3′-Deoxy-3′-Fluorothymidine as a Tracer of Proliferation in Positron Emission Tomography

  • Wieteke G. E. Direcks
  • Adriaan A. Lammertsma
  • Carla F. M. Molthoff
Part of the Cancer Drug Discovery and Development book series (CDD&D)


3′-Deoxy-3′-fluorothymidine (FLT), a thymidine analog, is a relative new PET tracer for imaging proliferation. Thymidine is transported into the cell, and after several phosphorylation steps, it will be incorporated into DNA. FLT is transported into the cell by the same mechanism but is then trapped in the cell after the first phosphorylation step. The cell cycle-dependent enzyme TK1 is responsible for the first phosphorylation step of thymidine and FLT. Consequently, FLT labeled with 18F is a PET tracer of TK1 activity, and as such an indirect marker of DNA synthesizing activity and cell proliferation. Potential applications of FLT are in detecting and staging tumors.

Key Words

3′-Deoxy-3′-fluorothymidine FLT PET positron emission tomography proliferation marker thymidine kinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Isel C, Ehresmann C, Walter P, Ehresmann B, Marquet R. The emergence of different resistance mechanisms toward nucleoside inhibitors is explained by the properties of the wild type HIV-1 reverse transcriptase. J Biol Chem 2001;276:48,725–48,732.PubMedCrossRefGoogle Scholar
  2. 2.
    Johnston MI, Hoth DF. Present status and future prospects for HIV therapies. Science 1993;260:1286–1293.PubMedCrossRefGoogle Scholar
  3. 3.
    Kong XB, Zhu QY, Vidal PM, et al. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 1992;36:808–818.Google Scholar
  4. 4.
    Kumar R, Wang L, Wiebe LI, Knaus EE. Synthesis and antiviral (HIV-1, HBV) activities of 5-halo-6-methoxy(or azido)-5,6-dihydro-3′-fluoro-3′-deoxythymidine diastereomers. Potential prodrugs to 3′-fluoro-3′-deoxythymidine. J Med Chem 1994;37:3554–3560.PubMedCrossRefGoogle Scholar
  5. 5.
    Flexner C, van der Horst C, Jacobson MA, et al. Relationship between plasma concentrations of 3′-deoxy-3′-fluorothymidine (alovudine) and antiretroviral activity in two concentration-controlled trials. J Infect Dis 1994;170:1394–1403.PubMedGoogle Scholar
  6. 6.
    Wilson IK, Chatterjee S, Wolf W. Synthesis of 3′-fluoro-3′-deoxythymidine and studies of its 18F-radiolabeling, as a tracer for the noninvasive monitoring of the biodistribution of drugs against AIDS. J Fluorine Chem 1991;55:283–289.Google Scholar
  7. 7.
    Shields AF, Grierson JR, Kozawa SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 1996;23:17–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4:1334–1336.PubMedCrossRefGoogle Scholar
  9. 9.
    Townsend DW. Physical principles and technology of clinical PET imaging. Ann Acad Med Singapore 2004;33:133–145.PubMedGoogle Scholar
  10. 10.
    Klabbers BM, Lammertsma AA, Slotman BJ. The value of positron emission tomography for monitoring response to radiotherapy in head and neck cancer. Mol Imaging Biol 2003;5:257–270.PubMedCrossRefGoogle Scholar
  11. 11.
    Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP. Positron-emission tomography with [18F]fluorodeoxyglucose. Part I. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol 2000;126:549–559.PubMedCrossRefGoogle Scholar
  12. 12.
    Warburg O, Wind F, Negalein E. The metabolism of tumours in the body. J Physiol 1927;8:519–530.Google Scholar
  13. 13.
    Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 2003;44:2027–2032.PubMedGoogle Scholar
  14. 14.
    Maschauer S, Prante O, Hoffmann M, Deichen JT, Kuwert T. Characterization of 18F-FDG uptake in human endothelial cells in vitro. J Nucl Med 2004;45:455–460.PubMedGoogle Scholar
  15. 15.
    Breeuwsma AJ, Pruim J, Jongen MM, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 2005;32:668–673.PubMedCrossRefGoogle Scholar
  16. 16.
    Al Saeedi F, Welch AE, Smith TA. [Methyl-3H]choline incorporation into MCF7 tumour cells: correlation with proliferation. Eur J Nucl Med Mol Imaging 2005;32:660–667.CrossRefGoogle Scholar
  17. 17.
    Wells P, West C, Jones T, Harris A, Price P. Measuring tumor pharmacodynamic response using PET proliferation probes: the case for 2-[(11)C]-thymidine. Biochim Biophys Acta 2004;1705:91–102.PubMedGoogle Scholar
  18. 18.
    Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000;27:143–156.PubMedCrossRefGoogle Scholar
  19. 19.
    Machulla H-J, Blocher A, Kuntzsch M, Piert M, Wie R, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanalyt Nucl Chem 2000;243:843–846.CrossRefGoogle Scholar
  20. 20.
    Arner ES, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995;67:155–186.PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen A, Barankiewicz J, Lederman HM, Gelfand EW. Purine and pyrimidine metabolism in human T lymphocytes. Regulation of deoxyribonucleotide metabolism. J Biol Chem 1983;258:12,334–12,340.PubMedGoogle Scholar
  22. 22.
    Belt JA, Marina NM, Phelps DA, Crawford CR. Nucleoside transport in normal and neoplastic cells. Adv Enzyme Regul 1993;33:235–252.PubMedCrossRefGoogle Scholar
  23. 23.
    Mier W, Haberkorn U, Eisenhut M. [18F]FLT; portrait of a proliferation marker. Eur J Nucl Med Mol Imaging 2002;29:165–169.PubMedCrossRefGoogle Scholar
  24. 24.
    Seitz U, Wagner M, Neumaier B, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 2002;29:1174–1181.PubMedCrossRefGoogle Scholar
  25. 25.
    Sundseth R, Joyner SS, Moore JT, Dornsife RE, Dev IK. The anti-human immunodeficiency virus agent 3′-fluorothymidine induces DNA damage and apoptosis in human lymphoblastoid cells. Antimicrob Agents Chemother 1996;40:331–335.PubMedGoogle Scholar
  26. 26.
    Francis DL, Visvikis D, Costa DC, et al. Potential impact of [18F]3′-deoxy-3′-fluorothymidine vs [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003;30:988–994.PubMedCrossRefGoogle Scholar
  27. 27.
    Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: Validations for positron emission tomography. Nucl Med Biol 2004;31:829–837.PubMedCrossRefGoogle Scholar
  28. 28.
    Toyohara J, Fujibayashi Y. Trends in nucleoside tracers for PET imaging of cell proliferation. Nucl Med Biol 2003;30:681–685.PubMedCrossRefGoogle Scholar
  29. 29.
    Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B. Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J Nucl Med 2002;43:1688–1698.PubMedGoogle Scholar
  30. 30.
    Shields AF, Grierson JR, Muzik O, et al. Kinetics of 3′-deoxy-3′-[F-18]fluorothymidine uptake and retention in dogs. Mol Imaging Biol 2002;4:83–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210–1217.PubMedGoogle Scholar
  32. 32.
    Wagner M, Seitz U, Buck A, et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res 2003;63:2681–2687.PubMedGoogle Scholar
  33. 33.
    Barthel H, Cleij MC, Collingridge DR, et al. 3′-Deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63:3791–3798.PubMedGoogle Scholar
  34. 34.
    Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ. Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 2004;45:519–525.PubMedGoogle Scholar
  35. 35.
    Boudinot FD, Smith SG, Funderburg ED, Schinazi RF. Pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-deoxy-2′,3′-didehydrothymidine in rats. Antimicrob Agents Chemother 1991;35:747–749.PubMedGoogle Scholar
  36. 36.
    Schinazi RF, Boudinot FD, Ibrahim SS, Manning C, McClure HM, Liotta DC. Pharmacokinetics and metabolism of racemic 2′,3′-dideoxy-5-fluoro-3′-thiacytidine in rhesus monkeys. Antimicrob Agents Chemother 1992;36:2432–2438.PubMedGoogle Scholar
  37. 37.
    Visvikis D, Francis D, Mulligan R, et al. Comparison of methodologies for the in vivo assessment of (18)FLT utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging 2003.Google Scholar
  38. 38.
    Shields AF, Briston DA, Chandupatla S, et al. A simplified analysis of [(18)F] 3′-deoxy-3′-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging 2005.Google Scholar
  39. 39.
    Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ. 3′-18F-Fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 2003;44:1927–1932.PubMedGoogle Scholar
  40. 40.
    Vesselle H, Grierson J, Muzi M, et al. In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002;8:3315–3323.PubMedGoogle Scholar
  41. 41.
    Eriksson S, Munch-Petersen B, Johansson K, Eklund H. Structure and function of cellular deoxyribonucleoside kinases. Cell Mol Life Sci 2002;59:1327–1346.PubMedCrossRefGoogle Scholar
  42. 42.
    Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH. [(18)F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 2004;31:1659–1672.PubMedCrossRefGoogle Scholar
  43. 43.
    Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.PubMedCrossRefGoogle Scholar
  44. 44.
    van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 2004;45:695–700.PubMedGoogle Scholar
  45. 45.
    Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 2002;29:281–287.PubMedCrossRefGoogle Scholar
  46. 46.
    Shields AF. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 2003;44:1432–1434.PubMedGoogle Scholar
  47. 47.
    Cobben DC, Elsinga PH, Suurmeijer AJ, et al. Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-L-thymidine. Clin Cancer Res 2004;10:1685–1690.PubMedCrossRefGoogle Scholar
  48. 48.
    Halter G, Buck AK, Schirrmeister H, et al. [18F]3-Deoxy-3′-fluorothymidine positron emission tomography: alternative or diagnostic adjunct to 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography in the workup of suspicious central focal lesions? J Thorac Cardiovasc Surg 2004;127:1093–1099.PubMedCrossRefGoogle Scholar
  49. 49.
    Cobben DC, van der Laan BF, Maas B, et al. 18]F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 2004;45:226–Google Scholar
  50. 50.
    Dittmann H, Dohmen BM, Paulsen F, et al. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 2003;30:1407–1412.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005;46:945–952.PubMedGoogle Scholar
  52. 52.
    Choi SJ, Kim JS, Kim JH, et al. [18F]3′-Deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 2005;32:653–659.PubMedCrossRefGoogle Scholar
  53. 53.
    Buck AK, Halter G, Schirrmeister H, et al. Imaging proliferation in lung tumors with PET:18F-FLT vs 18F-FDG. J Nucl Med 2003;44:1426–1431.PubMedGoogle Scholar
  54. 54.
    Buck AK, Hetzel M, Schirrmeister H, et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging 2005;32:525–533.PubMedCrossRefGoogle Scholar
  55. 55.
    Cobben DC, Elsinga PH, Hoekstra HJ, et al. Is 18F-3′-fluoro-3′-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 2004;45:1677–1682.PubMedGoogle Scholar
  56. 56.
    Dittmann H, Dohmen BM, Kehlbach R, et al. Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 2002;29:1462–1469.PubMedCrossRefGoogle Scholar
  57. 57.
    Barthel H, Perumal M, Latigo J, et al. The uptake of 3′-deoxy-3′-[(18)F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. J Nucl Med Mol Imaging 2005;32:257–263.CrossRefGoogle Scholar
  58. 58.
    Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO. Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 2005;65:4202–4210.PubMedCrossRefGoogle Scholar
  59. 59.
    Waldherr C, Mellinghoff IK, Tran C, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 2005;46:114–120.PubMedGoogle Scholar
  60. 60.
    Sugiyama M, Sakahara H, Sato K, et al. Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45:1754–1758.PubMedGoogle Scholar
  61. 61.
    Krak NC, van der Hoeven JJ, Hoekstra OS, Twisk JW, van der Wall E, Lammertsma AA. Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging 2003;30:674–681.PubMedCrossRefGoogle Scholar
  62. 62.
    Hoekstra CJ, Paglianiti I, Hoekstra OS, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27:731–743.PubMedCrossRefGoogle Scholar
  63. 63.
    Smyczek-Gargya B, Fersis N, Dittmann H, et al. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 2004;31:720–724.PubMedCrossRefGoogle Scholar
  64. 64.
    van Westreenen HL, Cobben DC, Jager PL, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 2005;46:400–404.PubMedGoogle Scholar
  65. 65.
    Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 2005;46:371–380.PubMedGoogle Scholar
  66. 66.
    Muzi M, Vesselle H, Grierson JR, et al. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 2005;46:274–282.PubMedGoogle Scholar
  67. 67.
    Kenny LM, Aboagye EO, Price PM. Positron emission tomography imaging of cell proliferation in oncology. Clin Oncol (R Coll Radiol) 2004;16:176–185.Google Scholar
  68. 68.
    Vesselle H, Grierson J, Peterson LM, Muzi M, Mankoff DA, Krohn KA. 18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med 2003;44:1482–1488.PubMedGoogle Scholar
  69. 69.
    Hays MT, Watson EE, Thomas SR, Stabin M. MIRD dose estimate report no. 19: radiation absorbed dose estimates from (18)F-FDG. J Nucl Med 2002;43:210–214.PubMedGoogle Scholar
  70. 70.
    Buck AC, Schirrmeister HH, Guhlmann CA, et al. Ki-67 immunostaining in pancreatic cancer and chronic active pancreatitis: does in vivo FDG uptake correlate with proliferative activity? J Nucl Med 2001;42:721–725.PubMedGoogle Scholar
  71. 71.
    Francis DL, Freeman A, Visvikis D, et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 2003;52:1602–1606.PubMedCrossRefGoogle Scholar
  72. 72.
    Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000;182:311–322.PubMedCrossRefGoogle Scholar
  73. 73.
    van Diest PJ, van der Wall E, Baak JP. Prognostic value of proliferation in invasive breast cancer: a review. J Clin Pathol 2004;57:675–681.PubMedCrossRefGoogle Scholar
  74. 74.
    Bos R, van der Hoeven JJ, van der Wall E, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002;20:379–387.PubMedCrossRefGoogle Scholar
  75. 75.
    Buck AK, Schirrmeister H, Hetzel M, et al. 3-Deoxy-3-[(18)F]fluorothymidinepositron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002;62:3331–3334.PubMedGoogle Scholar
  76. 76.
    Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821–1828.PubMedCrossRefGoogle Scholar
  77. 77.
    Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 3′-deoxy-3′fluorothymidine uptake. Nucl Med Biol 2004;31:419–423.PubMedCrossRefGoogle Scholar
  78. 78.
    Pakzad F, Ell PJ, Carrio I. Molecular imaging in animal models of disease—every little detail counts! Eur J Nucl Med Mol Imaging 2005;32:899, 900.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Wieteke G. E. Direcks
    • 1
  • Adriaan A. Lammertsma
    • 1
  • Carla F. M. Molthoff
    • 1
  1. 1.Department of Nuclear Medicine and PET ResearchVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations