Nucleotidases and Nucleoside Analog Cytotoxicity

  • Sally Anne Hunsucker
  • Beverly S. Mitchell
  • Jozef Spychala
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Nucleoside analogs are an important part of therapeutic strategies in a broad range of diseases, especially cancer and viral infections. Most nucleoside analogs need to be phosphorylated to attain full clinical potency; thus, knowledge of the metabolism of this class of drugs is required to improve their clinical use. The 5′-nucleotidases are a family of enzymes that catalyze the final dephosphorylation step of nucleotides in the cell and, by opposing the activation step catalyzed by nucleoside kinases, initiate subsequent purine and pyrimidine catabolism. They also catalyze a critical step in nucleotide analog degradation; therefore, their expression and regulation in various tissues will likely have an impact on a nucleoside drug’s half-life in the human body. Numerous studies in vitro and in vivo indicate that increased expression of 5′_nucleotidase may decrease nucleoside analog activation and thereby contribute to drug resistance. Because cloned 5′_nucleotidases have been described in human tissues, it is not always possible to assess which particular 5′-nucleotidase is important in nucleoside drug catabolism. In this chapter, we review the properties of all cloned 5′-nucleotidases and the important role of these enzymes in nucleoside analog metabolism and clinical resistance.

Key Words

Drug metabolism drug resistance nucleoside analogs 5′-nucleotidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kunz, B. A., Kohalmi, S. E., Kunkel, T. A., Mathews, C. K., McIntosh, E. M., and Reidy, J. A. Deoxyribonucleoside triphosphate levels: a critical factor in themaintenance of genetic stability. Mutat. Res. 1994;318:1–64.PubMedGoogle Scholar
  2. 2.
    Valentine, W. N., Fink, K., Paglia, D. E., Harris, S. R., and Adams, W. S. (1974). Hereditary hemolytic anemia with human erythrocyte pyrimidine 5′-nucleotidase deficiency. J. Clin. Invest. 54, 866–879.PubMedGoogle Scholar
  3. 3.
    Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57, 349–374.PubMedGoogle Scholar
  4. 4.
    Kennedy, E. P., Borkenhagen, L. F., Smith, S. W. (1959). Possible metabolic functions of deoxycytidine diphosphate choline and deoxycytidine diphosphate ethanolamine. J. Biol. Chem. 234,1998–2000.PubMedGoogle Scholar
  5. 5.
    Spyrou, G. A., and Reichard, P. (1989). Intracellular compartmentation of deoxycytidine nucleotide pools in S phase mouse 3T3 fibroblasts. J. Biol. Chem. 264, 960–964.PubMedGoogle Scholar
  6. 6.
    Haynes, R. H., and Kunz, B. A. (1986). The influence of thymine nucleotide depletion on genetic stability and change in eucaryotic cells. Current Sci. 55, 1–11.Google Scholar
  7. 7.
    Gangi-Peterson, L., Sorscher, D. H., Reynolds, J. W., Kepler, T. B., and Mitchell, B. S. (1999). Nucleotide pools imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination. J. Clin.Invest. 103, 833–841.PubMedGoogle Scholar
  8. 8.
    Kunz, B. A., and Kohalmi, S. E. (1991). Modulation of mutagenesis by deoxyribonucleotide levels. Annu. Rev. Genet. 25, 339–359.PubMedGoogle Scholar
  9. 9.
    Jordan, A., and Reichard, P. (1998). Ribonucleotide reductases. Annu. Rev.Biochem. 67, 71–98.PubMedGoogle Scholar
  10. 10.
    Plagemann, P. G., and Erbe, J. (1974). Intracellular conversions of deoxyribonu-cleosides by Novikoff rat hepatoma cells and effects of hydroxyurea. J. Cell.Physiol. 83, 321–336.PubMedGoogle Scholar
  11. 11.
    Snyder, R. D. (1984). Deoxyribonucleoside triphosphate pools in human diploid fibroblasts and their modulation by hydroxyurea and deoxynucleosides. Biochem. Pharmacol. 33, 1515–1518.PubMedGoogle Scholar
  12. 12.
    Bianchi, V., Pontis, E., and Reichard, P. (1986). Interrelations between substrate cycles and de novo synthesis of pyrimidine deoxyribonucleoside triphosphates in3T6 cells. Proc. Natl. Acad. Sci. U. S. A. 83, 986–990.PubMedGoogle Scholar
  13. 13.
    Bianchi, V., Pontis, E., and Reichard, P. (1986). Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J. Biol. Chem. 261, 16,037–16,042.PubMedGoogle Scholar
  14. 14.
    Mitchell, B. S., Mejias, E., Daddona, P. E., Kelley, W. N. (1978). Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc. Natl. Acad. Sci. U. S. A. 75, 5011–5014.PubMedGoogle Scholar
  15. 15.
    Mitchell, B. S., Edwards, N. L., and Koller, C. A. (1983). Deoxyribonucleoside triphosphate accumulation by leukemic cells. Blood 62, 419–424.PubMedGoogle Scholar
  16. 16.
    Cohen, A., Hirschhorn, R., Horowitz, S. D., et al. (1978). Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc. Natl. Acad. Sci. U. S. A. 75, 472–476.PubMedGoogle Scholar
  17. 17.
    Wortmann, R., L, Mitchell, B., S, Edwards, N., L, and Fox, I., H. (1979). Biochemical basis for differential deoxyadenosine toxicity to T and B lym-phoblasts: role for 5′-nucleotidase. Proc. Natl. Acad. Sci. U. S. A. 76, 2434–2437.PubMedGoogle Scholar
  18. 18.
    Bianchi, V., Borella, S., Rampazzo, C., et al. (1997). Cell cycle-dependent metabolism of pyrimidine deoxynucleoside triphosphates in CEM cells. J. Biol. Chem. 272, 16,118–16,124.PubMedGoogle Scholar
  19. 19.
    Snyder, R. D. (1984). The role of deoxynucleoside triphosphate pools in the inhibition of DNA-excision repair and replication in human cells by hydroxyurea. Mutat. Res. 131, 163–172.PubMedGoogle Scholar
  20. 20.
    Xu, Y.-Z., Huang, P., and Plunkett, W. (1995). Functional compartmentation of dCTP pools. Preferential utilization of salvaged deoxycytidine for DNA repair in human lymphoblasts. J. Biol. Chem. 270, 631–637.PubMedGoogle Scholar
  21. 21.
    Pontarin, G., Gallinaro, L., Ferraro, P., Reichard, P., and Bianchi, V. (2003). Origins of mitochondrial thymidine triphosphate: dynamic relations to cytosolic pools. Proc. Natl. Acad. Sci. U. S. A. 100, 12,159–12,164.PubMedGoogle Scholar
  22. 22.
    Sherley, J. L., and Kelly, T. J. (1988). Regulation of human thymidine kinase during the cell cycle. J. Biol. Chem. 263, 8350–8358.PubMedGoogle Scholar
  23. 23.
    Oliver, F. J., Collins, M. K., and Lopez-Rivas, A. (1996). Regulation of salvage pathway of deoxynucleotide synthesis in apoptosis induced by growth factor deprivation. Biochem. J. 316, 431–425.Google Scholar
  24. 24.
    Bianchi, V., Pontis, E., and Reichard, P. (1987). Regulation of pyrimidine deoxyribonucleotide metabolism by substrate cycles in dCMP deaminase-deficient V79 hamster cells. Mol. Cell. Biol. 7, 4218–4224.PubMedGoogle Scholar
  25. 25.
    Zimmermann, H. (2000). Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol. 362, 299–309.PubMedGoogle Scholar
  26. 26.
    Dalton, A., Hornby, D. P., Langston, S. P., and Blackburn, G. M. (1992). Characterization and purification of a novel dATP-binding protein in eukaryotes. Biochem. J. 287, 871–879.PubMedGoogle Scholar
  27. 27.
    Ford, K. G. (2000). The dNTPase enzyme activity is inhibited by nucleic acids and contains a heat-insensitive component. Biochem. Biophys. Res. Commun. 276, 823–829.PubMedGoogle Scholar
  28. 28.
    Barankiewicz, J., and Cohen, A. (1984). Evidence for distinct catabolic pathways of adenine ribonucleotides and deoxyribonucleotides in human T lymphoblastoid cells. J. Biol. Chem. 259, 15,178–15,181.PubMedGoogle Scholar
  29. 29.
    Bianchi, V., Ferraro, P., Borella, S., Bonvini, P., and Reichard, P. (1994). Effects of mutational loss of nucleoside kinases on deoxyadenosine 5′-phosphate/deoxyadenosine substrate cycle in cultured CEM and V79 cells. J. Biol. Chem. 269,16,677–16,683.PubMedGoogle Scholar
  30. 30.
    Gazziola, C., Ferraro, P., Moras, M., Reichard, P., and Bianchi, V. (2001). Cytosolic high K(m) 5′-nucleotidase and 5–(3–)-deoxyribonucleotidase in substrate cycles involved in nucleotide metabolism. J. Biol. Chem. 276, 6185–6190.PubMedGoogle Scholar
  31. 31.
    Leeds, J. M., Slabaugh, M. B., and Mathews, C. K. (1985). DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells. Mol. Cell Biol. 5, 3443–3450.PubMedGoogle Scholar
  32. 32.
    Sikorska, M., Brewer, L. M., Youdale, T., et al. (1990). Evidence that mammalian ribonucleotide reductase is a nuclear membrane associated glycoprotein. Biochem. Cell Biol. 68, 880–888.PubMedGoogle Scholar
  33. 33.
    Bestwick, R. K., and Mathews, C. K. (1982). Unusual compartmentation of precursors for nuclear and mitochondrial DNA in mouse L cells. J. Biol. Chem. 257,9305–9308.PubMedGoogle Scholar
  34. 34.
    Chen, C. H., and Cheng, Y. C. (1992). The role of cytoplasmic deoxycytidine kinase in the mitochondrial effects of the anti-human immunodeficiency virus compound, 2′,3′-dideoxycytidine. J. Biol. Chem. 267, 2856–2859.PubMedGoogle Scholar
  35. 35.
    Bridges, E. G., Jiang, Z., and Cheng, Y. C. (1999). Characterization of a dCTP transport activity reconstituted from human mitochondria. J. Biol. Chem. 274, 4620–4625.PubMedGoogle Scholar
  36. 36.
    Dolce, V., Fiermonte, G., Runswick, M. J., Palmieri, F., and Walker, J. E. (2001). The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc. Natl. Acad. Sci. U. S. A. 98, 2284–2288.PubMedGoogle Scholar
  37. 37.
    Zhu, C., Johansson, M., and Karlsson, A. (2000). Incorporation of nucleoside analogs into nuclear or mitochondrial DNA is determined by the intracellular phosphorylation site. J. Biol. Chem. 275, 26,727–16,731.PubMedGoogle Scholar
  38. 38.
    Rampazzo, C., Kost-Alimova, M., Ruzzenente, B., Dumanski, J. P., and Bianchi, V. (2002). Mouse cytosolic and mitochondrial deoxyribonucleotidases: cDNA cloning of the mitochondrial enzyme, gene structures, chromosomal mapping and comparison with the human orthologs. Gene 294, 109–117.PubMedGoogle Scholar
  39. 39.
    Sala-Newby, G. B., and Newby, A. C. (2001). Cloning of a mouse cytosolic 5′-nucleotidase-I identifies a new gene related to human autoimmune infertility-related protein. Biochim. Biophys. Acta 1521, 12–18.PubMedGoogle Scholar
  40. 40.
    Rinaldo-Matthis, A., Rampazzo, C., Reichard, P., Bianchi, V., and Nordlund, P. (2002). Crystal structure of a human mitochondrial deoxyribonucleotidase. Nat. Struct. Biol. 9, 779–787.PubMedGoogle Scholar
  41. 41.
    Allegrini, S., Scaloni, A., Ferrara, L., et al. (2001). Bovine cytosolic 5′-nucleoti-dase acts through the formation of an aspartate 52-phosphoenzyme intermediate. J. Biol. Chem. 276, 33,526–33,532.PubMedGoogle Scholar
  42. 42.
    Worku, Y., and Newby, A. C. (1982). Nucleoside exchange catalysed by the cyto-plasmic 5′-nucleotidase. Biochem. J. 205, 503–510.PubMedGoogle Scholar
  43. 43.
    Tozzi, M. G., Camici, M., Pesi, R., Allegrini, S., Sgarrella, F., and Ipata, P. L.(1991). Nucleoside phosphotransferase activity of human colon carcinoma cytosolic 5′-nucleotidase. Arch. Biochem. Biophys. 291, 212–217.PubMedGoogle Scholar
  44. 44.
    Amici, A., Emanuelli, M., Magni, G., Raffaelli, N., and Ruggieri, S. (1997). Pyrimidine nucleotidases from human erythrocyte possess phosphotransferase activities specific for pyrimidine nucleotides. FEBS Lett. 419, 263–267.PubMedGoogle Scholar
  45. 45.
    Rampazzo, C., Mazzon, C., Reichard, P., and Bianchi, V. (2002). 5′-Nucleotidases:specific assays for five different enzymes in cell extracts. Biochem. Biophys. Res.Commun. 293, 258–263.PubMedGoogle Scholar
  46. 46.
    Galmarini, C. M., Graham, K., Thomas, X., et al. (2001). Expression of high Km5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 98, 1922–1926.PubMedGoogle Scholar
  47. 47.
    Galmarini, C. M., Thomas, X., Calvo, F., et al. (2002). In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br. J. Haematol. 117, 860–868.PubMedGoogle Scholar
  48. 48.
    Galmarini, C. M., Thomas, X., Graham, K., et al. (2003). Deoxycytidine kinase and cN-II nucleotidase expression in blast cells predict survival in acute myeloid leukaemia patients treated with cytarabine. Br. J. Haematol. 122, 53–60.PubMedGoogle Scholar
  49. 49.
    Thompson, L. F. (1991). 5′-Nucleotidase—an overview of the last 3 years. Adv.Exp. Med. Biol. 309B, 145–150.PubMedGoogle Scholar
  50. 50.
    Thompson, L. F., and Ruedi, J. M. (1988). Synthesis of immunoglobin G by pokeweed mitogen or Epstein-Barr virus-stimulated human B cells in vitro is restricted to the ecto-5′-nucleotidase positive subset. J. Clin. Invest. 82, 902–905.PubMedGoogle Scholar
  51. 51.
    Spychala, J., Lazarowski, E., Ostapkowicz, A., Ayscue, L. H., Jin, A., and Mitchell, B. S. (2004). Role of estrogen receptor in the regulation of ecto-5′-nucleotidase (eN) expression and extracellular adenosine generation in breast cancer. Clin. Cancer Res. 10, 708–717.PubMedGoogle Scholar
  52. 52.
    Misumi, Y., Ogata, S., Ohkubo, K., Hirose, S., and Ikehara, Y. (1990). Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form. Eur. J. Biochem. 191, 563–569.PubMedGoogle Scholar
  53. 53.
    Muller, G., Jung, C., Frick, W., Bandlow, W., and Kramer, W. (2002). Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes. Arch. Biochem. Biophys. 408,7–16.PubMedGoogle Scholar
  54. 54.
    Burger, R., M, and Lowenstein, J., M. (1975). 5′-Nucleotidase from smooth muscle of small intestine and from brain. Inhibition of nucleotides. Biochemistry 14, 2362–2366.PubMedGoogle Scholar
  55. 55.
    Spychala, J., Madrid-Marina, V., Nowak, P. J., and Fox, I. H. (1989). AMP and IMP dephosphorylation by soluble high-and low-Km 5′-nucleotidases. Am. J. Physiol. 256, E386–E391.PubMedGoogle Scholar
  56. 56.
    Naito, Y., and Lowenstein, J., M. (1981). 5′-Nucleotidase from rat heart. Biochemistry 20, 5188–5194.PubMedGoogle Scholar
  57. 57.
    Resta, R., Yamashita, Y., and Thompson, L. F. (1998). Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol. Rev. 161, 95–109.PubMedGoogle Scholar
  58. 58.
    Nemoto, E., Kunii, R., Tada, H., Tsubahara, T., Ishihata, H., and Shimauchi, H. (2004). Expression of CD73/ecto-5′-nucleotidase on human gingival fibroblasts and contribution to the inhibition of interleukin-1?-induced granulocyte-macrophage colony stimulating factor production. J. Periodontal Res. 39, 10–19.PubMedGoogle Scholar
  59. 59.
    Duarte-Araujo, M., Nascimento, C., Alexandrina Timoteo, M., Magalhaes-Cardoso, T., and Correia-de-Sa, P. (2004). Dual effects of adenosine on acetylcholine release from my enteric motoneurons are mediated by junctional facilitatory A(2A) and extrajunctional inhibitory A(1) receptors. Br. J. Pharmacol. 141, 925–934.PubMedGoogle Scholar
  60. 60.
    Spychala, J. (2000). Tumor-promoting functions of adenosine. Pharmacol. Ther. 87, 161–173.PubMedGoogle Scholar
  61. 61.
    Headrick, J. P., Hack, B., and Ashton, K. J. (2003). Acute adenosinergic cardio-protection in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol. 285, H1797–H1818.PubMedGoogle Scholar
  62. 62.
    Kitakaze, M., Minamino, T., Node, K., et al. (1999). Adenosine and cardioprotection in the diseased heart. Jpn. Circ. J. 63, 231–243.PubMedGoogle Scholar
  63. 63.
    Airas, L., Niemela, J., and Jalkanen, S. (2000). CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J. Immunol. 165, 5411–5417.PubMedGoogle Scholar
  64. 64.
    Skladanowski, A. C., and Newby, A. C. (1990). Partial purification and properties of an AMP-specific soluble 5′-nucleotidase from pigeon heart. Biochem. J. 268, 117–122.PubMedGoogle Scholar
  65. 65.
    Yamazaki, Y., Truong, V. L., and Lowenstein, J. M. (1991). 5′-Nucleotidase-I from rabbit heart. Biochemistry 30, 1503–1509.PubMedGoogle Scholar
  66. 66.
    Sala-Newby, G. B., Skladanowski, A. C., and Newby, A. C. (1999). The mechanism of adenosine formation in cells. Cloning of cytosolic 5′-nucleotidase-I. J.Biol. Chem. 274, 17,789–17,793.PubMedGoogle Scholar
  67. 67.
    Hunsucker, S. A., Spychala, J., and Mitchell, B. S. (2001). Human cytosolic 5′-nucleotidase I: characterization and role in nucleoside analog resistance. J. Biol. Chem. 276, 10,498–10,504.PubMedGoogle Scholar
  68. 68.
    Darvish, A., and Metting, P. J. (1993). Purification and regulation of an AMP-specific cytosolic 5′-nucleotidase from dog heart. Am. J. Physiol. 264, H1528–H1534.PubMedGoogle Scholar
  69. 69.
    Garvey, E. P., Lowen, G. T., and Almond, M. R. (1998). Nucleotide and nucleoside analogues as inhibitors of cytosolic 5′-nucleotidase I from heart. Biochemistry 37, 9043–9051.PubMedGoogle Scholar
  70. 70.
    Skladanowski, A. C., Hoffmann, C. S., Krass, J. D., Makarewicz, W., and Jastorff, B. (1995). Different substrate specificity of two isozymes of cytosolic 5′-nucleotidase from rabbit heart. Adv. Exp. Med. Biol. 370, 617–621.Google Scholar
  71. 71.
    Skladanowski, A. C., Smolenski, R. T., Tavenier, M., de Jong, J. W., Yacoub, M. H.,and Seymour, A. M. (1996). Soluble forms of 5?-nucleotidase in rat and human heart. Am. J. Physiol. 270, H1493–H1500.PubMedGoogle Scholar
  72. 72.
    Truong, V. L., Collinson, A. R., and Lowenstein, J. M. (1988). 5′-Nucleotidase in rat heart. Evidence for the occurrence of two soluble enzymes with different substrate specificities. Biochem. J. 253, 117–121.PubMedGoogle Scholar
  73. 73.
    Sala-Newby, G. B., Freeman, N. V., Skladanowski, A. C., and Newby, A. C. (2000). Distinct roles for recombinant cytosolic 5′-nucleotidase-I and-II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines. J. Biol. Chem. 275, 11,666–11,671.PubMedGoogle Scholar
  74. 74.
    Itoh, R., Mitsui, A., and Tsushima, K. (1967). 5′-Nucleotidase of chicken liver. Biochim. Biophys. Acta 146, 151–159.PubMedGoogle Scholar
  75. 75.
    Oka, J., Matsumoto, A., Hosokawa, Y., Inoue, S. (1994). Molecular cloning of human cytosolic purine 5′-nucleotidase. Biochem. Biophys. Res. Commun. 205, 917–922.PubMedGoogle Scholar
  76. 76.
    Spychala, J., Chen, V., Oka, J., and Mitchell, B. S. (1999). ATP and phosphate reciprocally affect subunit association of human recombinant high K 5′-nucleotidase. Role of C-terminal polyglutamic acid tract in subunit association and catalytic activity. Eur. J. Biochem. 259, 851–858.PubMedGoogle Scholar
  77. 77.
    Spychala, J., Madrid-Marina, V., and Fox, I. H. (1988). High Km soluble 5′-nucleotidase from human placenta. Properties and allosteric regulation by IMP and ATP. J. Biol. Chem. 263, 18,759–18,765.PubMedGoogle Scholar
  78. 78.
    Van den Berghe, G., Van Pottersberghe, C., and Hers, H.-G. (1977). A kinetic study of the soluble 5′-nucleotidase of rat liver. Biochem. J. 162, 611–616.PubMedGoogle Scholar
  79. 79.
    Itoh, R. (1993). IMP-GMP 5′-nucleotidase. Comp. Biochem. Physiol. [B] 105, 13–19.Google Scholar
  80. 80.
    Pinto, R., M, Canales, J., Gunther, S., M, A, and Sillero, A. (1986). Diadenosine tetraphosphate activates cytosol 5′-nucleotidase. Biochem. Biophys. Res. Commun. 138, 261–267.PubMedGoogle Scholar
  81. 81.
    Bontemps, F., Van den Berghe, G., and Hers, H.-G. (1988). 5′-Nucleotidase activities in human erythrocytes. Identification of purine 5–-nucleotidase stimulated by ATP and glycerate 2,3-bisphosphate. Biochem. J. 250, 687–696.PubMedGoogle Scholar
  82. 82.
    Fridland, A., Connelly, M. C., and Robbins, T. J. (1986). Tiazofurin metabolism in human lymphoblastoid cells: evidence for phosphorylation by adenosine kinase and 5′-nucleotidase. Cancer Res. 46, 532–537.PubMedGoogle Scholar
  83. 83.
    Johnson, M. A., and Fridland, A. (1989). Phosphorylation of 2′,3′-Dideoxyinosine by cytosolic 5′-nucleotidase of human lymphoid cells. Mol. Pharmacol. 36, 291–295.PubMedGoogle Scholar
  84. 84.
    Baiocchi, C., Pesi, R., Camici, M., Itoh, R., and Tozzi, M. G. (1996). Mechanism of reaction catalyzed by cytosolic 5′-nucleotidase/phosphotransferase: formation of a phosphorylated intermediate. Biochem. J. 317, 797–801.PubMedGoogle Scholar
  85. 85.
    Pesi, R., Turriani, M., Allegrini, S., et al. (1994). The bifunctional cytosolic 5′-nucleotidase: regulation of the phosphotransferase and nucleotidase activities. Arch. Biochem. Biophys. 312, 75–80.PubMedGoogle Scholar
  86. 86.
    Dragon, S., Hille, R., Gotz, R., and Baumann, R. (1998). Adenosine 3′:5′-cyclic monophosphate (cAMP)-inducible pyrimidine 5′-nucleotidase and pyrimidine ucleotide metabolism of chick embryonic erythrocytes. Blood 91, 3052–3058.PubMedGoogle Scholar
  87. 87.
    Paglia, E. D., and Valentine, W. N. (1975). Characteristics of pyrimidine-specific 5′-nucleotidase in human erythrocytes. J. Biol. Chem. 250, 7973–7979.PubMedGoogle Scholar
  88. 88.
    Swallow, D. M., Turner, V. S., and Hopkinson, D. A. (1983). Isozymes of rodent 5′-nucleotidase: evidence for two independent structural loci Umph-1 and Umph-2. Ann. Hum. Genet. 47(pt. 1), 9–17.PubMedGoogle Scholar
  89. 89.
    Beutler, E., and West, C. (1982). Tissue distribution of pyrimidine-5′-nucleotidase. Biochem. Med. 27, 334–341.PubMedGoogle Scholar
  90. 90.
    Lu, M. M., Chen, F., Gitler, A., et al. (2000). Cloning and expression analysis of murine lupin, a member of a novel gene family that is conserved through evolution and associated with lupus inclusions. Dev. Genes Evol. 210, 512–517.PubMedGoogle Scholar
  91. 91.
    Marinaki, A. M., Escuredo, E., Duley, J. A., et al. (2001). Genetic basis of hemolytic anemia caused by pyrimidine 5′ nucleotidase deficiency. Blood 97, 3327–3332.PubMedGoogle Scholar
  92. 92.
    Kanno, H., Takizawa, T., Miwa, S., and Fujii, H. (2004). Molecular basis of Japanese variants of pyrimidine 5′-nucleotidase deficiency. Br. J. Haematol. 126, 265–271.PubMedGoogle Scholar
  93. 93.
    Rees, D. C., Duley, J. A., and Marinaki, A. M. (2003). Pyrimidine 5′ nucleotidase deficiency. Br. J. Haematol. 120, 375–383.PubMedGoogle Scholar
  94. 94.
    Amici, A., and Magni, G. (2002). Human erythrocyte pyrimidine 5′-nucleotidase, PN-1. Arch. Biochem. Biophys. 397, 184–190.PubMedGoogle Scholar
  95. 95.
    Fritzson, P., and, and Smith, I. (1971). A new nucleotidase of rat liver with activity toward 3′-and 5′-nucleotides. Biochim. Biophys. Acta 235, 128–141.PubMedGoogle Scholar
  96. 96.
    Magnusson, G. (1971). Deoxyribonucleotide phosphatase from rat liver and cultured mouse fibroblasts. Eur. J. Biochem. 20, 225–230.PubMedGoogle Scholar
  97. 97.
    Hoglund, L., and Reichard, P. (1990). Cytoplasmic 5′(3′)-nucleotidase from human placenta. J. Biol. Chem. 265, 6589–6595.PubMedGoogle Scholar
  98. 98.
    Amici, A., Emanuelli, M., Ferretti, E., Raffaelli, N., Ruggieri, S., and Magni, G. (1994). Homogeneous pyrimidine nucleotidase from human erythrocytes:enzymic and molecular properties. Biochem. J. 304, 987–992.PubMedGoogle Scholar
  99. 99.
    Rampazzo, C., Johansson, M., Gallinaro, L., et al. (2000). Mammalian 5′(3′)-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells. J. Biol. Chem. 275, 5409–5415.PubMedGoogle Scholar
  100. 100.
    Amici, A., Emanuelli, M., Ruggieri, S., Raffaelli, N., and Magni, G. (2002). Kinetic evidence for covalent phosphoryl-enzyme intermediate in phosphotrans-ferase activity of human red cell pyrimidine nucleotidases. Meth. Enzymol. 354, 149–159.PubMedGoogle Scholar
  101. 101.
    Mazzon, C., Rampazzo, C., Scaini, M. C., et al. (2003). Cytosolic and mitochon-drial deoxyribonucleotidases: activity with substrate analogs, in hibitors andimplications for therapy. Biochem. Pharmacol. 66, 471–479.PubMedGoogle Scholar
  102. 102.
    Rampazzo, C., Gallinaro, L., Milanesi, E., Frigimelica, E., Reichard, P., and Bianchi, V. (2000). A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possible link to genetic disease. Proc. Natl. Acad. Sci. U. S. A. 97, 8239–8244.PubMedGoogle Scholar
  103. 103.
    Rampazzo, C., Ferraro, P., Pontarin, G., Fabris, S., Reichard, P., and Bianchi, V. (2004). Mitochondrial deoxyribonucleotides, pool sizes, synthesis, and regulation. J. Biol. Chem. 279, 17,019–17,026.PubMedGoogle Scholar
  104. 104.
    Gallinaro, L., Crovatto, K., Rampazzo, C., et al. (2002). Human mitochondrial 5′-deoxyribonucleotidase. Overproduction in cultured cells and functional aspects. J. Biol. Chem. 277, 35,080–35,087.PubMedGoogle Scholar
  105. 105.
    Galmarini, C. M., Mackey, J. R., and Dumontet, C. (2002). Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 3, 415–424.PubMedGoogle Scholar
  106. 106.
    Bergman, A. M., Pinedo, H. M., and Peters, G. J. (2002). Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug. Resist. Updat. 5, 19–33.PubMedGoogle Scholar
  107. 107.
    van der Wilt, C. L., Kroep, J. R., Loves, W. J., et al. (2003). Expression of deoxy-cytidine kinase in leukaemic cells compared with solid tumour cell lines, liver metastases and normal liver. Eur. J. Cancer 39, 691–697.PubMedGoogle Scholar
  108. 108.
    Schirmer, M., Stegmann, A. P., Geisen, F., and Konwalinka, G. (1998). Lack of cross-resistance with gemcitabine and cytarabine in cladribine-resistant HL60 cells with elevated 5′-nucleotidase activity. Exp. Hematol. 26, 1223–1228.PubMedGoogle Scholar
  109. 109.
    Carson, D. A., Carrera, C. J., Wasson, D. B., and Iizasa, T. (1991). Deoxyadenosine-resistant human T-lymphoblasts with elevated 5–-nucleotidase activity. Biochim. Biophys. Acta 1091, 22–28.PubMedGoogle Scholar
  110. 110.
    Dumontet, C., Fabianowska-Majewska, K., Mantincic, D., et al. (1999). Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562. Br. J. Haematol. 106, 78–85.PubMedGoogle Scholar
  111. 111.
    Lotfi, K., Mansson, E., Chandra, J., et al. (2001). Pharmacological basis for cladribine resistance in a human acute T lymphoblastic leukaemia cell line selected for resistance to etoposide. Br. J. Haematol. 113, 339–346.PubMedGoogle Scholar
  112. 112.
    Mohammad, R. M., Beck, F. W., Katato, K., Hamdy, N., Wall, N., and Al-Katib, A. (1998). Potentiation of 2-chlorodeoxyadenosine activity by bryostatin 1 in the resistant chronic lymphocytic leukemia cell line (WSU-CLL): association with increased ratios of dCK/5′-NT and Bax/Bcl-2. Biol. Chem. 379, 1253–1261.PubMedGoogle Scholar
  113. 113.
    Kawasaki, H., Carrera, C. J., Piro, L. D., Saven, A., Kipps, T. J., and Carson, D. A. (1993). Relationship of deoxycytidine kinase and cytoplasmic 5′-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood 81, 597–601.PubMedGoogle Scholar
  114. 114.
    Galmarini, C. M., Thomas, X., Calvo, F., et al. (2002). Potential mechanisms of resistance to cytarabine in AML patients. Leuk. Res. 26, 621–629.PubMedGoogle Scholar
  115. 115.
    Keller, P. M., McKee, S.A., and Fyfe, J.A. (1985). Cytoplasmic 5′-nucleotidase catalyzes acyclovir phosphorylation. J. Biol. Chem. 260, 8664–8667.PubMedGoogle Scholar
  116. 116.
    Saunders, P. P., Spindler, C. D., Tan, M. T., Alvarez, E., and Robins, R. K. (1990). Tiazofurin is phosphorylated by three enzymes from Chinese hamster ovary cells. Cancer Res. 50, 5269–5274.PubMedGoogle Scholar
  117. 117.
    Jager, W., Salamon, A., and Szekeres, T. (2002). Metabolism of the novel IMP dehydrogenase inhibitor benzamide riboside. Curr. Med. Chem. 9, 781–786.PubMedGoogle Scholar
  118. 118.
    Agbaria, R., Mullen, C. A., Hartman, N. R., et al. (1994). Effects of IMP dehydrogenase inhibitors on the phosphorylation of ganciclovir in MOLT-4 cells before and after herpes simplex virus thymidine kinase gene transduction. Mol. Pharmacol. 45, 777–782.PubMedGoogle Scholar
  119. 119.
    Smee, D. F., Campbell, N. L., and Matthews, T. R. (1985). Comparative anti-herpesvirus activities of 9-(1,3-dihydroxy-2-propoxymethyl)guanine, acyclovir,and two 2′-fluoropyrimidine nucleosides. Antiviral Res. 5, 259–267.PubMedGoogle Scholar
  120. 120.
    Balzarini, J., Lee, C. K., Herdewijn, P., and Declercq, E. (1991). Mechanism of the potentiating effect of ribavirin on the activity of 2–,3–-dideoxyinosine against human immunodeficiency virus. J. Biol. Chem. 266, 21,509–21,514.PubMedGoogle Scholar
  121. 121.
    Razmara, M., Eriksson, S., and Albertioni, F. (2003). 5′-Nucleotidases levels measured in peripheral blood cells from patients with chronic and acute leukemia. In Abstracts, Joint 11th International and 9th European Symposium on Purines and Pyrimidines in Man, Egmond aan Zee, Peters, G. J., ed., June 9-13. Abstract P82, Drukkerij Peters and VU University Medical Center, Amsterdam, The Netherlands.Google Scholar
  122. 122.
    Galmarini, C. M., Cros, E., Graham, K., Thomas, X., Mackey, J. R., and Dumontet, C. (2004). 5-(3)-Nucleotidase mRNA levels in blast cells are a prognostic factor in acute myeloid leukemia patients treated with cytarabine. Haematologica 89, 617–619.PubMedGoogle Scholar
  123. 123.
    Lewis, W. A., and Dalakas, M. C. (1995). Mitochondrial toxicity of antiviral drugs. Nat. Med. 1, 417–422.PubMedGoogle Scholar
  124. 124.
    Gandhi, V., and Plunkett, W. (2002). Cellular and clinical pharmacology of flu-darabine. Clin. Pharmacokinet. 41, 93–103.PubMedGoogle Scholar
  125. 125.
    Zimmermann, H. (1992). 5′-nucleotidase: molecular structure and functional aspects. Biochem. J. 285, 345–365.PubMedGoogle Scholar
  126. 126.
    Resta, R., Hooker, S. W., Hansen, K. R., et al. (1993). Murine ecto-5′-nucleotidase (CD73)—cDNA cloning and tissue distribution. Gene 133, 171–177.PubMedGoogle Scholar
  127. 127.
    Allegrini, S., Pesi, R., Tozzi, M. G., Fiol, C. J., Johnson, R. B., and Eriksson, S. (1997). Bovine cytosolic IMP/GMP-specific 5–-nucleotidase: cloning and expression of active enzyme in Escherichia coli. Biochem. J. 328, 483–487.PubMedGoogle Scholar
  128. 128.
    Amici, A., Emanuelli, M., Raffaelli, N., Ruggieri, S., Saccucci, F., and Magni, G. (2000). Human erythrocyte pyrimidine 5-nucleotidase, PN-I, is identical to p36, a protein associated to lupus inclusion formation in response to α-interferon. Blood 96, 1596–1598.PubMedGoogle Scholar
  129. 129.
    Itoh, R., and Oka, J. (1985). Evidence for existence of a cytosol 5′-nucleotidase in chicken heart: comparison of some properties of heart and liver enzymes. Comp. Biochem. Physiol. 81B, 159–163.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Sally Anne Hunsucker
    • 1
  • Beverly S. Mitchell
    • 2
  • Jozef Spychala
    • 3
    • 4
  1. 1.Lineberger Comprehensive Cancer Center, Department of PharmacologyUniversity of North Carolina at Chapel HillChapel Hill
  2. 2.George E. Becker Professor of Medicine, Comprehensive Cancer CenterStanford UniversityStanford
  3. 3.VisiScience CorporationChapel Hill
  4. 4.Department of Pharmacology, Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel Hill

Personalised recommendations