Advertisement

The Role of ELR+-CXC Chemokines in Wound Healing and Melanoma Biology

  • Ann Richmond
  • Jing Luan
  • Jianguo Du
  • Hamid Haghnegahdar
Chapter
Part of the Contemporary Immunology book series (CONTIM)

Abstract

Chemokines are small proinflammatory peptides that regulate trafficking, activation, and sometimes the proliferation of myeloid, lymphoid, melanocytes, keratinocytes, and endothelial cells (1). The chemokines have been divided into four subfamilies based upon structure and function: the CXC, CX3C, CC, and C chemokines (2–4). The CXC chemokine family includes four MGSA/GRO melanoma growth stimulatory activity/ growth-related oncogene genes (α,β,γ,δ) as well as interleukin 8 (IL-8), gamma interferon-inducible gene (IP-10), monocyte induced by y-interferon (MIG), ENA-78, granulocyte chemotactic protein-2 (GCP-2), neutrophil activating peptide-2, the mitogen for B-cell progenitors known as stromal derived factor-1 (SDF-1), and others (2,5–14). The proteins encoded by these genes exhibit an NH2 terminal cysteine alignment of two cysteines separated by an intervening amino acid (CXC) (2,15–17) (see Table 1). The CXC chemokines that contain an ELR motif at the amino terminus are angiogenic (IL-8, MGSA/GRO, NAP-2, ENA-78, GCP-2), whereas those not containing this motif are angiostatic (MIG, IP-10, PF-4) (18). The murine MGSA/GRO orthologs are KC and MIP-2. The chemokine-β subfamily, noted by two adjacent cysteines (CC) at the N terminus, includes RANTES, MCP-1-3, MIP-1α and β, and numerous others (2,19). Only one γ-chemokine has been identified, lymphotactin, and this chemokine is characterized by a single conserved cysteine in the amino terminus of the protein (3). Lymphotactin is expressed in progenitor T-cells and is chemotactic for lymphocytes but not monocytes or neutrophils.

Keywords

Wound Healing Melanoma Cell Chemokine Receptor Melanoma Cell Line Angiogenic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Richmond, A. and Shattuck, R. L. 1996 Melanoma growth stimulatory activity: physiology, biology, structure/function, and role in disease, in Chemoattractant Ligands and their Receptors Horuk, R., ed., Boca Raton, CRC Press, pp. 87–124.Google Scholar
  2. 2.
    Baggiolini, M., Dewald, B., and Moser, B. 1994 Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. 55, 97–179.Google Scholar
  3. 3.
    Kelner, G. S., Kennedy, J., Bacon, K. B., Kleyensteuber, S., Largaespada, D. A., Jenkins, N. A., Copeland, N. G., Bazan, J. F., Moore, K. W., Schall, T. J., and Zlotnik, A. 1994 Lymphotactin: a cytokine that represents a new class of chemokine. Science 266, 1395–1399.PubMedCrossRefGoogle Scholar
  4. 4.
    Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D. R., Zlotnik, A., and Schall, T. J. 1997 A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644.PubMedCrossRefGoogle Scholar
  5. 5.
    Shattuck, R. S., Wood, L. D., and Richmond, A. 1997 Identification and characterization of an MGSA/GRO Pseudogene. DNA Sequence 7, 379–386.Google Scholar
  6. 6.
    Haskill, S., Peace, A., Morris, J., Sporn, S. A., Anisowicz, A., Lee, S. W., Smith, T., Martin, G., Ralph, P., and Sager, R. 1990 Identification of three related human GRO genes encoding cytokine functions. Proc. Natl. Acad. Sci. USA 87, 7732–7736.Google Scholar
  7. 7.
    Ohmori, Y. and Hamilton, T. A. 1990 A macrophage LPS-inducible early gene encodes the murine homologue of IP-10. Biochem. Biophys. Res. Commun. 168, 1261–1267.Google Scholar
  8. 8.
    Amichay, D., Gazzinelli, R. T., Karupiah, G., Moench, T. R., Sher, A., Farber, J. M. 1996 Genes for chemokines mumig and crg-2 are induced in protozoan and viral infections in response to IFN-#x03B3;with patterns of tissue expression that suggest nonredundant roles in vivo. J. Immunol. 157, 4511–4520.PubMedGoogle Scholar
  9. 9.
    Stoeckle, M. Y. and Barker, K. A. 1990 Two burgeoning families of platelet factor 4-related proteins: mediators of the inflammatory response. The New Biologist 2, 313–323.PubMedGoogle Scholar
  10. 10.
    Castor, C. W., Miller, J. W. and Walz, D. A. 1983. Structural and biological characteristics of connective tissue activating peptide CTAP-III, a major human platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 80, 765–769.Google Scholar
  11. 11.
    Walz, A., Burgener, R., Car, B., Baggiolini, M., Kunkel, S. L., and Strieter, R. M. 1991 Structure and neutrophil-activating properties of a novel inflammatory peptide ENA-78 with homology to interleukin 8. J. Exp. Med. 174, 1355–1362.Google Scholar
  12. 12.
    Proost, P., Wuyts, A., Conings, R., Lenaerts, J. P., Billiau, A., Opdenakker, G., and Van Damme, J. 1993 Human and bovine granulocyte chemotactic protein-2: complete amino acid sequence and functional characterization as chemokines. Biochemistry 32, 10,170–10,177.Google Scholar
  13. 13.
    Smith, J. B. and Herschman, H. R. 1995 Glucocorticoid-attenuated response genes encode intercellular mediators, including a new C-X-C chemokine. J. Biol. Chem. 270,16,756–16,765.Google Scholar
  14. 14.
    Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. 1996 Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638.PubMedCrossRefGoogle Scholar
  15. 15.
    Richmond, A., Balentien, E., Thomas, H. G., Flaggs, G., Barton, D. E., Spiess, J., Bordoni, R., Francke, U., and Derynck, R. 1988 Molecular characterization of melanoma growth stimulatory activity, a growth factor structurally related to #x03B2;#x03B2;-thromboglobulin. EMBO J. 7, 2025–2033.PubMedGoogle Scholar
  16. 16.
    Anisowicz, A., Zajchowski, D., Stenman, G., and Sager, R. 1988 Functional diversity of gro gene expression in human fibroblasts and mammary epithelial cells. Proc. Natl. Acad. Sci. USA 85, 9645–9649.Google Scholar
  17. 17.
    Anisowicz, A., Bardwell, L., and Sager, R. 1987 Constitutive overexpression of a growthregulated gene in transformed Chinese hamster and human cells. Proc. Natl. Acad. Sci. USA 84, 7188–7192.Google Scholar
  18. 18.
    Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., Dzuiba, J., Van Damme, J., Walz, A., Marriott, D., Chan, S. Y., Roczniak, S., and Shanafelt, A. B. 1995 The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27,348–27,357.Google Scholar
  19. 19.
    Wilson, S. D., Billings, P. R., D’Eustachio, P., Fournier, R. E. K., Geissler, E., Lalley, P. A., Burd, P. R., Housman, D. E., Taylor, B. A., and Dorf, M. E. 1990 Clustering of cytokines genes on mouse chromosome 11. J. Exp. Med. 17, 1301–1314.Google Scholar
  20. 20.
    Wen, D., Rowland, A., and Derynck, R. 1989 Expression and secretion of gro/MGSA by stimulated human endothelial cells. EMBO J. 1761–1766.Google Scholar
  21. 21.
    Rollins, B. J., Morrison, E. D., and Stiles, C. D. 1987 A cell-cycle constraint on the regulation of gene expression by platelet-derived growth factor. Science 238, 1269–1271.PubMedCrossRefGoogle Scholar
  22. 22.
    Cochran, B. H., Reffel, A. C., and Stiles, C. D. 1983 Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 32, 939–947.CrossRefGoogle Scholar
  23. 23.
    Shattuck, R. L., Wood, L. D., Jaffe, G. J., and Richmond, A. 1994 MGSA/GRO transcription is differentially regulated in normal retinal pigment epithelial and melanoma cells. Mol. Cell. Biol. 14, 791–802.Google Scholar
  24. 24.
    Ohmori, Y., Wyner, L., Narumi, S., Armstrong, D., Stoler, M., and Hamilton, T. A. 1993 Tumor necrosis factor-a induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. Am. J. Pathol. 142, 861–870.Google Scholar
  25. 25.
    Bork, R. W., Svenson, K. L., Mehrabian, M., Lusis, A. J., Fogelman, A. M., and Edwards, P.A .1992 Mechanisms controlling competence gene expression in murine fibroblasts stimulated with minimally modified LDL. Arterioscler. Thromb. 12, 800–806.Google Scholar
  26. 26.
    Sager, R. 1990 GRO as a cytokine. Mol. Cell. Biol. Cytokines 327–332.Google Scholar
  27. 27.
    Coffey, R. J., Bascom, C. C., Sipes, N. J., Graves-Deal, R., Weissman, B. E., and Moses, H. L. 1988 Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor-#x03B2;#x03B2;. Mol. Cell. Biol. 8, 3088–3093.Google Scholar
  28. 28.
    Pittelkow, M. R. and Shipley, G. D. 1989 Serum-free culture of normal human melanocytes: growth kinetics and growth factor requirements. J. Cell Physiol. 140, 565–576.PubMedCrossRefGoogle Scholar
  29. 29.
    Rameh, L. E. and Armelin, M. C. S. 1992 Downregulation of JE and KC genes by glucocorticoids does not prevent the G0 G1 transition in BALB/3T3 cells. Mol. Cell. Biol. 12, 4612–4621.Google Scholar
  30. 30.
    Levine, S. J., Lariv#x00E9;e, P., Logun, C., Angus, C. W., and Shelhamer, J. H. 1993 Corticosteroids differentially regulate secretion of IL-6, IL-8, and G-CSF by a human bronchial epithelial cell line. Am. J. Physiol. Lung Cell. Mol. Physiol. 26, L360#x2014;L368.Google Scholar
  31. 31.
    Deng, Z. W., Denkinger, D. J., Peterson, K. E., Deuel, T. F., and Kawahara, R. S. 1994 Glucocorticoids negatively regulate the transcription of KC, the mouse homolog of MGSA/ GRO. Biochem. Biophys. Res. Commun. 203, 1809–1814.Google Scholar
  32. 32.
    Haddad, E. B., Salmon, M., Sun, J., Liu, S., Das, A., Adcock, I., Barnes, P. J., and Chung, K. F. 1995 Dexamethasone inhibits ozone-induced gene expression of macrophage inflammatory protein-2 in rat lung. FEBS Lett. 363, 285–288.PubMedCrossRefGoogle Scholar
  33. 33.
    Murphy, P. M. and Lee, T. H. 1991 Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253, 1280–1283.PubMedCrossRefGoogle Scholar
  34. 34.
    Holmes, W. E., Lee, J., Kuang, W.-J., Rice, G., and Wood, W. I. 1991 Structure and functional expression of a human interleukin-8 receptor. Science 253, 1278–1280.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahuja, S. K. and Murphy, P. M. 1996 The CXC chemokines growth-regulated oncogene GRO alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cellderived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J. Biol. Chem. 271, 20,545–20,550.Google Scholar
  36. 36.
    Wuyts, A., Van Osselaer, N., Haelens, A., Samson, I., Herdewijn, P., Ben-Baruch, A., Oppenheim, J. J., Proost, P., and Van Damme, J. 1997 Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties. Biochemistry 36, 2716–2723.PubMedCrossRefGoogle Scholar
  37. 37.
    Moser, B., Schumacher, C., Von Tscharner, V., Clark-Lewis, I., and Baggiolini, M. 1991 Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J. Biol. Chem. 266, 10,666–10,671.Google Scholar
  38. 38.
    Schumacher, C., Clark-Lewis, I., Baggiolini, M., and Gierschik, P. 1992 High- and lowaffinity binding of GRO-alpha on neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Proc. Natl. Acad. Sci. USA 89,10,542–10,546.Google Scholar
  39. 39.
    Morris, S. W., Nelson, N., Valentine, M. B., Shapiro, D. N., Look, A. T., Kozlosky, C. J., Beckmann, M. P., and Cerretti, D. P. 1992 Assignment of the genes encoding human interleukin-8 receptor types 1 and 2 and an interleukin-8 receptor pseudogene to chromosome 2q35. Genomics 14, 685–691.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee, J., Horuk, R., Rice, G. C., Bennett, G. L., Camerato, T., and Wood, W. I. 1992 Characterization of two high affinity human interleukin-8 receptors. J. Biol. Chem. 267,16,283–16,287.Google Scholar
  41. 41.
    Samanta, A. K., Oppenheim, J. J., and Matsushima, K. 1989 Identification and characterization of specific receptors for monocyte-derived neutrophil chemotactic factor MDNCF on human neutrophils. J. Exp. Med. 169,1185–1189.Google Scholar
  42. 42.
    Cacalano, G., Lee, J., Kikly, K., Ryan, A. M., Pitts-Meek, S., Hultgren, B., Wood, W. I., and Moore, M. W. 1994 Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684.PubMedCrossRefGoogle Scholar
  43. 43.
    Harada, A., Kuno, K., Nomura, H., Mukaida, N., Murakami, S., and Matsushima, K. 1994 Cloning of a cDNA encoding a mouse homolog of the interleukin-8 receptor. Gene 142, 297–300.PubMedCrossRefGoogle Scholar
  44. 44.
    Bozic, C. R., Kolakowski, L. F. J., Gerard, N. P., Garcia-Rodriguez, C., Von UexkullGuldenband, C., Conklyn, M. J., Breslow, R., Showell, H. J., and Gerard, C. 1995 Expression and biologic characterization of the murine chemokine KC. J. Immunol. 154, 6048–6057.PubMedGoogle Scholar
  45. 45.
    Heinrich, J. and Bravo, R. 1995 N51 Competes 125I-interleukin IL-8 binding to IL-8RB but not IL-Ra. J. Biol. Chem. 270, 28,041–28,017.Google Scholar
  46. 46.
    Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.-L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J.-M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B. 1996 The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835.PubMedCrossRefGoogle Scholar
  47. 47.
    Ahuja, S. K., Gao, J., and Murphy, P. M. 1994 Chemokine receptors and molecular mimicry. Immunol. Today 15, 281–287.Google Scholar
  48. 48.
    Ahuja, S. K. and Murphy, P. M. 1993 Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J. Biol. Chem. 268, 20,691–20,694.Google Scholar
  49. 49.
    Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. 1997 Human herpesvirus KSHV encodes a constitutively active G protein-coupled receptor linked to cell proliferation. Nature 385, 347–349.PubMedCrossRefGoogle Scholar
  50. 50.
    Moore, J. P. 1997 Co-receptors for hiv-1 entry review. Curr. Opin. Immunol. 9, 551–562.Google Scholar
  51. 51.
    Norbiato, G., Bevilacqua, M., Vago, T., and Clerici, M. 1996 Glucocorticoids and interferon-alpha in the acquired immunodeficiency syndrome. J. Clin. Endocrinol. Metab. 81, 2601–2606.Google Scholar
  52. 52.
    Horuk, R., Chitnis, C. E., Darbonne, W. C., Colby, T. J., Rybicki, A., Hadley, T. J., and Miller, L. H. 1993 A receptor for the malarial paraside plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182–1184.PubMedCrossRefGoogle Scholar
  53. 53.
    Neote, K., Darbonne, W., Ogez, J., Horuk, R., and Schall, T. J. 1993 Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. J. Biol. Chem. 268, 12,247–12,249.Google Scholar
  54. 54.
    Szabo, M. C., Soo, K. S., Zlotnik, A., and Schall, T. J. 1995 Chemokine class differences in binding to the Duffy antigen-erythrocyte chemokine receptor. J. Biol. Chem. 270,25,348–25,351.Google Scholar
  55. 55.
    Peiper, S. C., Wang, Z., Neote, K., Martin, A. W., Showell, H. J., Conklyn, M. J., Ogborne, K., Hadley, T. J., and Lu, Z. 1995 The Duffy antigen/receptor for chemokines DARC is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med. 181, 1311–1317.Google Scholar
  56. 56.
    Hesselgesser, J., Chitnis, C. E., Miller, L. H., Yansura, D. G., Simmons, L. C., Fairbrother, W. J., Kotts, C., Wirth, C., Gillece-Castro, B. L., and Horuk, R. 1995 A mutant of melanoma growth stimulating activity does not activate neutrophils but blocks erythrocyte invasion by malaria. J. Biol. Chem. 270, 11,472–11,476.Google Scholar
  57. 57.
    Unemori, E. N., Amento, E. P., Bauer, E. A., and Horuk, R. 1993 Melanoma growthstimulatory activity/GRO decreases collagen expression by human fibroblasts. Regulation by C-X-C but not C-C cytokines. J. Biol. Chem. 268, 1338–1342.Google Scholar
  58. 58.
    Roby, P. and Page, M. 1995 Cell-binding and growth-stimulating activities of the C-terminal part of human MGSA/groAlpha. Biochem. Biophys. Res. Commun. 206, 792–798.Google Scholar
  59. 59.
    Schroder, J. M., Gregory, H., Young, J., and Christophers, E. 1992 Neutrophil-activating proteins in psoriasis. J. Invest. Dermatol. 98, 241–247.Google Scholar
  60. 60.
    Tettlebach, W., Nanney, L., Ellis, D., King, L. E., and Richmond, A. 1993 Localization of MGSA/GRO protein in cutaneous lesions. J. Cutan. Pathol. 20, 259–266.Google Scholar
  61. 61.
    Strieter, R. M., Polverini, P. J., Arenberg, D. A., Walz, A., Opdenakker, G., Van Damme, J., and Kunkel, S. L. 1995 Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J. Leukoc. Biol. 57, 752–762.Google Scholar
  62. 62.
    Erikson, E. and Maller, J. L. 1989 Biochemical characterization of the p34cdc2 protein kinase component of purified maturation-promoting factor from Xenopus eggs. J. Biol. Chem. 264, 19,577–19,582.Google Scholar
  63. 63.
    Balentien, E., Mufson, B. E., Shattuck, R. L., Derynck, R., and Richmond, A. 1991 Effects of MGSA/GRO#x03B1; on melanocyte transformation. Oncogene 6, 1115–1124.PubMedGoogle Scholar
  64. 64.
    Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., Dzuiba, J., Van Damme, J., Walz, A., and Marriott, D. 1995 The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27,348–27,357.Google Scholar
  65. 65.
    Owen, J. D., Strieter, R., Burdick, M., Haghnegahdar, H., Nanney, L., Shattuckbrandt, R., and Richmond, A. 1997 Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int. J. Cancer 73, 94–103.Google Scholar
  66. 66.
    Balentien, E., Han, J. H., Thomas, H. G., Wen, D., Samantha, A. K., Zachariae, C. O., Griffin, P. R., Brachmann, R., Wong, W. L., Matsushima, K., Richmond, A., and Derynck, R. 1990 Recombinant expression, biochemical characterization, and biological activities of the human MGSA/gro protein. Biochemistry 29, 10,225–10,233.Google Scholar
  67. 67.
    Moser, B., Clark-Lewis, I., Zwahlen, R., and Baggiolini, M. 1990 Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med. 171, 1797–1802.Google Scholar
  68. 68.
    Schroder, J. M., Persoon, N. L. M., and Christophers, E. 1990 Lipopolysaccharide-stimulated human monocytes secrete, apart from neutrophil-activating peptide 1/interleukin 8, a second neutrophil-activating protein-NH2 terminal amino acid sequence identity with melanoma growth stimulatory activity. J. Exp. Med. 171, 1091–1100.Google Scholar
  69. 69.
    Krueger, G., Jorgensen, C., Miller, C., Schroeder, J., Stiecherling, M., and Christophers, E. 1990 Effects of I1–8 on epidermal proliferation. J. Invest. Dermatol. 94, 545.Google Scholar
  70. 70.
    Moser, B., Barella, L., Mattei, S., Schumacher, C., Boulay, F., Colombo, M. P., Baggiolini, M. 1993 Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem. J. 294, 285–292.Google Scholar
  71. 71.
    Dahinden, C. A., Krieger, M., Brunner, T., and Bischoff, S. C. 1994 Basophil activation by members of the chemokine superfamily. Adv. Exp. Med. Biol. 351, 99–110.Google Scholar
  72. 72.
    Broxmeyer, H. E., Sherry, B., Lu, L., Cooper, S., Carow, C., Wolpe, S. D., and Cerami, A. 1989 Myelopoietic enhancing effects of murine macrophage inflammatory proteins 1 and 2 on colony formation in vitro by murine and human bone marrow granulocyte/macrophage progenitor cells. J. Exp. Med. 170, 1583–1594.Google Scholar
  73. 73.
    Broxmeyer, H. E., Sherry, B., Lu, L., Cooper, S., Oh, K.-O., Tekamp-Olson, P., Kwon, B. S., and Cerami, A. 1990 Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells. Blood 76, 1110–1116.PubMedGoogle Scholar
  74. 74.
    Broxmeyer, H. E., Sherry, B., Cooper, S., Lu, L., Maze, R., Beckmann, M. P., Cerami, A., and Ralph, P. 1993 Comparative analysis of the human macrophage inflammatory protein family of cytokines chemokines on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J. Immunol. 150, 3448–3458.Google Scholar
  75. 75.
    Daly, T. J., LaRosa, G. J., Dolich, S., Maione, T. E., Cooper, S., and Broxmeyer, H. E. 1995 High activity suppression of myeloid progenitor proliferation by chimeric mutants of interleukin 8 and platelet factor 4. J. Biol. Chem. 270, 23,282–23,292.Google Scholar
  76. 76.
    Gewirtz, A. M., Zhang, J., Ratajczak, J., Ratajczak, M., Park, K. S., Li, C. Q., Yan, Z. Q., and Poncz, M. 1995 Chemokine regulation of human megakaryocytopoiesis. Blood 86, 2559–2567.PubMedGoogle Scholar
  77. 77.
    Broxmeyer, H. E., Cooper, S., Cacalano, G., Hague, N. L., Bailish, E., and Moore, M. W. 1996 Involvement of interleukin IL 8 receptor in negative regulation of myeloid progenitor cells in vivo#x2014;evidence from mice lacking the murine IL-8 receptor homologue. J. Exp. Med. 184, 1825–1832.Google Scholar
  78. 78.
    Wang, J. B., Mukaida, N., Zhang, Y., Ito, T., Nakao, S., and Matsushima, K. 1997 Enhanced mobilization of hematopoietic progenitor cells by mouse mip-2 and granulocyte colony-stimulating factor in mice. J. Leukoc. Biol. 62, 503–509.Google Scholar
  79. 79.
    Larsen, C., Zachariae, C., Mukaida, N., Anderson, A., Yamada, M., Oppenheim, J., and Matsushima, K. 1990 Proinflammatory cytokines interleukin 1 and tumor necrosis factor induce cytokines that are chemotactic for neutrophils, T cells and monocytes. Prog. Clin. Biol. Res. 349, 419–431.Google Scholar
  80. 80.
    Jinquan, T., Frydenberg, J., Mukaida, N., Bonde, J., Larsen, C. G., Matsushima, K., and Thestrup-Pedersen, K. 1995 Recombinant human growth-regulated oncogene-alpha induces T lymphocyte chemotaxis. A process regulated via lL-8 receptors by IFN-gamma, TNF-alpha, IL-4, IL-10, and IL-13. J. Immunol. 155, 5359–5368.PubMedGoogle Scholar
  81. 81.
    Kojima, T., Cromie, M. A., Fisher, G. J., Voorhees, J. J., Elder, J. T. 1993 GRO-alpha mRNA is selectively overexpressed in psoriatic epidermis and is reduced by cyclosporin A in vivo, but not in cultured keratinocytes. J. Invest. Dermatol. 101, 767–772.Google Scholar
  82. 82.
    Xu, L., Kelvin, D. J., Ye, G. Q., Taub, D. D., Ben-Baruch, A., Oppenheim, J. J., and Wang, J. M. 1995 Modulation of IL-8 receptor expression on purified human T lymphocytes is associated with changed chemotactic responses to IL-8. J. Leukoc. Biol. 57, 335–342.Google Scholar
  83. 83.
    Chuntharapai, A., Lee, J., Hebert, C. A., and Kim, K. J. 1994 Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J. Immunol. 153, 5682–5688.PubMedGoogle Scholar
  84. 84.
    Taub, D. D., Sayers, T. J., Carter, C. R. D., and Ortaldo, J. R. 1995 Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J. Immunol. 155, 3877–3888.PubMedGoogle Scholar
  85. 85.
    Maher, J. J. 1995 Rat hepatocytes and Kupffer cells interact to produce interleukin-8 CINC in the setting of ethanol. Am. J. Physiol. Gastrointest. Liver Physiol. 269, G518–G523.Google Scholar
  86. 86.
    Frevert, C. W., Huang, S., Danaee, H., Paulauskis, J. D., and Kobzik, L. 1995 Functional characterization of the rat chemokine KC and its importance in neutrophil recruitment in a rat model of pulmonary inflammation. J. Immunol. 154, 335–344.PubMedGoogle Scholar
  87. 87.
    Villard, J., Dayer-Pastore, F., Hamacher, J., Aubert, J. D., Schlegel-Haueter, S., and Nicod, L. P. 1995 GRO alpha and interleukin-8 in Pneumocystis carinii or bacterial pneumonia and adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 152, 1549–1554.Google Scholar
  88. 88.
    Koch, A. E., Kunkel, S. L., Shah, M. R., Hosaka, S., Halloran, M. M., Haines, G. K., Burdick, M. D., Pope, R. M., and Strieter, R. M. 1995 Growth-related gene product alpha#x2014;a chemotactic cytokine for neutrophils in rheumatoid arthritis. J. Immunol. 155, 3660–3666.PubMedGoogle Scholar
  89. 89.
    Feng, L., Xia, Y., Yoshimura, T., and Wilson, C. B. 1995 Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 MIP-2 antibody. J. Clin. Invest. 95, 1009–1017.Google Scholar
  90. 90.
    Isaacs, K. L., Sartor, R. B., and Haskill, S. 1992 Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification. Gastroenterology 103, 1587–1595.PubMedGoogle Scholar
  91. 91.
    Sciacca, F. L., Stuerzl, M., Bussolino, F., Sironi, M., Brandstetter, H., Zietz, C., Zhou, D., Matteucci, C., Peri, G., Sozzani, S., Benelli, R., Arese, M., Albini, A., Colotta, F., and Mantovani, A. 1994 Expression of adhesion molecules, platelet-activating factor, and chemokines by Kaposi’s sarcoma cells. J. Immunol. 153, 4816–4825.PubMedGoogle Scholar
  92. 92.
    Denis, M. and Ghadirian, E. 1994 Dysregulation of interleukin 8, interleukin 10, and interleukin 12 release by alveolar macrophages from HIV type 1-infected subjects. AIDS Res. Hum. Retroviruses 10, 1619–1627.Google Scholar
  93. 93.
    Elbim, C., Prevot, M. H., Bouscarat, F., Franzini, E., Chollet-Martin, S., Hakim, J., and Gougerot-Pocidalo, M. A. 1994 Polymorphonuclear neutrophils from human immunodeficiency virus-infected patients show enhanced activation, diminished fMLP-induced L-selectin shedding, and an impaired oxidative burst after cytokine priming. Blood 84, 2759–2766.PubMedGoogle Scholar
  94. 94.
    Dezube, B. J., Pardee, A. B., Beckett, L. A., Ahlers, C. M., Ecto, L., Allen-Ryan, J., Anisowicz, A., Sager, R., and Crumpacker, C. S. 1992 Cytokine dysregulation in AIDS: In vivo overexpression of mRNA of tumor necrosis factor-alpha and its correlation with that of the inflammatory cytokine GRO. J. Acquir. Immune Defic. Syndr. 5, 1099–1104.Google Scholar
  95. 95.
    Mantovani, A., Bussolino, F., and Dejana, E. 1992 Cytokine regulation of endothelial cell function. FASEB J. 6, 2591–2599.PubMedGoogle Scholar
  96. 96.
    Huang, Y. Q., Li, J. J., Kim, K. S., Nicolaides, A., Zhang, W. G., Le, J., Poiesz, B. J., and Friedman-Kien, A. E. 1993 HIV-1 infection and modulation of cytokine and growth factor expression in Kaposi’s sarcoma-derived cells in vitro. AIDS 7, 317–322.PubMedCrossRefGoogle Scholar
  97. 97.
    Cocchi, R., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. 1995 Identification of RANTES, MIP-la, and MIP-1b as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.PubMedCrossRefGoogle Scholar
  98. 98.
    Schluger, N. W. and Rom, W. N. 1997 Early responses to infection#x2014;chemokines as mediators of inflammation review. Curr. Opin. Immunol. 9, 504–508.Google Scholar
  99. 99.
    Mackewicz, C. E., Ortega, H., and Levy, J. A. 1994 Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell. Immunol. 153, 329–343.Google Scholar
  100. 100.
    Kohn, E. C., Alessandro, R., Probst, J., Jacobs, W., Brilley, E., and Felder, C. C. 1996 Identification and molecular characterization of a m5 muscarinic receptor in A2058 human melanoma cells. J. Biol. Chem. 271, 17,476–17,484.Google Scholar
  101. 101.
    Bron, R., Klasse, P. J., Wilkinson, D., Clapham, P. R., Pelchenmatthews, A., Power, C., Wells, T. N. C., Kim, J., Peiper, S. C., Hoxie, J. A., and Marsh, M. 1997 Promiscuous use of cc and cxc chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. J. Virol. 71, 8405–8415.PubMedGoogle Scholar
  102. 102.
    Driscoll, K. E., Hassenbein, D. G., Howard, B. W., Isfort, R. J., Cody, D., Tindal, M. H., Suchanek, M., and Carter, J. M. 1995 Cloning, expression, and functional characterization of rat MIP-2: a neutrophil chemoattractant and epithelial cell mitogen. J. Leukoc. Biol. 58, 359–364.Google Scholar
  103. 103.
    Tuschil, A., Lam, C., Haslberger, A., and Lindley, I. 1992 Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation. J. Invest. Dermatol. 99, 294–298.Google Scholar
  104. 104.
    Wu, X., Wittwer, A. J., Carr, L. S., Crippes, B. A., DeLarco, J. E., Lefkowith, J. B. 1994 Cytokine-induced neutrophil chemoattractant mediates neutrophil influx in immune complex glomerulonephritis in rat. J. Clin. Invest. 94, 337–44.Google Scholar
  105. 105.
    Nanney, L. B., Mueller, S. G., Bueno, R., Peiper, S. C., and Richmond, A. 1995 Distributions of melanoma growth stimulatory activity or growth-regulated gene and the interleukin-8 receptor B in human wound repair. Am. J. Pathol. 147, 1248–1260.Google Scholar
  106. 106.
    Schroder, J. M. 1995 Cytokine networks in the skin. J. Invest. Dermatol. 105, 20S–24S.CrossRefGoogle Scholar
  107. 107.
    Kulke, R., Todt-Pingel, I., Rademacher, D., Rowert, J., Schroder, J. M., and Christophers, E. 1996 Co-localized overexpression of GRO-alpha and IL-8 mRNA is restricted to the suprapapillary layers of psoriatic lesions. J. Invest. Dermatol. 106, 526–530.Google Scholar
  108. 108.
    Gillitzer, R., Ritter, U., Spandau, U., Goebeler, M., and Brocker, E. B. 1996 Differential expression of gro-alpha and il-8 mrna in psoriasis#x2014;a model for neutrophil migration and accumulation in vivo. J. Invest. Dermatol. 107, 778–782.Google Scholar
  109. 109.
    Beljaards, R. C., Van Beek, P., Nieboer, C., Stoof, T. J., and Boorsma, D. M. 1997 The expression of interleukin-8 receptor in untreated and treated psoriasis. Arch. Dermatol. Res. 289,440–443.Google Scholar
  110. 110.
    Santamaria Babi, L. F., Moser, B., Perez Soler, M. T., Moser, R., Loetscher, P., Villiger, B., Blaser, K., and Hauser, C. 1996 The interleukin-8 receptor B and CXC chemokines can mediate transendothelial migration of human skin homing T cells. Eur. J. Immunol. 26, 2056–2061.Google Scholar
  111. 111.
    Tanaka, F., Dannenberg, A. M., Jr., Higuchi, K., Nakamura, M., Pula, P. J., Hugli, T. E., Discipio, R. G., and Kreutzer, D. L. 1997 Chemotactic factors released in culture by intact feveloping and healing skin lesions produced in rabbits by the irritant sulfur mustard. Inflammation 21, 251–267. AbstractPubMedCrossRefGoogle Scholar
  112. 112.
    Tsuruta, J., Sugisaki, K., Dannenberg, A. M., Yoshimura, T., Abe, Y., and Mounts, P. 1997 The cytokines NAP-1 IL-8, MCP-1, IL-1beta, and GRO in rabbit inflammatory skin lesions produced by the chemical irritant sulfur mustard. Inflammation 20, 293–318.CrossRefGoogle Scholar
  113. 113.
    Rennekampff, H.-O., Hansbrough, V. W., Jr., Dore, C., Kiessig, V., and Schroder, J.-M. 1997 Role of melanoma growth stimulatory activity MGSA/gro on keratinocyte function in wound healing. Arch. Derm. Res. 289, 204–212.Google Scholar
  114. 114.
    Kemeny, L., Ruzicka, T., Dobozy, A., and Michel, G. 1994 Role of interleukin-8 receptor in skin Review. Int. Arch. Allergy Immunol. 104, 317–322.Google Scholar
  115. 115.
    Martins-Green, M., Stoeckle, M., Hampe, A., Wimberly, S., and Hanafusa, H. 1996 The 9E3/ CEF4 Cytokine: Kinetics of secretion, processing by plasmin, and interaction with extracellular matrix. Cytokine 8, 448–459.Google Scholar
  116. 116.
    Martins-Green, M. and Hanafusa, H. 1997 The 9E3/CEF4 gene and its product the chicken chemotactic and angiogenic factor cCAF: potential roles in wound healing and tumor development. Cytokine Growth Factor Reviews 8, 219–230.CrossRefGoogle Scholar
  117. 117.
    Horuk, R., Martin, A. W., Wang, Z. X., Schweitzer, L., Gerassimides, A., Guo, H. H., Lu, Z. H., Hesselgesser, J., Perez, H. D., Kim, J., Parker, J., Hadley, T. J., and Peiper, S. C. 1997 Expression of chemokine receptors by subsets of neurons in the central nervous system. J. Immunol. 158, 2882–2890.PubMedGoogle Scholar
  118. 118.
    Tani, M., Fuentes, M. E., Peterson, J. W., Trapp, B. D., Durham, S. K., Loy, J. K., Bravo, R., Ransohoff, R. M., and Lira, S. A. 1996 Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J. Clin. Invest. 98, 529–539.Google Scholar
  119. 119.
    Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Glass, M., Burdick, M. D., and Strieter, R. M. 1996 Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J. Clin. Invest. 97, 2792–2802.Google Scholar
  120. 120.
    Shono, T., Ono, M., Izumi, H., Jimi, S.-I., Matsushima, K., Okamoto, T., Kohno, K., and Kuwano, M. 1996 Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human mircovascular endothelial cells by oxidative stress. Mol. Cell. Biol. 16, 4231–4239.Google Scholar
  121. 121.
    Cao, Y., Chen, C., Weatherbee, J. A., Tsang, M., and Folkman, J. 1995 Gro-beta, a CXC Chemokine, is an angiogenesis inhibitor that suppresses the growth of Lewis lung carcinoma in mice. J. Exp. Med. 182, 2069–2077.Google Scholar
  122. 122.
    Mueller, S. G., White, J. R., Schraw, W. P., Lam, V., and Richmond, A. 1997 Ligand induced desensitization of CXCR2 requires multiple serine residues. J. Biol. Chem. 272, 8207–8214.Google Scholar
  123. 123.
    Lusti-Narasimhan, M., Chollet, A., Power, C. A., Allet, B., Proudfoot, A. E. I., and Wells, T. N. C. 1996 A molecular switch of chemokine receptor selectivity. J. Biol. Chem. 271, 3148–3153.Google Scholar
  124. 124.
    Luan, J., Shattuck-Brandt, R., Haghnegahdar, H., Owen, J. D., Strieter, R., Burdick, M., Nirodi, C., Beauchamp, D., Johnson, K. N., and Richmond, A. 1997 Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J. Leukoc. Biol. 62, 588–597.Google Scholar
  125. 124a.
    Luo, H., Chaudhuri, A., Johnson, D. R., Neote, K., Zbrzezna, V., He, Y., and Pogo, A. O. 1997 Cloning, characterization, and mapping of a murine promiscuous chemokine receptor genehomolog of the human duffy gene. Genome Res. 7, 932–941.PubMedGoogle Scholar
  126. 126.
    Wood, L. D. and Richmond, A. 1995 Constitutive and cytokine-induced expression of the melanoma growth stimulatory activity/GROalpha gene requires both NF-kappaB and novel constitutive factors. J. Biol. Chem. 270, 30,619–30,626.Google Scholar
  127. 127.
    Wood, L. D., Farmer, A. A., and Richmond, A. 1995 HMGIY and Sp1 in addition to NF-kappaB regulate transcription of the MGSA/GRO alpha gene. Nucleic Acids Res. 23, 4210–4219.PubMedCrossRefGoogle Scholar
  128. 128.
    Shattuck-Brandt, R. L. and Richmond, A. 1997 Enhanced degradation of I-kappaBalpha contributes to endogenous activation of NF-kappaB in Hs294T melanoma cells. Cancer Res. 57, 3032–3039.PubMedGoogle Scholar
  129. 129.
    Richmond, A. and Thomas, H. G. 1988 Melanoma growth stimulatory activity: isolation from human melanoma tumors and characterization of tissue distribution. J. Cell. Biochem. 36, 185–1988.Google Scholar
  130. 130.
    Bordoni, R., Fine, R., Murray, D., and Richmond, A. 1990 Characterization of the role of melanoma growth stimulatory activity MGSA in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J. Cell Biochem. 44, 207–219.Google Scholar
  131. 131.
    Richmond, A., Fine, R., Murray, D., Lawson, D. H., and Priest, L. 1986 Growth factor and cytogenetic abnormalities in nevus and malignant melanoma cells. J. Invest. Dermatol. 86, 295–302.Google Scholar
  132. 132.
    Whelchel, J. C., Farah, S. E., McLean, I. W., and Burnier, M. N. 1993 Immunohistochemistry of infiltrating lymphocytes in uveal malignant melanoma. Invest. Ophthalmol. Vis. Sci. 34. 2603–2606.Google Scholar
  133. 133.
    Tschen, J. A., Bhasin Fordice, D., Reddick, M., and Stehlin, J. 1992 Amelanotic melanoma presenting as inflammatory plaques. J. Am. Acad. Dermatol. 27, 464–465.Google Scholar
  134. 134.
    Br#x00F6;cker, E. B., Zwadlo, G., Holzman, B., Macher, E., and Sorg, C. 1988 Inflammatory cell infiltrates in human melanoma at different stages of tumor progression. Int. J. Cancer 41, 562–567.Google Scholar
  135. 135.
    Berd, D., Murphy, G., Maguire, H. C., Jr., and Mastrangelo, M. J. 1991 Immunization with haptenized, autologous tumor cells induces inflammation of human melanoma metastases. Cancer Res. 51, 2731–2734.PubMedGoogle Scholar
  136. 136.
    Chenevix-Trench, G., Martin, N. G., and Ellem, K. A. 0. 1990 Gene expression in melanoma cell lines and cultured melanocytes: correlation between levels of c-src-1, c-myc and p53. Oncogene 5, 1187–1193.PubMedGoogle Scholar
  137. 137.
    Rodeck, U., Melber, K., Kath, R., Menssen, H.-D., Varello, M., Atkinson, B., and Herlyn, M. 1991 Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. J. Invest. Dermatol. 97, 20–26.Google Scholar
  138. 138.
    Bordoni, R., Thomas, G., and Richmond, A. 1989 Growth factor modulation of melanoma growth stimulatory activity mRNA expression in human malignant melanoma cells correlates with cell growth. J. Cell. Biochem. 39, 421–428.Google Scholar
  139. 139.
    Mattei, S., Colombo, M. P., Melani, C., Silvani, A., Parmiani, G., and Herlyn, M. 1994 Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int. J. Cancer 56, 853–857.Google Scholar
  140. 140.
    Sirneko, O. I., Lofquist, A. K., DeMaria, C. T., Morris, J. S., Brewer, G., and Haskill, J. S. 1997 Adhesion-dependent regulation of an A+U-rich element-binding activity associated with AUF1. Mol. Cell. Biol. 17. 3898–3906.Google Scholar
  141. 141.
    Schadendorf, D., Fichtner, I., Makki, A., Alijagic, S., Kupper, M., Mrowietz, U., and Henz, B. M. 1996 Metastatic potential of human melanoma cells in nude mice-characterization of phenotype, cytokine secretion and tumor-associated antigens. Br. J. Cancer 74, 194–199.Google Scholar
  142. 142.
    Schadendorf, D., Moller, A., Algermissen, B., Worm, M., Sticherling, M., and Czarnetzki, B. M. 1993 IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J. Immunol. 151, 2267–2675.Google Scholar
  143. 143.
    Moser, B., Barella, L., Mattei, S., Schumacher, C., Boulay, F., Colombo, M. P., and Baggiolini, M. 1993 Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem. J. 294, 285–292.Google Scholar
  144. 144.
    Mueller, S. G., Schraw, W. P., and Richmond, A. 1994 Melanoma growth stimulatory activity enhances the phosphorylation of the class II interleukin-8 receptor in non-hematopoietic cells. J. Biol. Chem. 269, 1973–1980.Google Scholar
  145. 145.
    Metzner, B., Parlow, F., Kownatzki, R., Spleiss, 0., McConnel, F., Schraufstatter, I., and Norgauer, J. 1994 Identification of the GRO-alpha involved signal pathway components in Hs294T melanoma cells. J. Invest. Dermnatol. 102, 553-A177.Google Scholar
  146. 146.
    Richmond, A. and Thomas, H. G. 1986 Purification of melanoma growth stimulatory activity. J. Cell. Physiol. 129, 375–384.Google Scholar
  147. 147.
    Jaffe, G. J., Richmond, A., Van Le, L., Shattuck, R. L., Cheng, Q. C., Wong, F., and Roberts, W. 1993 Expression of three forms of melanoma growth stimulating activity MGSA/gro in human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 34, 2776–2785.Google Scholar
  148. 148.
    Priest, J. H., Phillips, C. N., Wang, Y., and Richmond, A. 1988 Chromosome and growth factor abnormalities in melanoma. Cancer Genet. Cytogenet. 35, 253–262.Google Scholar
  149. 149.
    Wang, J. M., Taraboletti, G., Matsushima, K., Van Damme, J., and Mantovani, A. 1990 Induction of haptotactic migration of melanoma cells by neutrophil activating protein/ interleukin-8. Biochem. Biophys. Res. Commun. 169, 165–170.Google Scholar
  150. 150.
    Singh, R. K., Gutman, M., Radinsky, R., Bucana, C. D., and Fidler, I. J. 1994 Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 54, 3242–3247.PubMedGoogle Scholar
  151. 151.
    Singh R. K., Gutman, M., Reich, R., and Bar-Eli, M. 1995 Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin 8. Cancer Res. 55, 3669–3674.PubMedGoogle Scholar
  152. 152.
    Lawson, D. H., Thomas, H. G., Roy, R. G., Gordon, D. S., Chawla, R. K., Nixon, D. W., and Richmond, A. 1987 Preparation of a monoclonal antibody to a melanoma growth-stimulatory activity released into serum-free culture medium by Hs0294 malignant melanoma cells. J. Cell. Biochem. 34, 169–185.Google Scholar
  153. 153.
    Norgauer, J., Metzner, B., and Schraufstaetter, I. 1996 Expression and growth-promoting function of the IL-8 receptor Beta in human melanoma cells. J. Immunol. 156, 1132–1137.PubMedGoogle Scholar
  154. 154.
    Hayashi, S., Kurdowska, A., Cohen, A. B., Stevens, M. D., Fujisawa, N., and Miller, E. J. 1997 A synthetic peptide inhibitor for alpha-chemokines inhibits the growth of melanoma cell lines. J. Clin. Invest. 99, 2581–2587.Google Scholar
  155. 155.
    Venner T. J., Sauder, D. N., Feliciani,C., Mckenzie,R. C. 1995 Interleukin-8 and melanoma growth-stimulating activity GRO are induced by ultraviolet B radiation in human keratinocyte cell lines. Exp. Dermatol. 4, 138–145.Google Scholar
  156. 156.
    Youngs, S. J., Ali, S. A., Taub, D. D., and Rees, R. C. 1997 Chemokines induce migrational responses in human breast carcinoma cell lines. Int. J. Cancer 71, 257–266.Google Scholar
  157. 157.
    Geiser, T., Dewald, B., Ehrengruber, M. U., Clark-Lewis, I., and Baggiolini, M. 1993 The interleukin-8#x2014;related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma activate human neutrophil and basophil leukocytes. J. Biol. Chem. 268, 15,419–15,424.Google Scholar
  158. 158.
    Erger, R. A. and Casale, T. B. 1995 Interleukin-8 is a potent mediator of eosinophil chemotaxis through endothelium and epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 268, L117#x2014;L122.Google Scholar
  159. 159.
    Yue, T.-L., Wang, X., Sung, C.-P., Olson, B., Mckenna, P. J., Gu, J.-L., and Feuerstein, G. Z. 1994 Interleukin-8: a mitogen and chemoattractant for vascular smooth muscle cells. Circ. Res. 75, 1–7.Google Scholar
  160. 160.
    Loetscher, P., Seitz, M., Clark-Lewis, I., Baggiolini, M., and Moser, B. 1994 Both interleukin-8 receptors independently mediate chemotaxis. Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in response to IL-8, GRO alpha and NAP-2. FEBS Lett. 341, 187–192.PubMedCrossRefGoogle Scholar
  161. 161.
    Schwartz, D., Andalibi, A., Chaverri-Almada, L., Berliner, J. A., Kirchgessner, T., Fang, Z. T., Tekamp-Olson, P., Lusis, A. J., Gallegos, C., Fogelman, A. M., and Territo, M. C. 1994 Role of the GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J. Clin. Invest. 94, 1968–1973.Google Scholar
  162. 162.
    Shikishima, H., Ikeda, H., Yamada, S., Yamazaki, H., Kikuchi, K., Wakisaka, A., et al. 1997 HTLV-1 px transgenics rats: development of cytokine-producing mammary carcinomas and establishment of the px mammary carcinoma cell lines. Leukemia 11, 70–72.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Ann Richmond
  • Jing Luan
  • Jianguo Du
  • Hamid Haghnegahdar

There are no affiliations available

Personalised recommendations