lorenc J. Response of aorta connective tissue matrix to injury caused by vasopressin-induced hypertension or hypercholesterolemia. J Physiol Pharmacol 2000;51:521–533.

    PubMed  CAS  Google Scholar 

  15. Badimon L. Atherosclerosis and thrombosis: Lessons from animal models. Thromb Haemost 2001;86:356–365.

    PubMed  CAS  Google Scholar 

  16. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 1980;36:261–268.

    Article  PubMed  CAS  Google Scholar 

  17. Feranandez ML. Guinea pigs as models for cholesterol and lipoprotein metabolism. J Nutr 2001;131:10–20.

    Google Scholar 

  18. Fuster V, Lie JT, Badimon L, Rosemark JA, Badimon JJ, Bowie EJ. Spontaneous and diet-induced coronary atherosclerosis in normal swine and swine with von Willebrand disease. Arteriosclerosis 1985;5:67–73.

    PubMed  CAS  Google Scholar 

  19. Turk JR, Henderson KK, Vanvickle GD, Watkins J, Laughlin MH. Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease. Int J Exp Pathol 2005;86:335–345.

    Article  PubMed  Google Scholar 

  20. Hamilton AJ, Kim H, Nagaraj A, Mun JH, Yan LL, Roth SI, McPherson DD, Chandran KB. Regional material property alterations in porcine femoral arteries with atheroma development. J Biomech 2005;38:2354–2364.

    Article  PubMed  Google Scholar 

  21. Nagaraj A, Kim H, Hamilton AJ, Mun JH, Smulevitz B, Kane BJ, Yan LL, Roth SI, McPherson DD, Chandran KB. Porcine carotid arterial material property alterations with induced atheroma: An in vivo study. Med Eng Phys 2005;27:147–156.

    Article  PubMed  Google Scholar 

  22. Gerrity RG. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 1981;103:181–190.

    PubMed  CAS  Google Scholar 

  23. Fagiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 1984;4:323–340.

    Google Scholar 

  24. Rosenfeld ME, Tsukada T, Gown AM, Ross R. Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1987;7:9–23.

    PubMed  CAS  Google Scholar 

  25. Jawien J, Nastalek P, Korbut R. Mouse models of experimental atherosclerosis. J Physiol Pharmacol 2004;55:503–517.

    PubMed  CAS  Google Scholar 

  26. Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 1987;68:231–240.

    Article  PubMed  CAS  Google Scholar 

  27. Getz GS, Reardon CA. Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 2006;26:242–249.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang SH, Reddick RL, Piedrahita JA, Meada N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258:468–471.

    Article  PubMed  CAS  Google Scholar 

  29. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 1992;89:4471–4475.

    Article  PubMed  CAS  Google Scholar 

  30. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992;71:343–353.

    Article  PubMed  CAS  Google Scholar 

  31. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoEdeficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994;14: 133–140.

    PubMed  CAS  Google Scholar 

  32. Kashyap VS, Santamaria-Fojo S, Brown DR, Parrott CL, Applebaum-Bowden D, Meyn S, Talley G, Paigeb B, Maeda N, Brewer HB Jr. Apolipoprotein E deficiency in mice: Gene replacement and prevention of atherosclerosis using adenovirus vectors. J Clin Invest 1995;96:1612–1620.

    Article  PubMed  CAS  Google Scholar 

  33. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993;92:883–893.

    Article  PubMed  CAS  Google Scholar 

  34. Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS. The tworeceptor model of lipoprotein clearance: Tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci USA 1994;91:4431–4435.

    Article  PubMed  CAS  Google Scholar 

  35. Paszty C, Maeda N, Verstuyft J, Rubin EM. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 1994;94:899–903.

    Article  PubMed  CAS  Google Scholar 

  36. Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 1994;91:9607–9611.

    Article  PubMed  CAS  Google Scholar 

  37. Linton MF, Farese RV Jr, Chiesa G, Grass DS, Chin P, Hammer RE, Hobbs HH, Young SG. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest 1993;92:3029–3037.

    Article  PubMed  CAS  Google Scholar 

  38. Callow MJ, Stoltzfus LJ, Lawn RM, Rubin EM. Expression of human apolipoprotein B and assembly of lipoprotein(a) in transgenic mice. Proc Natl Acad Sci USA 1994;91:2130–2134.

    Article  PubMed  CAS  Google Scholar 

  39. Bonthu S, Heistad DD, Chappel DA, Lamping KG, Faraci FM. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vasc Biol 1997;17:2333–2340.

    PubMed  CAS  Google Scholar 

  40. Witting PK, Petterson K, Ostlund-Lindqvist AM, Westerlund C, Eriksson AW, Stocker R. Inhibition by a coantioxidant of aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice. FASEB J 1999;13:667–675.

    PubMed  CAS  Google Scholar 

  41. Veniant MM, Sullivan MA, Kim SK, Ambroziak P, Chu A, Wilson MD, Hellerstein MK, Rudel LL, Walzem RL, Young SG. Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. J Clin Invest 2000;106:1501–1510.

    Article  PubMed  CAS  Google Scholar 

  42. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the apoE knockout mouse. Arterioscler Thromb Vasc Biol 2000;20:2587–2592.

    PubMed  CAS  Google Scholar 

  43. Ishibashi S. Lipoprotein(a) and atherosclerosis. Arterioscler Thromb Vasc Biol 2001;21:1–2.

    Article  PubMed  CAS  Google Scholar 

  44. Fan J, Shimoyamada H, Sun H, Marcovina S, Honda K, Watanabe T. Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol 2001;21:88–94.

    PubMed  CAS  Google Scholar 

  45. Shimano H, Yamada N, Katsuki M, Yamamoto K, Gotoda T, Harada K, Shimada M, Yazaki Y. Plasma lipoprotein metabolism in transgenic mice overexpressing apolipoprotein E. Accelerated clearance of lipoproteins containing apolipoprotein B. J Clin Invest 1992;90:2084–2091.

    Article  PubMed  CAS  Google Scholar 

  46. Fan J, Ji ZS, Huang Y, deSilva H, Sanan D, Mahley RW, Innerarity TL, Taylor JM. Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma. J Clin Invest 1998;101:2151–2164.

    Article  PubMed  CAS  Google Scholar 

  47. Libby P. Changing concepts of atherogenesis. J Intern Med 2000;247:349–358.

    Article  PubMed  CAS  Google Scholar 

  48. Rekhter MD. How to evaluate plaque vulnerability in animal models of atherosclerosis? Cardiovasc Res 2002;54:36–41.

    Article  PubMed  CAS  Google Scholar 

  49. Prescott MF, McBride CH, Hasler-Rapacz J, Von Linden J, Rapacz J. Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B. Am J Pathol 1991;139:139–147.

    PubMed  CAS  Google Scholar 

  50. Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 2001;154:399–406.

    Article  PubMed  CAS  Google Scholar 

  51. Williams H, Johnson JL, Carson KG, Jackson CL. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2002;22:788–792.

    Article  PubMed  CAS  Google Scholar 

  52. Reddick RL, Zhang SH, Maeda N. Aortic atherosclerotic plaque injury in apolipoprotein deficient mice. Atherosclerosis 1998;140: 297–305.

    Article  PubMed  CAS  Google Scholar 

  53. Gertz SD, Fallon JT, Gallo R, Taubman MB, Banai S, Barry WL, Gimple LW, Nemerson Y, Thiruvikraman S, Naidu SS, Chesebro JH, Fuster V, Sarembock IJ, Badimon JJ. Hirudin reduces tissue factor expression in neointima after balloon injury in rabbit femoral and porcine coronary arteries. Circulation 1998;98:580–587.

    PubMed  CAS  Google Scholar 

  54. Rekhter MD, Hicks GW, Brammer DW, Work CW, Kim JS, Gordon D, Keiser JA, Ryan MJ. Animal model that mimics atherosclerotic plaque rupture. Circ Res 1998;83:705–713.

    PubMed  CAS  Google Scholar 

  55. von der Thusen JH, van Vlijmen BJ, Hoeben RC, Kockx MM, Havekes LM, van Beerkel TJ, Biessen EA. Induction of atherosclerotic plaque rupture in apolipoprotein E-/-mice after adenovirus-mediated transfer of p 53. Circulation 2002;105:2064–2070.

    Article  PubMed  Google Scholar 

  56. Shiomi M, Ito T, Hasegawa M, Yoshida K, Gould KL. Correlation of vulnerable coronary plaques to sudden cardiac events. Lessons from a myocardial infarction-prone animal model (the WHHLMI rabbit). J Atheroscler Thromb 2004;11:184–189.

    PubMed  Google Scholar 

  57. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275.

    PubMed  CAS  Google Scholar 

  58. Calara F, Silvestre M, Casanada F, Yuan N, Napoli C, Palinski W. Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 2001;195:257–263.

    Article  PubMed  CAS  Google Scholar 

  59. Reddick RL, Zhang SH, Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb 1994;14:141–147.

    PubMed  CAS  Google Scholar 

  60. Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D. ApoEdeficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb 1994;14:605–616.

    PubMed  CAS  Google Scholar 

  61. Roubin GS, Douglas JS Jr, King SB III, Lin SF, Hutchison N, Thomas RG, Gruentzig AR. Influence of balloon size on initial success, acute complications and restenosis after percutaneous transluminal angioplasty: A prospective randomized study. Circulation 1988;78:557–565.

    PubMed  CAS  Google Scholar 

  62. Mabin TA, Holmes DR Jr, Smith HC, Vlietstra RE, Reeder GS, Bresnahan JF, Bove AA, Hammes LN, Elveback LR, Orszulak TA. Follow-up clinical results in patients undergoing percutaneous transluminal angioplasty. Circulation 1985;71:754–760.

    PubMed  CAS  Google Scholar 

  63. Phillips-Hughes J, Kandarpa K. Restenosis: Pathophysiology and preventive strategies. J Vasc Interv Radiol 1996;7:321–333.

    PubMed  CAS  Google Scholar 

  64. Serruys PW, de Jasegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, van den Heuvel P, Delcan J, Morel M-A. A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994:331:489–495.

    Article  PubMed  CAS  Google Scholar 

  65. Vesselinovitch D. Animal models and the study of atherosclerosis. Arch Pathol Lab Med 1988;112:1011–1017.

    PubMed  CAS  Google Scholar 

  66. Sims FH. A comparison of structural features of the walls of coronary arteries from 10 different species. Pathology 1989;21:115–124.

    Article  PubMed  CAS  Google Scholar 

  67. Gertz SD, Gimple LW, Ragosta M, Roberts WC, Haber HL, Powers ER, Perez LS, Sarembock IJ. Response of femoral arteries of cholesterol-fed rabbits to balloon angioplasty with or without laser: Emphasis on the distribution of foam cells. Exp Mol Pathol 1993;59:225–243.

    Article  PubMed  CAS  Google Scholar 

  68. Schwartz RS, Edwards WD, Bailey KR, Camrud AR, Jorgenson MA, Holmes DR Jr. Differential neointimal response to coronary artery injury in pigs and dogs. Implications for restenosis models. Arterioscler Thromb 1994;14:395–400.

    PubMed  CAS  Google Scholar 

  69. Schwartz RS. Neointima and arterial injury: Dogs, rats, pigs, and more. Lab Invest 1994;71:789–791.

    PubMed  CAS  Google Scholar 

  70. Baumgartner HR. The role of blood flow in platelet adhesion, fibrin deposition and formation of mural thrombi. Microvasc Res 1973;5:167–179.

    Article  PubMed  CAS  Google Scholar 

  71. Reidy MA, Schwartz SM. Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium. Lab Invest 1981;44:301–308.

    PubMed  CAS  Google Scholar 

  72. Walker LN, Ramsay MM, Bower DE. Endothelial healing following defined injury to rabbit aorta: Depth of injury and mode of repair. Atherosclerosis 1983;47:123–130.

    Article  PubMed  CAS  Google Scholar 

  73. Fishman JA, Ryan GB, Karnovsky MJ. Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest 1975; 32:339–351.

    PubMed  CAS  Google Scholar 

  74. Hardin NJ, Minick CR, Murphy GE. Experimental induction of atherosclerosis by the synergy of allergic injury to arteries and lipid rich diet. 3. The role of earlier acquired fibromuscular intimal thickening in the pathology of later developing atherosclerosis. Am J Pathol 1973;73:301–326.

    PubMed  CAS  Google Scholar 

  75. Douek PC, Correa R, Neville R, Unger EF, Shou M, Banai S, Ferrans VJ, Epstein SE, Leon MB, Bonner RF. Dose-dependent smooth muscle cell proliferation induced the thermal injury with pulsed infrared lasers. Circulation 1992;86:1249–1256.

    PubMed  CAS  Google Scholar 

  76. Fajardo LF, Berthrong M. Vascular lesions following radiation. Pathol Annu 1988;23:297–330.

    PubMed  Google Scholar 

  77. Fritz KE, Daoud AS, Augustyn JM, Jarmolych J. Morphological and biochemical differences among grossly defined types of swine aortic atherosclerotic lesions induced by a combination of injury and atherogenic diet. Exp Mol Pathol 1980;32:61–72.

    Article  PubMed  CAS  Google Scholar 

  78. Gal D, Rongione AJ, Slovenkai GA, DeJesus ST, Lucas A, Fields CD, Isner JM. Atherosclerotic Yucatan microswine: An animal model with high-grade fibrocalcific, nonfatty lesions suitable for testing catheter-based interventions. Am Heart J 1990;119:291–300.

    Article  PubMed  CAS  Google Scholar 

  79. Faxon DP, Weber VJ, Haudenschild C, Gottsman SB, McGovern WA, Ryan TJ. Acute effects of transluminal angioplasty in three experimental models of atherosclerosis. Arteriosclerois 1982;2:125–133.

    CAS  Google Scholar 

  80. Lee WM, Lee KT. Advanced coronary atherosclerosis in swine produced by combination of balloon catheter injury and cholesterol feeding. Exp Mol Pathol 1975;23:491–499.

    Article  PubMed  CAS  Google Scholar 

  81. Lee KT, Lee WM, Han J, Jarmolych J, Bishop MB, Goel BG. Experimental model for study of “sudden death” from ventricular fibrillation or asystole. Am J Cardiol 1973;32:62–73.

    Article  PubMed  CAS  Google Scholar 

  82. Clowes AW, Reidy MA, Clowes MM. Mechanisms of stenosis after arterial injury. Lab Invest 1983;49:208–215.

    PubMed  CAS  Google Scholar 

  83. Muller DW, Ellis SG, Topol EJ. Experimental models of coronary artery restenosis. J Am Coll Cardiol 1992;19:418–432.

    PubMed  CAS  Google Scholar 

  84. Schatz RA, Palmaz J, Tio FO, Garcia F, Garcia O, Reuther SR. Balloon expandable intracoronary stents in the adult dog. Circulation 1987;76:450–457.

    PubMed  CAS  Google Scholar 

  85. Fischell TA, Grant G, Johnson DE. Determinants of smooth muscle injury during balloon angioplasty. Circulation 1990;82:2170–2184.

    PubMed  CAS  Google Scholar 

  86. LeVeen RF, Wolf GL, Villanueva TG. New rabbit atherosclerosis model for the investigation of transluminal angioplasty. Invest Radiol 1982;17:470–475.

    Article  PubMed  CAS  Google Scholar 

  87. Garasic JM, Edelman ER, Squire JC, Seifert P, Williams MS, Rogers C. Swine and primates best approximate the requirements of a model of restenosis and demonstrate lesions that are markedly similar in physiology and morphology to their human counterpart. Circulation 2000;101:812–8180.

    PubMed  CAS  Google Scholar 

  88. LaDisa F Jr, Olson LE, Molthen RC, Hettrick DA, Pratt PF, Hardel MD, Kersten JR, Warltier DC, Pagel PS. Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am J Physiol Heart Circ Physiol 2005;288: H2465–2475.

    Article  PubMed  CAS  Google Scholar 

  89. Cejna M, Virmani R, Jones R, Bergmeister H, Loewe C, Schoder M, Grgurin M, Lammer J. Biocompatibility and performance of the Wallstent and the Wallgraft, Jostent, and Hemobahn stent-grafts in a sheep model. J Vasc Interv Radiol 2002;13:823–830.

    Article  PubMed  Google Scholar 

  90. Barth KH, Virmani R, Froelich J, Takeda T, Lossef SV, Newsome J, Jones R, Lindisch D. Paired comparison of vascular wall reactions to Palmaz stents, Strecker tantalum stents, and Wallstents in canine iliac and femoral arteries. Circulation 1996;93:2161–2169.

    PubMed  CAS  Google Scholar 

  91. Fontaine AB, Spigos DG, Eaton G, Das Passos S, Christoforidis G, Khabiri H, Jung S. Stent-induced intimal hyperplasia: Are there fundamental differences between flexible and rigid stent designs? J Vasc Interv Radiol 1994;5:739–744.

    PubMed  CAS  Google Scholar 

  92. Andrews RT, Venbrux AC, Magee CA, Bova DA. Placement of a flexible endovascular stent across the femoral joint: An in vivo study in the swine model. J Vasc Interv Radiol 1999;10:1219–1228.

    PubMed  CAS  Google Scholar 

  93. Wanibuchi H, Dingemans KP, Becker AE, Ueda M, Naruko T, Tanizawa S, Nakamura K. Is the Watanabe heritable hyperlipidemic rabbit a suitable experimental model for percutaneous transluminal coronary angioplasty in humans? A light microscopic, immunohistochemical and ultrastructural study. JAm Coll Cardiol 1993;21:1490–1496.

    CAS  Google Scholar 

  94. Schwartz RS, Murphy JG, Edwards WD, Camrud AR, Vliestra RE, Holmes DR. Restenosis after balloon angioplasty: A practical proliferative model in porcine coronary arteries. Circulation 1990;82:2190–2200.

    PubMed  CAS  Google Scholar 

  95. Schwartz RS, Topol EJ, Serrujs PW, Sangiorgi G, Holmes DR Jr. Artery size, neointima, and remodeling: Time for standards. J Am Coll Cardiol 1998;32:2087–2094.

    Article  PubMed  CAS  Google Scholar 

  96. O’Brien ERM, deBlois D, Schwartz SM. A critical examination of animal models of restenosis following angioplasty. In: Dobrin P, Ed. Intimal Hyperplasia. Austin, TX: R. G. Landes, 1994:229–256.

    Google Scholar 

  97. Mæng M, Olesen PG, Emmertsen NC, Thorwest M, Nielsen TT, Kristensen BO, Falk E, Andersen HR. Time course of vascular remodeling, formation of neointima and formation of neoadventitia after angioplasty in a porcine model. Coron Artery Dis 2001;12: 285–293.

    Article  PubMed  Google Scholar 

  98. Kinney TB, Chin AK, Rurik GW, Finn JC, Shoor PM, Hayden WG, Fogarty TJ. Transluminal angioplasty: A mechanicalpathophysiological correlation of its physical mechanisms. Radiology 1984;153:85–89.

    PubMed  CAS  Google Scholar 

  99. Castenada-Zuniga WR, Formanek A, Tadavarthy M, Vlodaver Z, Edwards JE, Zollikofer C, Amplatz K. The mechanism of balloon angioplasty. Radiology 1980;135:565–571.

    Google Scholar 

  100. Andersen HR, Mæng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury. Insights from a porcine coronary restenosis model. Circulation 1996;93:1716–1724.

    PubMed  CAS  Google Scholar 

  101. Shi Y, O’Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996;94:1655–1664.

    PubMed  CAS  Google Scholar 

  102. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 1996;93:2178–2187.

    PubMed  CAS  Google Scholar 

  103. Siow RC, Mallawaarachchi CM, Weisberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: Insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res 2003;59:212–221.

    Article  PubMed  CAS  Google Scholar 

  104. Wilentz JR, Sanborn TA, Haudenschild CC, Valeri CR, Ryan TJ, Faxon DP. Platelet accumulation in experimental angioplasty: Time course and relation to vascular injury. Circulation 1987;75:636–642.

    PubMed  CAS  Google Scholar 

  105. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein PS, Fish RD, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S for The Restenosis Study Investigators. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 1994;331:496–501.

    Article  PubMed  CAS  Google Scholar 

  106. Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vliestra RE, Holmes DR. Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model. J Am Coll Cardiol 1992;19:267–274.

    Article  PubMed  CAS  Google Scholar 

  107. Schwartz RS, Chronos NA, Virmani R. Preclinical restenosis models and drug-eluting stents. Still important, still much to learn. J Am Coll Cardiol 2004;44:1373–1385.

    PubMed  CAS  Google Scholar 

  108. Christen T, Verin V, Bochaton-Piallat ML, Popowski Y, Ramaekers F, Debruyne P, Camenzind E, van Eys G, Gabbiani G. Mechanisms of neointima formation and remodeling in the porcine coronary artery. Circulation 2001;103:882–888.

    PubMed  CAS  Google Scholar 

  109. Pires NMM, Jukema JW, Daemen JAP, Quax PHA. Drug-eluting stents studies in mice: Do we need atherosclerosis to study restenosis? Vascul Pharmacol 2006;44:257–264.

    Article  PubMed  CAS  Google Scholar 

  110. Pires NMM, van der Hoeven BL, deVries MR, Havekes LM, van Vlijmen BJ, Hennink WE, Quax PHA, Jukema JW. Local perivascular delivery of anti-restenotic agents from a drug-eluting poly(epsilon-caprolactone) stent cuff. Biomaterials 2005;26:5386–5394.

    Article  PubMed  CAS  Google Scholar 

  111. Thompson RW, Geraghty PJ, Lee JK. Abdominal aortic aneurysms: Basic mechanisms and clinical implications. Curr Probl Surg 2002;39:110–230.

    Article  PubMed  Google Scholar 

  112. Carell TWG, Smith A, Burnand KG. Experimental techniques and models in the study of the development and treatment of abdominal aortic aneurysm. Br J Surg 1999;86:305–312.

    Article  Google Scholar 

  113. Manning MW, Cassis LA, Huang J, Szilvassy SJ, Daugherty A. Abdominal aortic aneurysms: Fresh insights from a novel animal model of the disease. Vasc Med 2002;7:45–54.

    Article  PubMed  Google Scholar 

  114. Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2004;24:429–434.

    Article  PubMed  CAS  Google Scholar 

  115. Balko A, Piasecki GJ, Shah DM, Carney WI, Hopkins RW, Jackson BT. Transfemoral placement of intraluminal polyurethane prosthesis for abdominal aortic aneurysm. J Surg Res 1986;40:305–309.

    Article  PubMed  CAS  Google Scholar 

  116. Mason RG, Read MS. Some species differences in fibrinolysis and blood coagulation. J Biomed Mater Res 1971;5:121–128.

    Article  PubMed  CAS  Google Scholar 

  117. Abbott WM, Callow A, Moore W, Rutherford R, Veith F, Weinberg S. Evaluation and performance standards for arterial prosthesis. J Vasc Surg 1993;17:746–756.

    Article  PubMed  CAS  Google Scholar 

  118. Blanton FS Jr, Muller WH Jr, Warren WD. Experimental production of dissecting aneurysms of the aorta. Surgery 1959;45:81–90.

    PubMed  Google Scholar 

  119. Williams DM, Andrews JC, Chee SS, Marx MV, Abrams GD. Canine model of acute aortic rupture: Treatment with percutaneous delivery of a covered Z stent-work in progress. J Vasc Interv Radiol 1994;5:797–803.

    PubMed  CAS  Google Scholar 

  120. Verbin C, Donayre C, Kopchok G, Scoccianti M, White RA. Anterior patch aortic aneurysm model for the study of endoluminal grafts. J Invest Surg 1995;8:381–388.

    Article  PubMed  CAS  Google Scholar 

  121. Ruiz CE, Zhang HP, Douglas JT, Zuppan CW, Kean CJ. A novel method for the treatment of abdominal aortic aneurysms using percutaneous implantation of a newly designed endovascular device. Circulation 1995;91:2470–2477.

    PubMed  CAS  Google Scholar 

  122. Palmaz JC, Tio FO, Laborde JC, Clem M, Rivera FJ, Murphy KD, Encarnacion CE. Use of stents covered with polytetrafluoroethylene in experimental abdominal aortic aneurysms. J Vasc Interv Radiol 1995;6:879–885.

    PubMed  CAS  Google Scholar 

  123. Criado E, Marston WA, Woosley JT, Ligush J, Chuter TA, Baird C, Suggs CA, Mauro MA, Keagy BA. An aortic aneurysm model for the evaluation of endovascular exclusion prostheses. J Vasc Surg 1995;22:306–315.

    Article  PubMed  CAS  Google Scholar 

  124. Marston WA, Criado E, Baird CA, Keagy BA. Reduction of aneurysm pressure and wall stress after endovascular repair of abdominal aortic aneurysm in a canine model. Ann Vasc Surg 1996;10:166–173.

    Article  PubMed  CAS  Google Scholar 

  125. Eton D, Warner D, Owens C, McClenic B, Cava R, Ofek B, Borhani M, Baraniewski H, Schuler JJ. Results of endoluminal grafting in an experimental aortic aneurysm model. J Vasc Surg 1996;23:819–831.

    Article  PubMed  CAS  Google Scholar 

  126. Maynar M, Qian Z, Hernandez J, Sun F, DeMiguel C, Crisostomo V, Usón J, Pineda L-F, Espinoza CG, Castañeda WR. An animal model of abdominal aortic aneurysm created with peritoneal patch: Technique and initial results. Cardiovasc Intervent Radiol 2003;26:168–176.

    Article  PubMed  Google Scholar 

  127. Pavcnik D, Andrews RT, Yin Q, Uchida BT, Timmermans HA, Corless C, Toyota N, Nakata M, Kaufman J, MD, Keller FS, Rösch J. A canine model for studying endoleak after endovascular aneurysm repair. J Vasc Interv Radiol 2003;14:1303–1310.

    PubMed  Google Scholar 

  128. Hiraki T, Pavcnik D, Uchida BT, Timmermans HA, Yin Q, Wu RH, Niyyati M, Keller FS, Rösch J. Prophylactic residual aneurysmal sac embolization with expandable hydrogel embolic devices for endoleak prevention: Preliminary study in dogs. Cardiovasc Intervent Radiol 2005;28:459–466.

    Article  PubMed  Google Scholar 

  129. Economou SG, Taylor CB, Beattie EJ Jr, Davis CB Jr. Persistent experimental aortic aneurysms in dogs. Surgery 1960;47:21–28.

    PubMed  CAS  Google Scholar 

  130. Mirich D, Wright KC, Wallace S, Yoshioka T, Lawrence DD Jr, Charnsangavej C, Gianturco C. Percutaneously placed endovascular grafts for aortic aneurysms: Feasibility study. Radiology 1989;170: 1033–1037.

    PubMed  CAS  Google Scholar 

  131. Parodi JC, Palmaz JC, Barone HD. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg 1991;5:491–499.

    Article  PubMed  CAS  Google Scholar 

  132. Laborde JC, Parodi JC, Clem MF, Tio FO, Barone HD, Rivera FJ, Encarnacion CE, Palmaz JC. Intraluminal bypass of abdominal aortic aneurysm: Feasibility study. Radiology 1992;184:185–190.

    PubMed  CAS  Google Scholar 

  133. Hagen B, Harnoss BM, Trabhardt S, Ladeburg M, Fuhrmann H, Franck C. Self-expandable macroporous nitinol stents for transfemoral exclusion of aortic aneurysms in dogs: Preliminary results. Cardiovasc Intervent Radiol 1993;16:339–342.

    Article  PubMed  CAS  Google Scholar 

  134. Piquet P, Rolland PH, Bartoli JM, Tranier P, Moulin G, Mercier C. Tantalum-dacron coknit stent for endovascular treatment of aortic aneurysms: A preliminary experimental study. J Vasc Surg 1994; 19:698–706.

    PubMed  CAS  Google Scholar 

  135. Gorin DR, Arbid EJ, D’Agostino R, Yucel EK, Solovay KS, La Morte WW, Quist WC, Mulligan N, Menzoian JO. A new generation endovascular graft for the treatment or repair of abdominal aortic aneurysms. Am J Surg 1997;173:159–164.

    Article  PubMed  CAS  Google Scholar 

  136. Whitbread T, Birch P, Rogers S, Majeed A, Rochester J, Beard JD, Gaines P. A new animal model for abdominal aortic aneurysms: Initial results using a multiple-wire stent. Eur J Vasc Endovasc Surg 1996;11:90–97.

    Article  PubMed  CAS  Google Scholar 

  137. Martin DE III, Nasbeth DC, Rowe MI. Production of experimental aneurysms with pancreatic elastase. Surg Forum 1962;8: 237–239.

    Google Scholar 

  138. Boudghene F, Anidjar S, Allaire E, Osborne-Pellegrin M, Bigot JM, Michel JB. Endovascular grafting in elastase-induced experimental aortic aneurysms in dogs: Feasibility and preliminary results. J Vasc Interv Radiol 1993;4:497–504.

    Article  PubMed  CAS  Google Scholar 

  139. Hallisey MJ. A transluminally created abdominal aortic aneurysm model. J Vasc Interv Radiol 1997;8:305–312.

    PubMed  CAS  Google Scholar 

  140. Schoder M, Pavcnik D, Uchida BT, Corless C, Timmermans HA, Yin Q, Brountzos E, Nakata M, Hiraki T, Niyyati M, Kaufman JA, Keller FS, Rösch J. Small intestinal submucosa aneurysm sac embolization for endoleak prevention after abdominal aortic aneurysm endografting: A pilot study in sheep. J Vasc Interv Radiol 2004;15:69–83.

    PubMed  Google Scholar 

  141. Kallmes DF, Altes TA, Vincent DA, Cloft HJ, Do HM, Jensen ME. Experimental side-wall aneurysms: A natural history study. Neuroradiology 1999;41:338–341.

    Article  PubMed  CAS  Google Scholar 

  142. Hashimoto N, Kim C, Kikuchi H, Kojima M, Kang Y, Hazama F. Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 1987;67:903–905.

    PubMed  CAS  Google Scholar 

  143. Hashimoto N, Handa H, Nagata I, Hazama F. Experimentally induced cerebral aneurysms in rats: Part V: Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg Neurol 1980;13:41–45.

    PubMed  CAS  Google Scholar 

  144. Moriwaki T, Takagi Y, Sadamasa N, Aoki T, Nozaki K, Hashimoto N. Impaired progression of cerebral aneurysms in interleukin-1-Bdeficient mice. Stroke 2006;37:900–905.

    Article  PubMed  CAS  Google Scholar 

  145. Nagata I, Handa H, Hashimoto N, Hazama F. Experimentally induced cerebral aneurysms in rats: Part VI. Hypertension. Surg Neurol 1980;14:477–479.

    PubMed  CAS  Google Scholar 

  146. German W, Black S. Experimental production of carotid aneurysms. NEngl J Med 1954;250:104–106.

    Article  CAS  Google Scholar 

  147. Stehbens WE. Experimental production of aneurysms by microvascular surgery in rabbits. Vasc Surg 1973;7:165–175.

    PubMed  CAS  Google Scholar 

  148. Strother CM, Graves VB, Rappe A. Aneurysm hemodynamics: An experimental study. Am J Neuroradiol 1992;13:1089–1095.

    PubMed  CAS  Google Scholar 

  149. Wakhloo AK, Schellhammer F, de Vries J, Haberstroh J, Schumacher M. Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: An experimental study in a canine model. Am J Neuroradiol 1994;5:493–502.

    Google Scholar 

  150. Abruzzo T, Shengelaia R, Dawson RC, Owens DS, Cawley CM, Gravanis MB. Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. Am J Neuroradiol 1998;19:1309–1314.

    PubMed  CAS  Google Scholar 

  151. Miskolczi L, Guterman LR, Flaherty JD, Szikora I, Hopkins LN. Rapid saccular aneurysm induction by elastase application in vitro. Neurosurgery 1997;41:220–229.

    Article  PubMed  CAS  Google Scholar 

  152. Stehbens WE. Chronic changes in experimental saccular and fusiform aneurysms in rabbits. Arch Pathol Lab Med 1981;105: 603–607

    PubMed  CAS  Google Scholar 

  153. Cloft HJ, Altes TA, Marx WF, Raible RJ, Hudson SB, Helm GA, Mandell JW, Jensen ME, Dion JE, Kallmes DF. Endovascular creation of an in vivo bifurcation aneurysm model in rabbits. Radiology 1999;213:223–238.

    PubMed  CAS  Google Scholar 

  154. Crawley CM, Dawson RC, Shengelaia G, Bonner G, Barrow DL, Colohan AR. Arterial saccular aneurysm model in the rabbit. Am J Neuroradiol 1996;17:1761–1766.

    Google Scholar 

  155. Fujiwara NH, Cloft HJ, Marx WF, Short JG, Jensen ME, Kallmes DF. Serial angiography in an elastase-induced aneurysm model in rabbits: Evidence for progressive aneurysm enlargement after creation. Am J Neuroradiol 2001;22:698–703.

    PubMed  CAS  Google Scholar 

  156. Marx WF, Cloft HJ, Helm GA, Short JG, Do HM, Jensen ME, Kallmes DF. Endovascular treatment of experimental aneurysms by use of biologically modified embolic devices: Coil-mediated intraaneurysmal delivery of fibroblast tissue allografts. Am J Neuroradiol 2001;22:323–333.

    PubMed  CAS  Google Scholar 

  157. Miskolczi L, Guterman LR, Flaherty JD, Szikora I, Hopkins LN. Rapid saccular aneurysm induction by elastase application in vitro. Neurosurgery 1997;41:220–229.

    Article  PubMed  CAS  Google Scholar 

  158. Miskolczi L, Guterman LR, Flaherty JD, Hopkins LN. Saccular aneurysm induction by elastase digestion of the arterial wall: A new animal model. Neurosurgery 1998;43:595–600.

    Article  PubMed  CAS  Google Scholar 

  159. Onizuka M, Miskolczi L, Gounis MJ, Seong J, Lieber BB, Wakhloo AK. Elastase-induced aneurysms in rabbits—effect of postconstruction geometry on final size. Am J Neuroradiol 2006;27: 1129–1131.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kónya, A., Wright, K.C., Gounis, M., Kandarpa, K. (2008). Animal Models for Atherosclerosis, Restenosis, and Endovascular Aneurysm Repair. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_40

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics