The Evolution of Gasotransmitter Biology and Medicine

From Atmospheric Toxic Gases to Endogenous Gaseous Signaling Molecules
  • Rui Wang


Overproduction of many atmospheric gases, from natural resources and anthropogenic activities, impose a serious environmental concern with adverse health effects. Among pollutant gases are nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Over several decades, studies from numerous laboratories have demonstrated that gases such as NO, CO, and H2S not only are generated in the human body but also play important physiological roles. These particular gases share many common features in their production and function but carry on their tasks in unique ways, which differ from classic signaling molecules, in the human body. Collectively, these endogenous molecules of gases or gaseous signaling molecules compose a family of “gasotransmitters.” The regulation of ion channels by gasotransmitters, either directly via chemical modification of ion channel proteins or indirectly via second messengers, exerts significant influence on cellular functions. S-nitrosylation, carboxylation, and sulfuration may represent mechanisms of direct interaction of NO, CO, and H2S with ion channel proteins, respectively.

This chapter summarizes the history and evolution of the concept of the gasotransmitter and outlines the criteria used to identify novel gasotransmitters. Gasotransmitter research is accelerating into the next phase. Many new gasotransmitter candidates are being investigated. Alterations in the metabolism and functions of gasotransmitters under different pathological conditions are being explored, which may shed light on the pathogenesis and management of many diseases. Thus, research on gasotransmitters is certainly as important to clinical practice and community health as it is to basic research, if not more so.

Key Words

Gasotransmitter nitric oxide carbon monoxide hydrogen sulfide signal transduction 


  1. 1.
    Furchgott, R. F., and Zawadski, J. V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (London) 228, 373–376CrossRefGoogle Scholar
  2. 2.
    Cao, K., and Wang, R. (2001) Carbon monoxide, vascular contractility, and K+ channels. In CO and Cardiovascular Func- tions. (Wang, R., ed) pp. 83–109, CRC Press, Boca Raton, LACrossRefGoogle Scholar
  3. 3.
    Pace, N. R.(1997) A molecular view of microbial diversity and the biosphere. Science 276, 734–740PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao, W., Zhang, J., Lu, Y., and Wang, R. (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATp channel opener. Emboj. 20, 6008–6016CrossRefGoogle Scholar
  5. 5.
    Hosoki, R., Matsiki, N., and Kimura, H. (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophysic. Res. Commun. 237, 527–531CrossRefGoogle Scholar
  6. 6.
    Abe, K., and Kimura, H. (1996) The possible role ot hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071PubMedGoogle Scholar
  7. 7.
    Bukovska, G., Kery, V., and Kraus, J. P. (1994) Expression of human cystathionine beta-synthase in Escherichia coli: purification and characterization. Protein Exp. Purif. 5, 442–448CrossRefGoogle Scholar
  8. 8.
    Erickson, P. F., Maxwell, I. H., Su, L. J., Baumann, M., and Glode, L. M. (1990) Sequence of cDNA for rat cystathionine y-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem. J. 269, 335–340PubMedGoogle Scholar
  9. 9.
    Stipanuk, M. H., and Beck, P. W. (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem. J. 206, 267–277PubMedGoogle Scholar
  10. 10.
    Meier, M., Janosik, M., Kery, V., Kraus, J. P., and Burkhard, P. (2001) Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBOJ. 20, 3910–3916CrossRefGoogle Scholar
  11. 11.
    Levonen, A. L., Lapatto, R., Saksela, M., and Raivio, K. O. (2000) Human cystathionine gamma-lyase: developmental and in vitro expression of two isoforms. Biochem. J. 347, 291–295PubMedCrossRefGoogle Scholar
  12. 12.
    Lu, Y., O’Dowd, B. F., Orrego, H., and Isreal, Y. (1992) Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine gamma-lyase. Biochem. Biophys. Res. Commun. 189, 749–758PubMedCrossRefGoogle Scholar
  13. 13.
    Yap, S., Naughten, E. R., Wilcken, B., Wilcken, D. E., and Boers, G. H. (2000) Vascular complications of severe hyperhomocysteinemia in patients with homocystinuria due to cystathionine beta-synthase deficiency: effects of homocysteine-lowering therapy. Semin. Thromb. Hemost. 26, 335–340.PubMedCrossRefGoogle Scholar
  14. 14.
    van der Molen, E. F., Hiipakka, M. J., van Lith-Landers, Boers, G. H., van den Heuvel, L. P., Monnens, L. A., and Blom, H. J. (1997) Homocysteine metabolism in endothelial cells of a patient homozygous for cystathionine beta-synthase (CS) deficiency. Thromb. Haemost. 78, 827–833PubMedGoogle Scholar
  15. 15.
    Kredich, N. M., Foote, L. J., and Keenen, B. S. (1973) The stoichiometry and kinetics of the inducible cysteine desulfhydrase from Salmonella tylphimurium.J.Biol. Chem. 248. 6187–6197PubMedGoogle Scholar
  16. 16.
    Simpson, R. C., and Freedland, R. A. (1976) Factors affecting the rate of gluconeogenesis from 1.-cysteine in the perfused rat liver. J. Nutr. 106, 1272–1278PubMedGoogle Scholar
  17. 17.
    Searcy, D. G., and Lee, S. H. (1998) Sulfur reduction by human erythrocytes. 1. Ext. Zool. 282. 310–322CrossRefGoogle Scholar
  18. 18.
    Westely, A. M., and Westley, J. (1991) Biological sulfane sulfur. Biochemistry 195, 63–67Google Scholar
  19. 19.
    Buzaleh, A. M., Vazquez, E. S., and del Carmen, Batlle. (1990) Cyanide intoxication-III. On the analogous and different effects provoked by non-lethal and lethal challenged doses. Gen. Pharmacol 21, 27–32PubMedCrossRefGoogle Scholar
  20. 20.
    Beauchamp, R. O., Bus, J. S., Popp, J. A., Boreiko, C. J., and Andjelkhovich, D. A. (1984) A critical review of the literature on hydrogen sulfide toxicity. CRC Grit. Rev. Toxicol 13, 25–97CrossRefGoogle Scholar
  21. 21.
    Smith, R. P., and Abbanat, R. A. (1966) Protective effect of oxidized glutathione on acute sulfide poisoning. Toxicol Appl. Pharmacol 9, 209–217PubMedCrossRefGoogle Scholar
  22. 22.
    Wang, R. (1998) Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can. J. Physiol. Pharmacol 76, 1–15PubMedCrossRefGoogle Scholar
  23. 23.
    Arp, A. J., Childress, J. J., and Vetter, R. D. (1987) The sulphide-binding protein in the blood of the vestimentiferan tubeworm, Riftia pachyptila, is the extracellular hemoglobin. J. Exp. Biol. 128, 139–158Google Scholar
  24. 24.
    Awata, S., Nakayama, K., Suzuki, I., and Kodama, H. (1989) Effect of cysteine on the inactivation of cystathionine gammalyase by D,L-propargylglycine. Acta Med. Okayama A3 329–335Google Scholar
  25. 25.
    Swaroop, M., Bradley, K., Ohura, T., Tahara, T., Roper, M. D., Rosenberg, L. E., and Kraus, J. P. (1992) Rat cystathionine ß-synthase. J. Biol. Chem. 267, 11455–11461PubMedGoogle Scholar
  26. 26.
    Warenycia, M. W., Goodwin, L. R., Benishin, C. G., Reiffenstein, R. J., Francom, D. M., Taylor, J. D., and Dieken, F. P. (1989) Acute hydrogen sulfide poisoning: demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharmacol. 38 973–981PubMedCrossRefGoogle Scholar
  27. 27.
    Goodwin, L. R., Francom, D., Dieken, F. P., Taylor, J. D., Warenycia, M. W., Reiffenstein, R. J., and Dowling, G. (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J. Analyt. Toxicol 13, 105–109Google Scholar
  28. 28.
    Mitchell, T. W., Savage, J. C., and Gould, D. H. (1993) Highperformance liquid chromatography detection of sulfide in tissues from sulfide-treated mice. J. Appl Toxicol 13, 389–394PubMedCrossRefGoogle Scholar
  29. 29.
    Savage, J. C., and Gould, D. H. (1905 Determination of sulfide in brain tissue and rumen fluid by ion interaction, reversedphase high-performance liquid chromatography. J. Chromatogr. 526, 540–545Google Scholar
  30. 30.
    Awata, S., Nakayama, K, Suzuki, I., Sugahara, K., and Kodama, H. (1995) Changes in cystathionine gamma-lyase in various regions of rat brain during development. Biochem. Mol. Biol. Int. 35, 1331–1338PubMedGoogle Scholar
  31. 31.
    Skrajny, B., Hannah, R. S., and Roth, S. N. (1992) Low concentrations of hydrogen sulfide alter monoamine levels in the developing rat central nervous system. Can. J. Physiol. Pharmacol. 70, 1515–1518PubMedCrossRefGoogle Scholar
  32. 32.
    Roth, S. H., Skrajny, B., and Reiffenstein, R. J. (1995) Alteration of the morphology and neurochemistry of the developing mammalian nervous system by hydrogen sulfide. Clin. Exp. Pharmacol Physiol. 22, 379–380PubMedCrossRefGoogle Scholar
  33. 33.
    Dello Russo, C., Tringali, G., Ragazzoni, E., Maggiano, N., Menini, E., Vairano, M., Preziosi, P., and Navarra, P. (2000) Evidence that hydrogen sulphide can modulate hypothalamopituitary-adrenal axis function: in vitro and in vivo studies in the rat. J Neuroendocrinol. 12, 225–233CrossRefGoogle Scholar
  34. 34.
    Warenycia, M. W., Steele, J. A., Karpinski, E., and Reiffenstein, R. J. (1989) Hydrogen sulfide in combination with taurine or cysteic acid reversibly abolishes sodium currents in neuroblastoma cells. Neurotoxicology 10, 191–199PubMedGoogle Scholar
  35. 35.
    Kombian, S. B., Warenycia, M. W., Mee, F., and Reiffenstein, R. J. (1988) Effects of acute intoxication with hydrogen sulfide on central amino acid transmitters systems. Neurotoxicology 9, 587–596PubMedGoogle Scholar
  36. 36.
    Reiffenstein, R. J., Hulbert, W. C., and Roth, S. H. (1992) Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol. 32, 109–134PubMedCrossRefGoogle Scholar
  37. 37.
    Kimura, H. (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Commun. 267, 129–133PubMedCrossRefGoogle Scholar
  38. 38.
    Chen, P., Poddar, R., Tipa, E. V., Dibello, P. M., Moravec, C. D., Robinson, K., Green, R., Kruger, W. D., Garrow, T. A., and Jacobsen, D. W. (1999) Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv. Enzyme Regul. 39, 93–109PubMedCrossRefGoogle Scholar
  39. 39.
    Bao, L., Vleek, C., Paces, V., and Kraus, J. P. (1998) Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch. Biochem. Biophys. 350, 95–103PubMedCrossRefGoogle Scholar
  40. 40.
    Doughty, J. M., Plane, F., and Langton, P. D. (1999) Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. Am. J Physiol. 276, H1107-H1112PubMedGoogle Scholar
  41. 41.
    Guidotti, T. L. (1996) Hydrogen sulfide. Occup. Med. 46, 367–371CrossRefGoogle Scholar
  42. 42.
    Bartholomew, T. C., Powell, G. M., Dodgson, K. S., and Curtis, C. G. (1980) Oxidation of sodium sulphide by rat liver, lungs and kidney. Biochem. Pharmacol 29, 2431–2437PubMedCrossRefGoogle Scholar
  43. 43.
    Nicholls, P., and Kim, J. K. (1981) Oxidation of sulphide by cytochrome aa3. Biochim. Biophys. Acta 637, 312–320PubMedCrossRefGoogle Scholar
  44. 44.
    Valentine, W. N., Toohey, J. I., Paglia, D. E., Nakatani, M., and Brockway, R. A. (1987) Modification of erythrocytes enzyme activities by persulfides and methanethiol: possible regulatory role. Proc. Natl Acad. Sci. USA 84, 1394–1398PubMedCrossRefGoogle Scholar
  45. 45.
    Wood, J. L. (1982) Biochemical functions of persulfides. Adv. Exp. Med. Biol. 148, 327–342PubMedCrossRefGoogle Scholar
  46. 46.
    Nicholls, P. (1961) The formation and properties of sulphmyoglobin and sulphcatalase. Biochen. J 81, 374–383Google Scholar
  47. 47.
    Bruno, S., Schiaretti, F., Burkhard, P., Kraus, J. P., Janosik, M., Mozzarelli, A. (2001) Functional properties of the active core of human cystathionine beta-synthase crystals. J Biol. Chem. 276, 16–19PubMedCrossRefGoogle Scholar
  48. 48.
    Kredich, N. M., Keenan, B. S., and Foote, L. J. (1972) The purification and subunit structure of cysteine desulfhydrase from Salmonella typhimurium. J Biol. Chem. 244, 7157–7162Google Scholar
  49. 49.
    Manteuffeil-Cymborowska, M., Chmurzynska, W., and Grzelakowska-Sztabert, B. (1992) Tissue-specific effects of testosterone on 5-adenosylmethionine formation and utilization in the mouse. Biochim. Biophys. Acta 1116, 166–172CrossRefGoogle Scholar
  50. 50.
    Finkelstein, J. D., Kyle, W. E., Martin, J. J., and Pick, A. M. (1975) Activation of cystathionine synthase by adenosylmethionine and adenosylmethionine. Biochem. Biophys. Res. Commun. 66, 81–87PubMedCrossRefGoogle Scholar
  51. 51.
    Eberhardt, R. T., Forgione, M. A., Cap, A., Leopold, J. A., Rudd, M. A., Trolliet, M., Heydrick, S., Stark, R., Klings, E. S., Moldovan, N. I., Yaghoubi, M., Goldschmidt-Clermont, P. J., Farber, H. W., Cohen, R., and Loscalzo, J. (2000) Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J. Clin. Invest. 106, 483–491PubMedCrossRefGoogle Scholar
  52. 52.
    Boers, G. H., Smals, A. G. H., Trijbels, F. J. M., Fowler, B., Bakkeren, J. A. J. M., Schoonderwaldt, H. C., Kleijer, W. J., and Kloppenborg, P. W. C. (1985) Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. New Engl. J. Med. 313, 709–715PubMedCrossRefGoogle Scholar
  53. 53.
    Mudd, S. H., Levy, H. L., and Skovby, F. (1995) In The Metabolic Basis of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds) 7th Ed, Vol. 1, pp. 1279–1327, McGraw-Hill, New YorkGoogle Scholar
  54. 54.
    Chadefaux, B., Ceballos, I., Hamet, M., Coude, M., Poissonnier, M., Kamoun, P., and Allard, D. (1988) Is absence of atheroma in Down syndrome due to decreased homocysteine levels? Lancet 2, 741PubMedCrossRefGoogle Scholar
  55. 55.
    Kamoun, P. (2001) Mental retardation in Down syndrome: a hydrogen sulfide hypothesis. Med. Hypotheses 57, 389–392PubMedCrossRefGoogle Scholar
  56. 56.
    Berger, P. B., Jones, J. D., Olson, L. J., Edwards, B. S., Frantz, R. P., Rodeheffer, R. J., Kottke, B. A., Daly, R. C., and McGregor, C. G. A. (1995) Increase in total plasma homocysteine concentration after cardiac transplantation. Mayo Clin. Proc. 70, 125–131PubMedCrossRefGoogle Scholar
  57. 1.
    Lippmann M. Introduction and background. In: Lippmann M, ed. Environmental Toxicants: Human Exposure and Their Health Effects. John Wiley: New York, 2000.Google Scholar
  58. 2.
    Jain KK. Carbon Monoxide Poisoning. Warren H. Green: St. Louis, MO, 1990.Google Scholar
  59. 3.
    Pace NR. A molecular view of microbial diversity and the biosphere. Science 1997;276:734–740.PubMedCrossRefGoogle Scholar
  60. 4.
    Anderson IC, Poth M, Homstead J, et al. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl Environ Microbiol 1993;59:3525–3533.PubMedGoogle Scholar
  61. 5.
    Indrehus O, Vassbotn P. CO and NO2 pollution in a long two-way traffic road tunnel: investigation of NO2/NOx ratio and modelling of NO2 concentration. J Environ Monit 2001;3:221–225.PubMedCrossRefGoogle Scholar
  62. 6.
    Schlesinger RB. Nitrogen oxides. In: Lippmann M, ed. Environmental Toxicants-Human Exposure and Their Health Effects. John Wiley: New York, 2000.Google Scholar
  63. 7.
    Vleeming W, Rambali B, Opperhuizen A. The role of nitric oxide in cigarette smoking and nicotine addiction. Nicotine Tob Res 2002;4:341–348.PubMedCrossRefGoogle Scholar
  64. 8.
    Stuven R, Bock E. Nitrification and denitrification as a source for NO and NO2 production in highstrength wastewater. Water Res 2001;35:1905–1914.PubMedCrossRefGoogle Scholar
  65. 9.
    Mercer RR, Costa DL, Crapo JD. Effects of prolonged exposure to low doses of nitric oxide or nitrogen dioxide on the alveolar septa of the adult rat lung. Lab Invest 1995;73:20–28.PubMedGoogle Scholar
  66. 10.
    Sagai M, Ichinose T, Kubota K. Studies on the biochemical effects of nitrogen dioxide. IV. Relation between the change of lipid peroxidation and the antioxidative protective system in rat lungs upon life span exposure to low levels of NO2. Toxicol Appl Pharmacol 1984;73:444–456.PubMedCrossRefGoogle Scholar
  67. 11.
    Prutz WA, Monig H, Butler J, et al. Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. Arch Biochem Biophys 1985;243:125–134.PubMedCrossRefGoogle Scholar
  68. 12.
    Giroux M, Ruidavets JB, Ferreres J. Atmospheric NO, temperature and ischaemic heart disease: study in Toulouse and its conurbation. Sci Total Environ 2000;246:293,294.Google Scholar
  69. 13.
    Rowland A, Murray AJ, Wellburn AR. Oxides of nitrogen and their impact upon vegetation. Rev Environ Health 1985;5:295–342.PubMedGoogle Scholar
  70. 14.
    U.S. Centers for Diseases Control. Carbon monoxide intoxication-a preventable environmental health hazard. Morb Mortal Weekly Rep 1982;31:529–531.Google Scholar
  71. 15.
    Roughton FJW. The equilibrium of carbon monoxide with human hemoglobin in whole blood. In: Biological Effects of Carbon Monoxide, Proceedings of a Conference. Ann NY Acad Sci 1970; 174:177–188.Google Scholar
  72. 16.
    Lukin JA, Simplaceanu V, Zou M, et al. NMR reveals hydrogen bonds between oxygen and distal histidines in oxyhemoglobin. Proc Natl Acad Sci USA 2000;97:10,354–10,358.CrossRefGoogle Scholar
  73. 17.
    World Health Organization. Environmental Health Criteria 213. Carbon Monoxide. 2nd ed. World Health Organization: Geneva, 1999.Google Scholar
  74. 18.
    Stewart RD, Baretta ED, Platte LR, et al. Carboxyhemoglobin levels in American blood donors. JAMA 1974;229:1187–1195.PubMedCrossRefGoogle Scholar
  75. 19.
    Stern FB, Halperin WE, Hornung RW, et al. Heart disease mortality among bridge and tunnel officers exposed to carbon monoxide. Am J Epidemiol 1988;128:1276–1288.PubMedGoogle Scholar
  76. 20.
    Penney DG, Howley JW. Is there a connection between carbon monoxide exposure and hypertension? Environ Health Perspect 1991;95:191–198.PubMedCrossRefGoogle Scholar
  77. 21.
    Krupski WC. The peripheral vascular consequences of smoking. Ann Vasc Surg 1991;5:291–304.PubMedCrossRefGoogle Scholar
  78. 22.
    Penney DG, Skikun RM. Hypertension is not exacerbated by chronic carbon monoxide exposure, with or without added salt, in the borderline hypertensive rat. Arch Toxicol Suppl 1991;14:118–123.PubMedCrossRefGoogle Scholar
  79. 23.
    Penney DG. A review: hemodynamic response to carbon monoxide. Environ Health Perspect 1988;77:121–130.PubMedGoogle Scholar
  80. 24.
    Penney DG, Bugaisky LB. Non-coordinate expression of collagen mRNAs during carbon monoxideinduced cardiac hypertrophy. Mol Cell Biochem 1992;109:37–41.PubMedCrossRefGoogle Scholar
  81. 25.
    Penney DG, Giraldo AA, Van Egmond EM. Coronary vessel alterations following chronic carbon monoxide exposure in the adult rat. J Appl Toxicol 1994;14:47–54.PubMedCrossRefGoogle Scholar
  82. 26.
    Penney DG, Giraldo AA, Van Egmond EM. Chronic carbon monoxide exposure in young rats alters coronary vessel growth. J Toxicol Environ Health 1993;39:207–222.PubMedCrossRefGoogle Scholar
  83. 27.
    Smith RP, Gosselin RE. Hydrogen sulfide poisoning. J Occup Med 1979;21:93–97.PubMedCrossRefGoogle Scholar
  84. 28.
    Winder CV, Winder HO. The seat of action of sulfide on pulmonary ventilation. Am J Physiol 1933;105:337–352.Google Scholar
  85. 29.
    Carlos V. Lozano. Gas leak near Ventura kills 3 oil workers (hydrogen sulfide gas leak near Vintage Petroleum’s plant). Los Angeles Times. August 11,1994:113,A1, col 5 (21 col in).Google Scholar
  86. 30.
    U.S. Environmental Protection Agency (EPA). Health assessment document for hydrogen sulfide. Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development. Research Triangle Park, NC: EPA. 1992:EPA/600/8–86/026FGoogle Scholar
  87. 31.
    Snyder JW, Safir EF, Summerville GP, et al. Occupational fatality and persistent neurological sequela after mass exposure to hydrogen sulfide. Am J Emerg Med 1995:13:199–203.PubMedCrossRefGoogle Scholar
  88. 32.
    Evans CL. The toxicity of hydrogen sulfide and other sulfides. J EXp Phvsiol 1967;52:231–748Google Scholar
  89. 33.
    Finklea JF. Criteria for a recommended standard: occupational exposure to hydrogen sulfide. DHEW (NIOSH). 1997:77–158.Google Scholar
  90. 34.
    Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 1992;32:109–134.PubMedCrossRefGoogle Scholar
  91. 35.
    Guidotti TL. Occupational exposure to hydrogen sulfide in the, sour gas industry: some unresolved issues. Int Arch Occup Environ Health 1994;66:153–160.PubMedCrossRefGoogle Scholar
  92. 36.
    Legator MS, Singleton CR, Morris DL, et al. Health effects from chronic low-level exposure to hydrogen sulfide. Arch Environ Health 2001;56:123–131.PubMedCrossRefGoogle Scholar
  93. 37.
    Beauchamp RO Jr., Bus JS, Popp JA, et al. A critical review of the literature on hydrogen sulfide toxicity. CRC Crit Rev Toxicol 1984:13:25–97.CrossRefGoogle Scholar
  94. 38.
    Bates MN, Garrett N, Graham B, et al. Air pollution and mortality in the Rotorua geothermal area. Aust N Z J Public Health 1997:21:581–586.PubMedCrossRefGoogle Scholar
  95. 39.
    Bates MN, Garrett N, Graham B, et al. Cancer incidence, morbidity, and geothermal pollution in Rotorua, New Zealand. Int J Epidemiol 1998;27:10–14.PubMedCrossRefGoogle Scholar
  96. 40.
    Bates MN, Garrett N, Shoemack P. Investigation of health effects of hydrogen sulfide from a geothermal source. Arch Environ Health 2002:57:405–411.PubMedCrossRefGoogle Scholar
  97. 41.
    Xu X, Cho SI, Sammel M, et al. Association of petrochemical exposure with spontaneous abortion. Occup Environ Med 1998;55:31–36PubMedCrossRefGoogle Scholar
  98. 42.
    U.S. Department of Health and Human Services. Toxicological Profile for Hydrogen Sulfide. Agency for Toxic Substances and Disease Registry: Atlanta, GA, 1999.Google Scholar
  99. 43.
    Logue JN, Ramaswamy K, Hersh JH. Investigation of illness associated with exposure to hydrogen sulfide among Pennsylvania school students. J Environ Health 200:63:9–13Google Scholar
  100. 44.
    Wang R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 1998;76:1–15.PubMedCrossRefGoogle Scholar
  101. 45.
    Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 1999;19:51–71.PubMedCrossRefGoogle Scholar
  102. 46.
    Bian K, Murad F. Nitric oxide (NO)-biogeneration, regulation, and relevance to human diseases. Front Biosci 2003;8:D264-D278.PubMedCrossRefGoogle Scholar
  103. 47.
    Siöstrand T. Endogenous formation of carbon monoxide. Acta Physiol Scand 1950;22:137–141.Google Scholar
  104. 48.
    Stevens CF, Wang Y. Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature 1993;364:147–149.PubMedCrossRefGoogle Scholar
  105. 49.
    Zhuo M, Small SA, Kandel ER, et al. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hipnocampus. Science 1993:260:1946–1950PubMedCrossRefGoogle Scholar
  106. 50.
    Wang R. CO and cardiovascular functions. CPC Press: Boca Raton, FL, 2001.CrossRefGoogle Scholar
  107. 51.
    Abraham NG, Alam J, Nath K, et al. Herne Oxygenase in Biology and Medicine. Plenum Press, New York, 2002.CrossRefGoogle Scholar
  108. 52.
    Marks GS, Brien JF, Nakatsu K, et al. Does carbon monoxide have a physiological function? Trends Pharmacol Sci 1991;12:185–188.PubMedCrossRefGoogle Scholar
  109. 53.
    Wang R. Two’s company, three’s a crowd-can H25 be the third endogenous gaseous transmitter? FASEB J 2002;16:1792–1798.PubMedCrossRefGoogle Scholar
  110. 54.
    Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 1982;206:267–277.PubMedGoogle Scholar
  111. 55.
    Awata S, Nakayama K, Suzuki I, et al. Effect of cysteine on the inactivation of cystathionine gammalyase by D,L-propargylglycine. Acta Med Okayama 1989;43:329–335.PubMedGoogle Scholar
  112. 56.
    Dello Russo C, Tringali G, Ragazzoni E, et al. Evidence that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat. J Neuroendocrinol 2000;12:225–233.CrossRefGoogle Scholar
  113. 57.
    Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 1996;16:1066–1071.PubMedGoogle Scholar
  114. 58.
    Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 2000;267:129–133.PubMedCrossRefGoogle Scholar
  115. 59.
    Zhao W, Zhang J, Lu Y, et al. H2Sisan endogenous KATp channel opener in vascular smooth muscle cells. EMBO J 2001;20:6008–6016.PubMedCrossRefGoogle Scholar
  116. 60.
    Zhao W, Wang R. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol 2002;283:H474-H480.Google Scholar
  117. 61.
    Teague B, Asiedu S, Moore PK. The smooth muscle relaxant efrect or nyarogen suiphiue in VIL1o. evidence for a physiological role to control intestinal contractility. Br J Pharmacol 2002;137:139–145.PubMedCrossRefGoogle Scholar
  118. 62.
    Tan DX, Manchester LC, Hardeland R, et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 2003;34:75–78.PubMedCrossRefGoogle Scholar
  119. 63.
    Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. 4th ed. McGraw-Hill: New York, 2000.Google Scholar
  120. 64.
    Cary SP, Marietta MA. The case of CO signaling: why the jury is still out. J Clin Invest 2001;107:1071–1073.PubMedCrossRefGoogle Scholar
  121. 65.
    Stamler JS, Simon DI, Osborne JA, et al. S-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992;89:444–448.PubMedCrossRefGoogle Scholar
  122. 66.
    Wang R, Wu L. The chemical modification of KCa channels by carbon monoxide in vascular smootn muscle cells. J Biol Chem 1997;272:8222–8226.PubMedCrossRefGoogle Scholar
  123. 67.
    Wang R, Wu L, Wang ZZ. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflügers Arch 1997;434:285–291.PubMedCrossRefGoogle Scholar
  124. 68.
    Wu L, Cao K, Lu Y, et al. Different mechanisms underlying the stimulation of KCa channels by nitric oxide and carbon monoxide. J Clin Invest 2002;110:691–700.PubMedGoogle Scholar
  125. 69.
    Cooke JP. The 1998 Nobel Prize in medicine: clinical implications for 1999 ana beyona. Vasc Med 1999;4:57–60.PubMedGoogle Scholar
  126. 70.
    Brattstrom LE, Hardebo JE, Hultberg BL. Moderate homocysteinemia-a possible risk tactor for arteriosclerotic cerebrovascular disease. Stroke 1984;15:1012–1016.PubMedCrossRefGoogle Scholar
  127. 71.
    Chen P, Poddar R, Tipa EV, et al. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 1999;39:93–109.PubMedCrossRefGoogle Scholar
  128. 72.
    Jiang ZY, Costachescu T, Derouin M, et al. Treatment of pulmonary hypertension during surgery witn nitric oxide and vasodilators. Can J Anaesth 2000;47:552–555.PubMedCrossRefGoogle Scholar
  129. 73.
    Hubert MB, Salazkin I, Desjardins J, et al. Cardiopulmonary bypass surgery in swine: a researcn model. JEANS 2004;in press.Google Scholar
  130. 74.
    Melo LG, Agrawal R, Zhang L, et al. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 2002;105:602–607.PubMedCrossRefGoogle Scholar
  131. 75.
    Ndisang JF, Wang R, Vannacci A, et al. Haeme oxygenase-1 and cardiac anaphylaxis. Br J lharmacol 2001;134:1689–1696.CrossRefGoogle Scholar
  132. 76.
    Ndisang JF, Wang R. Mechanisms underlying selective reguiation or p1000 pressure by heime oxygenase-1 in hypertension. Hypertension 2002;40:315–321.PubMedCrossRefGoogle Scholar
  133. 77.
    Katori M, Busuttil RW, Kupiec-Weglinski JW. Herne oxygenase-1 system in organ transplantation. Transplantation 2002;74:905–912.PubMedCrossRefGoogle Scholar
  134. 78.
    Chauveau C, Bouchet D, Roussel JC, et al. Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am J Transplant 2002;2:581–592.PubMedCrossRefGoogle Scholar
  135. 79.
    Partlo LA, Sainsbury RS, Roth SH. Effects of repeated hydrogen sulphide (H2S) exposure on learning and memory in the adult rat. Neurotoxicology 2001;22:177–189.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Rui Wang

There are no affiliations available

Personalised recommendations