Troxacitabine (Troxatyl ™)

A Deoxycytidine Nucleoside Analog With Potent Antitumor Activity
  • Henriette Gourdeau
  • Jacques Jolivet
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Nucleoside analogs are commonly used in the treatment of hematological malignancies and solid tumors. As antimetabolites, these drugs act by disrupting DNA synthesis and inducing apoptosis following their incorporation into DNA. Troxacitabine (Troxatyl™ Shire Biochem, Inc., exclusively licensed to SGX Pharmaceuticals, Inc.) is the first nucleoside analog with anticancer activity that has an unnatural stereochemical configuration. Its broad preclinical antineoplastic spectrum led to its clinical development. Summaries of the preclinical data and of the initial phase I and II clinical trials are presented.

Key Words

Chemotherapy clinical treatment hematological malignancies solid tumors troxacitabine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Regev A, Schiff ER. Drug therapy for hepatitis B. Adv Intern Med 2001;46:107–135.PubMedGoogle Scholar
  2. 2.
    van Leeuwen R, Katlama C, Kitchen V, et al. Evaluation of safety and efficacy of 3TC (lamivudine) in patients with asymptomatic or mildly symptomatic human immunodeficiency virus infection: a phase I/II study. J Infect Dis 1995;171:1166–1171.PubMedGoogle Scholar
  3. 3.
    Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997;11:734–739.CrossRefGoogle Scholar
  4. 4.
    Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997;337:725–733.PubMedCrossRefGoogle Scholar
  5. 5.
    Mansour TS, Jin H, Wang W, et al. Structure-activity relationship among a new class of antiviral and heterosubstituted 2′,3′-dideoxynucleoside analogues. Nucleosides Nucleotides 1995;14:627–635.CrossRefGoogle Scholar
  6. 6.
    Chu CK, Cheng YC. Compounds and methods for the treatment of cancer. WO9607413 1996.Google Scholar
  7. 7.
    Grove KL, Guo X, Liu SH, Gao Z, Chu CK, Cheng YC. Anticancer activity of β-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L configuration. Cancer Res 1995;55:3008–3011.PubMedGoogle Scholar
  8. 8.
    Chabner BA, Myers CE. Clinical pharmacology of cancer chemotherapy. In: DeVita VT, Hellmnan S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology. 3rd ed. Philadelphia: JB Lippincott;1989:362–365.Google Scholar
  9. 9.
    Grant S.Ara-C: cellular and molecular pharmacology. Adv Cancer Res 1998;72:197–233.PubMedCrossRefGoogle Scholar
  10. 10.
    Plunkett W, Huang P, Xu Y-Z, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 1995;22:3–10.PubMedGoogle Scholar
  11. 11.
    Kukhanova M, Liu SH, Mozzherin D, Lin TS, Chu CK, Cheng YC. L-and d-Enantiomers of 2′,3′-dideoxycytidine 5′-triphosphate analogs as substrates for human DNA polymerases. Implications for the mechanism of toxicity. J Biol Chem 1995;270:23,055–23,059.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang P, Chubb S, Hertel L, Grindey GB, Plunkett W. Action of 2′,2′-difluoro-deoxycytidine on DNA synthesis. Cancer Res 1991;51:6110–6117.PubMedGoogle Scholar
  13. 13.
    Plunkett W, Huang P, Gandhi V. Preclinical characteristics of gemcitabine. Anticancer Drugs 1995;6:7–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Ohno Y, Spriggs D, Matsukage A, Ohno T, Kufe D. Effects of 1-β-d-arabinofu-ranosylcytosine incorporation on elongation of specific DNA sequences by DNA polymerase β. Cancer Res 1988;48:1494–1498.PubMedGoogle Scholar
  15. 15.
    Chou KM, Kukhanova M, Cheng YC. A novel action of human apurinic/apyrimidinic endonuclease: excision of L-configuration deoxyribonucleoside analogs from the 3′ termini of DNA. J Biol Chem 2000;275:31,009–31,015.PubMedCrossRefGoogle Scholar
  16. 16.
    Gandhi V, Legha J, Chen F, Hertel LW, Plunkett W. Excision of 2′,2′-difluo-rodeoxycytidine (gemcitabine) monophosphate residues from DNA. Cancer Res 1996;56:4453–4459.PubMedGoogle Scholar
  17. 17.
    Pelicano H, Kukhanova M, Cheng YC. Excision of β-d-and β-l-nucleotide analogs from DNA by the human cytosolic 3′-to-5′ exonuclease. Mol Pharmacol 2000;57:1051–1055.PubMedGoogle Scholar
  18. 18.
    Moore LE, Boudinot FD, Chu CK. Preclinical pharmacokinetics of β-l-dioxolane-cytidine, a novel anticancer agent, in rats. Cancer Chemother Pharmacol 1997;39:532–536.PubMedCrossRefGoogle Scholar
  19. 19.
    Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 1988;57:349–374.PubMedCrossRefGoogle Scholar
  20. 20.
    Krishnan P, Liou JY, Cheng Y. Phosphorylation of pyrimidine l-deoxynucleoside analog diphosphates. J Biol Chem 2002;277:31,593–31,600.PubMedCrossRefGoogle Scholar
  21. 21.
    Krishnan P, Fu Q, Lam W, Liou JY, Dutshman G, Cheng YC. Phosphorylation of pyrimidine deoxynucleoside analog diphosphates. J Biol Chem 2002;277:5453–5459.PubMedCrossRefGoogle Scholar
  22. 22.
    Krishnan P, Gullen EA, Lam W, Dutschman GE, Grill SP, Cheng YC. Novel role of 3-phosphoglycerate kinase, a glycolytic enzyme, in the activation of l-nucleoside analogs, a new class of anticancer and antiviral agents. J Biol Chem 2003;278:36,726–36,732.PubMedCrossRefGoogle Scholar
  23. 23.
    Grove KL, Cheng YC. Uptake and metabolism of the new anticancer compound β-l-(-)-dioxolane-cytidine in human prostate carcinoma DU-145 cells. Cancer Res 1996;56:4187–4191.PubMedGoogle Scholar
  24. 24.
    Lee M, Chu CK, Pai SB, et al. Dioxolane cytosine nucleosides as anti-hepatitis B agents. Bioorg Med Chem Lett 1995;5:2011–2014.CrossRefGoogle Scholar
  25. 25.
    Gourdeau H, Clarke ML, Ouellet F, et al. Mechanisms of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines. Cancer Res 2001;61:7217–7224.PubMedGoogle Scholar
  26. 26.
    Ullman B. Dideoxycytidine metabolism in wild type and mutant CEM cells deficient in nucleoside transport or deoxycytidine kinase. Adv Exp Med Biol 1989; 253B:415–420.PubMedGoogle Scholar
  27. 27.
    Mackey JR, Mani RS, Selner M, et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 1998;58:4349–4357.PubMedGoogle Scholar
  28. 28.
    Gati WP, Paterson AR, Larratt LM, Turner AR, Belch AR. Sensitivity of acute leukemia cells to cytarabine is a correlate of cellular es nucleoside transporter site content measured by flow cytometry with SAENTA-fluorescein. Blood 1997;90:346–353.PubMedGoogle Scholar
  29. 29.
    Kadhim SA, Bowlin TL, Waud WR, et al. Potent antitumor activity of a novel nucleoside analogue, BCH-4556 (β-l-dioxolane-cytidine), in human renal cell carcinoma xenograft tumor models. Cancer Res 1997;57:4803–4810.PubMedGoogle Scholar
  30. 30.
    Okuno S, Harada M, Yano T, et al. Complete regression of xenografted human carcinomas by camptothecin analogue-carboxymethyl dextran conjugate (T-0128). Cancer Res 2000;60:2988–2995.PubMedGoogle Scholar
  31. 31.
    Gourdeau H, Bibeau L, Ouellet F, Custeau D, Bernier L, Bowlin T. Comparative study of a novel nucleoside analogue (Troxatyl, troxacitabine, BCH-4556) and araC against leukemic human tumor xenografts expressing high or low cytidine deaminase activity. Cancer Chemother Pharmacol 2001;47:236–240.PubMedCrossRefGoogle Scholar
  32. 32.
    Gourdeau H, Genne P, Kadhim S, et al. Antitumor activity of troxacitabine (Troxatyl) against anthracycline-resistant human xenografts. Cancer Chemother Pharmacol 2002;50:490–496.PubMedCrossRefGoogle Scholar
  33. 33.
    Weitman S, Marty J, Jolivet J, Locas C, Von Hoff DD. The new dioxolane, (-)-2′-deoxy-3′-oxacytidine (BCH-4556, troxacitabine), has activity against pancreatic human tumor xenografts. Clin Cancer Res 2000;6:1574–1578.PubMedGoogle Scholar
  34. 34.
    Heinemann V, Hertel LW, Grindey GB, Plunkett W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-β-arabinofu-ranosylcytosine. Cancer Res 1988;48:4024.PubMedGoogle Scholar
  35. 35.
    Miwa M, Eda H, Ura J, et al. High susceptibility of human cancer xenografts with higher levels of cytidine deaminase to a 2′-deoxycytidine antimetabolite, 2′-deoxy-2′-methylidenecytidine. Clin Cancer Res 1998;4:493–497.PubMedGoogle Scholar
  36. 36.
    Bouffard DY, Jolivet J, Leblond L, et al. Complementary antineoplastic activity of the cytosine nucleoside analogues troxacitabine (Troxatyl) and cytarabine in human leukemia cells. Cancer Chemother Pharmacol 2003;52:497–506.PubMedCrossRefGoogle Scholar
  37. 37.
    Orsolic N, Giles F-J, Beran M, et al. Troxatyl and STI571 combination therapy for chronic myeloid leukemia: preclinical in vitro and in vivo evaluation. American Society of Hematology 44th Annual Meeting 2002; Philadelphia, PA; December 6-10, 2002;100(11) A631.Google Scholar
  38. 38.
    Orsolic N, Giles F-J., Gourdeau H, et al. Troxacitabine and imatinib mesylate combination therapy of chronic myeloid leukemia: preclinical evaluation. Br J Haematol 2004; 124:727–738.PubMedCrossRefGoogle Scholar
  39. 39.
    Holzmayer TA, Hilsenbeck S, Von Hoff DD, Roninson IB. Clinical correlates of MDR1(P-glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J Natl Cancer Inst 1992;7:1486–1491.CrossRefGoogle Scholar
  40. 40.
    Kuwazuru Y, Yoshimura A, Hanada S, et al. Expression of the multidrug transporter, P-glycoprotein, in acute leukemia cells and correlation to clinical drug resistance. Cancer 1990;66:868–873.PubMedCrossRefGoogle Scholar
  41. 41.
    Bélanger K, Moore M, Baker SD, et al. Phase I and pharmacokinetic study of novel l-nucleoside analog troxacitabine given as a 30-min infusion every 21 d. J Clin Oncol 2002;20:2567–2574.PubMedCrossRefGoogle Scholar
  42. 42.
    de Bono JS, Stephenson J Jr, Baker SD, et al. Troxacitabine, an l-stereoisomeric nucleoside analog, on a five-times-daily schedule: a phase I and pharmacokinetic study in patients with advanced solid malignancies. J Clin Oncol 2002;20:96–109.PubMedCrossRefGoogle Scholar
  43. 43.
    Canova A, Yee L, Baker S. A phase I and pharmacokinetic study of β-l-dioxalo-cytidine (BCH-4556) administered weekly for three weeks every 28 d. J Clin Oncol 1999;20:2567–2574.Google Scholar
  44. 44.
    Townsley CA, Chi K, Ernst DS, et al. Phase II study of troxacitabine (BCH-4556) in patients with advanced and/or metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J Clin Oncol 2003;21:1524–1529.PubMedCrossRefGoogle Scholar
  45. 45.
    Dent SF, Arnold A, Steward D. Phase II study of troxacitabine (BCH-4556) in patients with advanced non-small cell lung cancer. Proc Am Soc Clin Oncol 2001;20:2786.Google Scholar
  46. 46.
    Motzer RJ, Mazumdar M, Bacik J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 1999;17:2530–2540.PubMedGoogle Scholar
  47. 47.
    Lapointe R, Letourneau R, Steward W, et al. Phase 2 study of troxacitabine in chemotherapy naive patients with advanced cancer of the pancreas. Proc Am Soc Clin Oncol 2002;A565.Google Scholar
  48. 48.
    Kurtz JE, Trillet-Lenoir V, Bugat R, et al. Utilisation compassionnelle de la gemcitabine dans les cancers du pancréas localement avancés ou métastatiques: une étude multicentrique franÇaise. Bull Cancer 1999;86:202–206.PubMedGoogle Scholar
  49. 49.
    Wong CKW, Clarke ML, Selner M, et al. Synergistic activity of troxacitabine (troxatyl™) and gemcitabine in pancreatic adenocarcinoma cell lines. AACR 2003;94th Annual Meeting; Washington DC July 10–14, 2003, Abstract # 3724.Google Scholar
  50. 50.
    Von Hoff DD, Jolivet J, Steward W. Phase 1 and pharmacokinetic study of troxacitabine in combination with gemcitabine in advanced solid malignancies. Proc Am Soc Clin Oncol 2003;22;141,A566.Google Scholar
  51. 51.
    Giles FJ, Cortes JE, Baker SD, et al. Troxacitabine, a novel dioxolane nucleoside analog, has activity in patients with advanced leukemia. J Clin Oncol 2001;19:762–771.PubMedGoogle Scholar
  52. 52.
    Giles FJ, Garcia-Manero G, Cortes J. Troxacitabine in patients with refractory leukemia. J Clin Oncol 2002;20:3356–3361.CrossRefGoogle Scholar
  53. 53.
    Giles FJ, Garcia-Manero G, Cortes JE, et al. Phase II study of troxacitabine, a novel dioxolane nucleoside analog, in patients with refractory leukemia. J Clin Oncol 2002;20:656–664.PubMedCrossRefGoogle Scholar
  54. 54.
    Giles FJ, Faderl S, Thomas DA, et al. Randomized phase I/II study of troxacitabine combined with cytarabine: idarubicin, or topotecan in patients with refractory myeloid leukemias. J Clin Oncol 2003;21:1050–1056.PubMedCrossRefGoogle Scholar
  55. 55.
    Giles FJ, Kantarjian HM, Cortes JE, et al. Adaptive randomized study of idarubicin and cytarabine vs troxacitabine and cytarabine vs troxacitabine and idarubicin in untreated patients 50 years or older with adverse karyotype acute myeloid leukemia. J Clin Oncol 2003;21:1722–1727.PubMedCrossRefGoogle Scholar
  56. 56.
    Plowman J, Dykes D, Hollingshead M, Simpson-Herren L, Alley MC. Human tumor xenograft models in NCI drug development. In: Teicher BA, ed. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval. Totowa, NJ: Humana Press; 1997;101–125.Google Scholar
  57. 57.
    Johnson JI, Decker S, Zaharevitz D, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001;10:1289, 1290.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Henriette Gourdeau
    • 1
  • Jacques Jolivet
    • 2
  1. 1.Pharmacology/ToxicologyEcopia BioSciences Inc.Ville Saint-LaurentCanada
  2. 2.Aegera Therapeutics Inc.MontrealCanada

Personalised recommendations