Ultraviolet Radiation for Disinfection

  • J. Paul Chen
  • Lei Yang
  • Lawrence K. Wang
  • Beiping Zhang
Part of the Handbook of Environmental Engineering book series (HEE, volume 4)


Natural water, such as surface water and groundwater, exists as an open system. Natural and/or synthesized organic substances, oxygen, nutrients are thus able to enter various waters. Owing to the presence of these key elements, microbial growth eventually becomes possible. Different microorganisms can therefore exist and grow in the waters. Similarly, domestic and industrial wastewater and treated wastewater contain significantly high amounts of microorganisms.


Ultraviolet Radiation Collimate Beam Apparatus Washin Gton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. P. Jr. Malley, Ultraviolet disinfection, in Control of Microorganisms in Drinking Water. S. Lingireddy (ed.), American Society of Civil Engineers, Reston, Virginia, 2002.Google Scholar
  2. 2.
    Anon, Sterilization of polluted water by ultra-violet rays as Marseille (France), Engineering News 64, 633 (1910).Google Scholar
  3. 3.
    US EPA, Ultraviolet Disinfection Guidance Manual (draft).U.S. Environmental Protection Agency, Washington, DC. EPA 815–D–03–007 (2003).Google Scholar
  4. 4.
    US EPA, Wastewater Technology Fact Sheet-Ultraviolet Disinfection. US Environmental Protection Agency, Washington, DC, EPA 832–F–99–064 (1999).Google Scholar
  5. 5.
    World Health Organization, Hazard Prevention and Control in the Work Environment: Airborne Dust, 1999.Google Scholar
  6. 6.
    W. J. Masschelein and R. G. Rice, Ultraviolet light, in Water and Wastewater Sanitation, Lewis Publishers, 2002.Google Scholar
  7. 7.
    J. Zhang, J. Lou, Z. E. Ma, and J. H. Wu, A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China. Applied Mathematics and Computation 162, 909–924 (2005).CrossRefGoogle Scholar
  8. 8.
    G. Chowell, P. W. Fenimore, M. A. Castillo-Garsow, and C. Castillo-Chavez, SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. Journal of Theoretical Biology 224, 1–8 (2003).CrossRefGoogle Scholar
  9. 9.
    R. E. Rittmann and P. L. McCarty, Environmental Biotechnology: Principles and Application, McGraw-Hill, New York, 2001.Google Scholar
  10. 10.
    US EPA, Alternative Disinfectants and Oxidants Guidance Manual, EPA-815-R-99-014. US Environmental Protection Agency, Washington, DC, 1999.Google Scholar
  11. 11.
    Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse (4th edition). McGrawHill, New York, 2003.Google Scholar
  12. 12.
    G.P. Pfeifer, Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochemistry & Photobiology 65(2), 270–283 (1997).CrossRefGoogle Scholar
  13. 13.
    S. S. Qian, M. Donnelly, D. C. Schmelling, M. Messner, K. G. Linden, and C. Cotton, Ultraviolet light inactivation of protozoa in drinking water. Water Research 38, 317–326 (2004).CrossRefGoogle Scholar
  14. 14.
    L. Torrentera, R. M. Uribe, R. R. Rodriguez, and R. E. Carrillo, Physical and biological characterization of a seawater ultraviolet radiations sterilizer. Radiation Physical and Chemistry 43(3), 249–255 (1994).CrossRefGoogle Scholar
  15. 15.
    G. B. Knudson, Photoreactivation of UV-irradiated Legionella pneumoplila and other Legionella species. Applied and Environmental Microbiology 49(4), 975–980 (1985).Google Scholar
  16. 16.
    G-A. Shin, K. G. Linden, M. J. Arrowood, and M. D. Sobsey, Low-pressure UV inactivation and DNA repair potential of Cryptosporidium parvum oocysts. Applied & Environmental Microbiology 67(7), 3029–3032 (2001).CrossRefGoogle Scholar
  17. 17.
    J. Jagger, T. Fossum, and S. McCaul, Ultraviolet irradiation of suspensions of microorganisms: possible errors involved in the estimation of average fluence per cell. Photochemistry and Photobiology 21, 379–382 (1975).CrossRefGoogle Scholar
  18. 18.
    A. M. Rauth, The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. Biophysical Journal 5, 257–273 (1965).CrossRefGoogle Scholar
  19. 19.
    F. J. Loge, J. L. Darby, and G. Tchobanoglous, UV disinfection of wastewater: probabilistic approach to design, Journal of Environmental Engineering 122(12), 1078–1084 (1996).CrossRefGoogle Scholar
  20. 20.
    J. R. Bolton and K. G. Linden, Standardization of methods for UV dose determination in bench-scale UV experiments. Journal of Environmental Engineering 129(3), 209–215 (2003).CrossRefGoogle Scholar
  21. 21.
    K. Linden and J. Darby, Estimating effective germicidal dose from medium pressure UV lamps. Journal of Environmental Engineering 123(11), 1142–1149 (1997).CrossRefGoogle Scholar
  22. 22.
    F. J. Loge, K. Bourgeous, and R. W. Emerick, Variations in wastewater quality parameters influencing UV disinfection performance: relative impact of filtration. Journal of Environmental Engineering 127(9), 832–837 (2001).CrossRefGoogle Scholar
  23. 23.
    R. G. Qualls and J. D. Johnson, Bioassay and dose measurement in UV disinfection. Applied Environmental Microbiology 45, 872–877 (1983).Google Scholar
  24. 24.
    J. Kuo, C. L. Chen, and M. Nellor, Standardized collimated beam testing protocol for water/wastewater ultraviolet disinfection. Journal of Environmental Engineering 129(8), 774–779 (2003).CrossRefGoogle Scholar
  25. 25.
    S. D. Trevor, C. Christian, and A. G. Graham, Hydraulic calibration and fluence determination of model ultraviolet disinfection system. Journal of Environmental Engineering 128(11), 1046–1055 (2002).CrossRefGoogle Scholar
  26. 26.
    A. H. Havelaar, C. C. E. Meulemans, W. M. Pot-Hogeboom, and J. Koster, Inactivation of bacteriophage MS2 in wastewater effluent with monochromatic and polychromatic ultraviolet light. Water Research 24(11), 1387–1393 (1990).CrossRefGoogle Scholar
  27. 27.
    R. W. Emerick, F. J. Loge, T. Ginn, and J. L. Darby, Modeling the inactivation of particle-associated coliform bacteria. Water Environmental Research 72(4), 432–438 (2000).CrossRefGoogle Scholar
  28. 28.
    R. W. Emerick, F. J. Loge, T. Ginn, and J. L. Darbi, Modeling the inactivation of particleassociated coliform bacteria. Water Environment Research 72, 432–443 (2000).CrossRefGoogle Scholar
  29. 29.
    K. Chiu, D. A. Lyn, P. Savoye, and E. R. Blatchley III, Integrated UV disinfection model based on particle tracking. Journal of Environmental Engineering 125(1), 7–16 (1999).CrossRefGoogle Scholar
  30. 30.
    D. A. Lyn, K. Chiu, and E. R. Blatchley III, Numerical modeling of flow and disinfection in UV disinfection channels. Journal of Environmental Engineering 125(1), 17–26 (1999).CrossRefGoogle Scholar
  31. 31.
    A. Cockx, Z. Do-Quang, A. Liné, and M. Roustan, Use of computational fluid dynamics for simulating hydrodynamics and mass transfer in industrial ozonation towers. Chemical Engineering Science 54(21), 5085–5090 (1999).CrossRefGoogle Scholar
  32. 32.
    E. R. Blatchley III, Z. Do-Quang, M. L. Janex, and J. M. Lainé, Process modeling of ultraviolet disinfection. Water Science and Technology 38(6), 63–69 (1998).CrossRefGoogle Scholar
  33. 33.
    M. L. Janex, P. Savoye, Z. Do-Quang, E. Blatchley III, and J. M. Lainé, Impact of water quality and reactor hydrodynamics on wastewater disinfection by UV, use of CFD modeling for performance optimization. Water Science and Technology 38(6), 71–78 (1998).CrossRefGoogle Scholar
  34. 34.
    A. Zeidan, S. Rohani, A. Bassi, and P. Whiting, BioSys: software for wastewater treatment simulation. Advances in Engineering Software 34(9), 539–549 (2003).CrossRefGoogle Scholar
  35. 35.
    T. F. Marhaba and M. B. Washington, Drinking water disinfection and by-products: history and current practice. Advances in Environmental Research 2(1), 103–115 (1998).Google Scholar
  36. 36.
    Singapore Public Utilities Board, Singapore Water Reclamation Study, Expert Panel Review and Findings. Singapore, 2002.Google Scholar
  37. 37.
    J. P. Chen, S. L. Kim, and Y. P. Ting, Optimization of feed pretreatment for membrane filtration of secondary effluent. Journal of Membrane Science 219, 27–45 (2003).CrossRefGoogle Scholar
  38. 38.
    S. L. Kim, J. P. Chen, and Y. P. Ting, Study on feed pretreatment for membrane filtration of secondary effluent. Separation & Purification Technology 29, 171–179 (2002).CrossRefGoogle Scholar
  39. 39.
    J. J. Qin, M. H. Oo, M. N. Wai, et al., Pilot study for reclamation of secondary treated sewage effluent. Desalination 171, 299–305 (2004).CrossRefGoogle Scholar
  40. 40.
    R. L. Rajala, M. Pulkkanen, M. Pessi, and H. Heinonen-Tanski, Removal of microbes from municipal wastewater effluent by rapid sand filtration and subsequent UV irradiation. Water Science and Technology 43(3), 157–162 (2003).Google Scholar
  41. 41.
    L. Liberti, M. Notarnicola, and D. Petruzzelli, Advanced treatment for municipal wastewater reuse in agriculture. UV disinfection: parasite removal and by-product formation. Desalination 152, 315–324 (2002).CrossRefGoogle Scholar
  42. 42.
    C. M. Sharpless, M. A. Page, and K. G. Linden, Impact of hydrogen peroxide on nitrite formation during UV disinfection. Water Research 37, 4730–4736 (2003).CrossRefGoogle Scholar
  43. 43.
    Y. F. Xie, Disinfection Byproducts in Drinking Water: Formation, Analysis, and Control. CRC Press, Boca Raton, FL, 2003.CrossRefGoogle Scholar
  44. 44.
    L. K. Wang, J. R. Taricska, Y. T. Hung, and K. H. Li, Emerging air pollution control technologies, Air Pollution Control Engineering L. K. Wang, N. C. Pereira, and Y. T. Hung (eds.), Humana Press, Totowa, NJ, Chapter 12, p. 441–481, 2004.Google Scholar
  45. 45.
    W. J. Kowalski, Design and optimization of UVGI air disinfection systems. PhD dissertation, Pennsylvania State University (2001).Google Scholar
  46. 46.
    C. B. Beggs and P. A. Sleigh, A quantitative method for evaluating the germicidal effect of upper room UV fields. Journal of Aerosol Science 33, 1681–1699 (2002).CrossRefGoogle Scholar
  47. 47.
    P. Xu, J. Peccia, P. Fabian, et al. Efficacy of ultraviolet germicidal irradiation of upper-room air in inactivating airborne bacterial spores and mycobacteria in full-scale studies. Atmospheric Environment 37, 405–419 (2003).CrossRefGoogle Scholar
  48. 48.
    M. H. Lai, D. J. Moschandreas, and K. R. Pagilla. Airborne bacteria control under chamber and test-home conditions. Journal of Environmental Engineering ASCE 129, 202–208 (2003).CrossRefGoogle Scholar
  49. 49.
    K. G. Linden, G. Shin, G. Fauber, W. Cairns, and M. D. Sobsey, UV disinfection of Giardia lamblia cysts in water. Environment Science and Technology 36, 2519–2522 (2002).CrossRefGoogle Scholar
  50. 50.
    S. A. Craik, G. R. Finch, J. R. Bolton, and M. Belosevic, Inactivation of Giardia muris cysts using medium-pressure ultraviolet radiation in filtered drinking water. Water Research 34, 4325–4332 (2000).CrossRefGoogle Scholar
  51. 51.
    W. J. Kowalski and Dave Witham, UVGI systems for air and surface disinfection. IUVA News 3(5), 4–7 (2001).Google Scholar
  52. 52.
    W. J. Kowalski, Design and Optimization of UVGI Air Disinfection Systems, PhD thesis. The Pennsylvania State University, State College, PA, USA, 2001.Google Scholar
  53. 53.
    B. F. Severin, M. T. Suidan, and R. S. Englebrecht, Mixing effects in UV disinfection. Journal of Water Pollution Control Federation 56(7), 881–888 (1984).Google Scholar
  54. 54.
    W. J. Kowalski and W. P. Bahnfleth, Effective UVGI system design through improved modeling. ASHRAE Transactions 106(2), 4–15 (2000).Google Scholar
  55. 55.
    US EPA, Technologies for Upgrading Existing or Designing New Drinking Water Treatment Facilities, US Environmental Protection Agency, Washington, DC, EPA/625/4-89/023, 1989.Google Scholar
  56. 56.
    D. Potorti, Environmental engineering: challenging and rewarding. Clearwaters 34(3), 43,44 (2004).Google Scholar
  57. 57.
    L. K. Wang. UV Disinfection and Other New Water Treatment Technologies. NY City Water System 100th Anniversary Conference. Oct. 20, 2005.Google Scholar
  58. 58.
    L. K. Wang. New Technologies for Water and Wastewater Treatment. NYSAWWA-NYWEA Joint Tiff Symposium. Liverpool, NY. Nov. 15-17, 2005.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • J. Paul Chen
    • 1
  • Lei Yang
    • 1
  • Lawrence K. Wang
    • 2
  • Beiping Zhang
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore
  2. 2.Lenox Institute of Water TechnologyLenox
  3. 3.School of Environmental Engineering and ScienceHua Zhong University of Science and TechnologyWuhanChina

Personalised recommendations