The Chemokine Gene Family

Similar Structures, Diverse Functions
  • Vicki L. Schweickart
  • Carol J. Raport
  • David Chantry
  • Patrick W. Gray
Part of the Contemporary Immunology book series (CONTIM)


Our understanding of the function of chemokines has been reshaped over the past few years because of the large number of new chemokines recently discovered. Earlier reviews on chemokine structure and function presented a relatively simple picture of the chemokine family: a handful of CXC and CC chemokines, whose genes clustered on chromosomes 4 and 17, respectively, involved in the recruitment of leukocyte subsets to sites of inflammation (1,2). Over the past few years, however, the use of computer technology to search vast libraries of randomly sequenced cDNAs has brought to light many novel chemokines that complicate the picture described above, but also enrich our understanding of the functional diversity of chemokines. Not only have new chemokine families and chromoobtained, and how they have broadened our understanding of the structure and function of chemokines.


Chemokine Receptor Leukocyte Subset Chemokine Family Orphan GPCRs Thymic Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baggiolini, M., DeWald, B., and Moser, B. (1994) Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv. Immunol. 55, 97–179.PubMedCrossRefGoogle Scholar
  2. 2.
    Oppenheim, J. J. (1993) Overview of chemokines. Adv. Exp. Med. Biol. 351, 183–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Uguccioni, M., Loetscher, P., Forssmann, U., Dewald, B., Li, H., Hensche Lima, S., Li, Y., Kreider, B., Garotta, G., Thelen, M., and Baggiolini, M. (1996) Monocyte Chemotactic Protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. J. Exp. Med. 183, 2379–2384.PubMedCrossRefGoogle Scholar
  4. 4.
    Schulz-Knappe, P., Magert, H.-J., Dewald, B., Meyer, M., Cetin, Y., Kubbies, M., Tomeczkowski, J., Kirchhoff, K., Raida, M., Adermann, K., Kist, A., Reinecke, M., Sillard, R., Pardigol, A., Uguccioni, M., Baggiolini, M., and Forssmann, W.-G. (1996) HCC-1, a novel chemokine from human plasma. J. Exp. Med. 183, 295–299.PubMedCrossRefGoogle Scholar
  5. 5.
    Hieshima, K., Imai, T., Opdenakker, G., Van Damme, J., Kusuda, J., Tei, H., Sakaki, Y., Takatsuki, K., Miura, R., Yoshie, O., and Nomiyama, H. (1997) Molecular cloning of a novel human CC chemokine liver and activation-regulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2.J Biol. Chem. 272, 5846–5853.PubMedCrossRefGoogle Scholar
  6. 6.
    Hieshima, K., Imai, T., Baba, M., Shoudai, K., Ishizuka, K., Nakagawa, T., Tsurauta, J., Takeya, M., Sakaki, Y., Takatsuki, K., Miura, R., Opdenakker, G., Van Damme, J., Yoshie, O., and Nomiyama, H. (1997) A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-la/LD78a and chemotactic for T lymphocytes, but not for monocytes. J. Immunol. 159, 1140–1149.PubMedGoogle Scholar
  7. 7.
    Patel, V., P., Kreider, B. L., Li, Y., Li, H., Leung, K., Salcedo, T., Parmelee, D., Gentz, R., and Garotta, G. (1997) Molecular and functional characterization of two novel human C-C chemo-kines as inhibitors of two distinct classes of myeloid progenitors. J. Exp. Med. 185, 1163–1172.PubMedCrossRefGoogle Scholar
  8. 8.
    Imai, T., Yoshida, T., Baba, M., Nishimura, M., Kakizaki, M., and Yoshie, 0. (1996) Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J. Biol. Chem. 271, 21,514–21,521.CrossRefGoogle Scholar
  9. 9.
    Godiska, R., Chantry, D., Raport, C. J., Sozzani, S., Allavena, P., Leviten, D., Mantovani, A., and Gray, P. A. (1997) Human macrophage-derived chemokine (MDC), a novel chemoattactant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J. Exp. Med. 9, 1595–1604.CrossRefGoogle Scholar
  10. 10.
    Yoshida, R., Imai, T., Hieshima, K., Kusuda, J., Baba, M., Kitaura, M., Nishimura, M., Kakizaki, M., Nomiyama, H., and Yoshie, 0. (1997) Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J. Biol. Chem. 21, 13,803–13,809.Google Scholar
  11. 11.
    Nagira, M., Imai, T., Hieshima, K., Kusuda, J., Ridanapaa, M., Takagi, S., Nishimura, M., Kakizaki, M., Nomiyama, H., and Yoshie, O. (1997) . J. Biol. Chem. 272, 19,518–19,524.CrossRefGoogle Scholar
  12. 12.
    Vicari, A. P., Figueroa, D. J., Hedrick, J. A., Foster, F. S., Singh, K. P., Menon, S., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Bacon, K. B., and Zlotnik, A. (1997) TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 7, 291–301.PubMedCrossRefGoogle Scholar
  13. 13.
    Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D. R., Zlotnik, A., and Schall, T. J. (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644.PubMedCrossRefGoogle Scholar
  14. 14.
    Altschul S. F., Gish, W., Miller W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  15. 15.
    Soares, M. B., Bonaldo, M. F., Jelene, P., Su, L., Lawton, L., and Efstratiadis, A. (1994) Construction and characterization of a normalized cDNA library. Proc. Natl. Acad. Sci. USA 91, 9228–9232.PubMedCrossRefGoogle Scholar
  16. 16.
    Baggiolini, M., Dewald, B., and Moser, B. (1997) Human chemokines: an update. Annu. Rev. Immunol. 15, 675–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Clore, G., Appella, E., Yamada, M., Matsushima, K., and Gronenborn, A. (1990) Three-dimensional structure of interleukin 8 in solution. Biochemistry 29, 1689–1696.PubMedCrossRefGoogle Scholar
  18. 18.
    Baldwin, E., Weber, I., St Charles, R., Xuan, J., Appella, E., Yamada, M., Matsushima, K., Edwards, B., Clore, G., Gronenborn, A., and Wlodawer, A. (1991) Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc. Natl. Acad. Sci. USA 88, 502–506.PubMedCrossRefGoogle Scholar
  19. 19.
    Fairbrother, W., Reilly, D., Colby, T., Hesselgesser, J., and Horuk, R. (1994) The solution structure of melanoma growth stimulating activity. J. Mol. Biol. 242, 252–270.PubMedCrossRefGoogle Scholar
  20. 20.
    Malkowski, M., Wu, J., Lazar, J., Johnson, P., and Edwards, B. (1995) The crystal structure of recombinant human neutrophil-activating peptide-2 (M6L) at 1.9-A resolution. J. Biol. Chem. 270, 7077–7087.PubMedCrossRefGoogle Scholar
  21. 21.
    Lodi, P., Garrett, D., Kuszewski, J., Tsang, M., Weatherbee, J., Leonard, W., Gronenborn, A., and Clore, G. (1994) High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science 263, 1762–1767.PubMedCrossRefGoogle Scholar
  22. 22.
    Skelton, N., Aspiras, F., Ogez, J., and Schall, T. (1995) Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 34, 5329–5342.PubMedCrossRefGoogle Scholar
  23. 23.
    Rajarathnam, K., Sykes, B., Kay, C., Dewald, B., Geiser , T., Baggiolini, M., and Clark-Lewis, I. (1994) Neutrophil activation by monomeric interleukin-8. Science 264, 90–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Paolini, J., Willard, D., Consler, T., Luther, M., and Krangel, M. (1994) The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations. J. Immunol. 153, 2704–2717.PubMedGoogle Scholar
  25. 25.
    Miller, M. D. and Krangel, M. S. (1992) The human cytokine I-309 is a monocyte chemoattactant. Proc. Natl. Acad. Sci. USA 89, 2950–2954.PubMedCrossRefGoogle Scholar
  26. 26.
    Kennedy, J., Kelner, G. S., Kleyensteuber, S., Schall, T. J., Weiss, M. C., Yssel, H., Schneider, P. V., Cocks, B. G., Bacon, K. B., and Zlotnik, A. (1995) Molecular cloning and functional characterization of human lymphotactin. J. Immunol. 155, 203–209.PubMedGoogle Scholar
  27. 27.
    Shirozu, M., Nakano, T., Inazawa, J., Tashiro, K., Tada, H., Shinohara, T., and Honjo, T. (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28, 495–500.PubMedCrossRefGoogle Scholar
  28. 28.
    Naruse, K., Ueno, M., Satoh, T. N., H., Tei, H., Takeda, M., Ledbetter, D. H., Coillie, E. V., Opdenakker, G., Gunge, N., Sakaki, Y., Iio, M., and Miura, R. (1996) A YAC contig of the human CC chemokine genes clustered on chromosome 17q211.2. Genomics 34, 236–240.PubMedCrossRefGoogle Scholar
  29. 29.
    Imai, T., Chantry, D., Raport, C. J., Wood, C. L., Nishimura, M., Godiska, R., Yoshie, O., and Gray, P. W. (1998) Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J. Biol. Chem. 273, 1764–1768.PubMedCrossRefGoogle Scholar
  30. 30.
    Nomiyama, H., Imai, T., Kusuda, J., Miura, R., Callen, D. F., and Yoshie, O. (1997) Assignment of the human CC chemokine gene TARC (SCYA17) to chromosome 16q13. Genomics 40,211–213.PubMedCrossRefGoogle Scholar
  31. 31.
    Pan, Y., Lloyd, C., Zhou, H., Dolich, S., Deeds, J., Gonzalo, J. A., Vath, J., Gosselin, M., Ma, J., Dussault, B., Woolf, E., Alperin, G., Culpepper, J., Gutierrez-Ramos, J. C., and Gearing, D. (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387, 611–617.PubMedCrossRefGoogle Scholar
  32. 32.
    Van Coillie, E., Fiten, P., Nomiyama, H., Sakaki, Y., Miura, R., Yoshie, O., Van Damme, J., and Opdenakker, G. (1997) The human MCP-2 gene (SCYA8): cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2. Genomics 40, 323–331.PubMedCrossRefGoogle Scholar
  33. 33.
    Federsppiel, B., Melhado, I. G., Duncan, A. M. V., Delaney, A., Schappert, K., Clark-Lewis, I., and Jirik, F. R. (1993) Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics 16, 707–712.PubMedCrossRefGoogle Scholar
  34. 34.
    Herzog, H., Hort, Y. J., Shine, J., and Selbie, L. A. (1993) Molecular cloning, characterization, and localization of the human homolog to the reported bovine NPY Y3 receptor: lack of NPY binding and activation. DNA Cell Biol. 12, 465–471.PubMedCrossRefGoogle Scholar
  35. 35.
    Jazin, E. E., Yoo, H., Blomqvist, A. G., Yee, F., Weng, G., Walker, M. W., Salon, J., Larhammar, D., and Wahlestedt, C. (1993) A proposed bovine neuropeptide Y (NPY) receptor cDNA clone, or its human homologue, confers neither NPY binding sites nor NPY responsiveness on transfected cells. Regul. Pept. 47, 247–258.PubMedCrossRefGoogle Scholar
  36. 36.
    Nomura, H., Nielsen, B. W., and Matsushima, K. (1993) Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors.lnt. Immunol. 5,1239–1249.Google Scholar
  37. 37.
    Loetscher, M., Geiser, T., O’Reilly, T., Zwahlen, R., Baggiolini, M., and Moser, B. (1993) Cloning of a human seven transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J. Biol. Chem. 269, 232–237.Google Scholar
  38. 38.
    Zaballos, A., Varona, R., Gutierrez, J., Lind, P., and Marquez, G. (1996) Molecular cloning and RNA expression of two new human chemokine receptor-like genes. Biochem. Biophys. Res. Commun. 227, 846–853.PubMedCrossRefGoogle Scholar
  39. 39.
    Liao, F., Lee, H. H., and Farber, J. M. (1997) Cloning of STRL22, a new human gene encoding a G protein-coupled receptor related to chemokine receptors and located on chromosome 6q27. Genomics 40, 175–180.PubMedCrossRefGoogle Scholar
  40. 40.
    Birkenbach, M., Josefsen, K., Yalamanchili, R., Lenoir, G., and Kieff, E. (1993) Epsetin-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J. Virol. 67, 2209–2220.PubMedGoogle Scholar
  41. 41.
    Schweickart, V. L., Raport, C. J., Godiska, R., Byers, M. G., Eddy, R. L., Jr., Shows, T. B., and Gray, P. W. (1994) Cloning of human and mouse EBI1, a lymphoid-specific G protein-coupled receptor encoded on human chromosome 17q12—q21.2. Genomics 23, 643–650.PubMedCrossRefGoogle Scholar
  42. 42.
    Napolitano, M., Zingoni, A., Bernardini, G., Spinetti, G., Nista, A., Storlazzi, C. T., Rocchi, M., and Santoni, A. (1996) Molecular cloning of TERl, a chemokine receptor-like gene expressed by lymphoid tissues. J. Immunol. 157, 2759–2763.PubMedGoogle Scholar
  43. 43.
    Samson, M., Stordeur, P., Labbé, O., Soulareu, P., Vassart, G., and Parmentier, M. (1996) Molecular cloning and chromosomal mapping of a novel human gene, ChemR1, expressed in T lymphocytes and polymorphonuclear cells and encoding a putative chemokine receptor. Eur. J. Immunol. 26, 3021–3028.PubMedCrossRefGoogle Scholar
  44. 44.
    Raport, C. J., Schweickart, V. L., Eddy, R. L., Jr., Shows, T. B., and Gray, P. W. (1995) The orphan G protein-coupled receptor-encoding gene V28 is closely related to genes for chemokine receptors and is expressed in lymphoid and neural tisues. Gene 163, 295–299.PubMedCrossRefGoogle Scholar
  45. 45.
    Vollroth, D., Nathans, J., and Davis, R. W. (1988) Tandem array of human visual pigment genes at Xq28. Science 240, 1669–1672.CrossRefGoogle Scholar
  46. 46.
    Gerard, N. P., Bao, L., Xiao-Ping, H., Eddy, R. L. J., Shows, T. B., and Gerard, C. (1993) Human chemotaxis receptor genes cluster at 19q13.3–13.4: characterization of the human C5a receptor gene. Biochemistry 32, 1243–1250.PubMedCrossRefGoogle Scholar
  47. 47.
    Glusman, G., Clifton, S., Roe, B., and Lancet, D. (1996) Sequence analysis in the olfactory receptor gene cluster on human chromosome 17: recombinatorial events affecting receptor diversity. Genomics 37, 147–160.PubMedCrossRefGoogle Scholar
  48. 48.
    Ahuja, S. K., Ozcelik, T., Milatovitch, A., Francke, U., and Murphy, P. M. (1992) Molecular evolution of the human interleukin-8 receptor gene cluster. Nature Genetics 2, 31–36.PubMedCrossRefGoogle Scholar
  49. 49.
    Mathew, S., Chaudhuri, A., Murty, V. V., and Pogo, A. O. (1994) Confirmation of Duffy blood group antigen locus (FY) at 1q22 -- q23 by fluorescence in situ hybridization. Cytogenet. Cell Genet. 67, 68.PubMedCrossRefGoogle Scholar
  50. 50.
    Samson, M., Soularue, P., Vassart, G., and Parmentier, M. (1996) The genes encoding the human CC-chemokine receptors CC-CKR1 to CC-CKR5 (CMKBR1—CMKBR5) are clustered in the p21.3—p24 region of chromosome 3. Genomics 36, 522–526.PubMedCrossRefGoogle Scholar
  51. 51.
    Raport, C. J., Gosling, J., Schweickart, V. L., Gray, P. W., and Charo, I. F. (1996) Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-lbeta, and MIP-lalpha. J. Biol. Chem. 271, 17,161–17,166.Google Scholar
  52. 52.
    Imai, T., Baba, M., Nishimura, M., Kakizaki, M., Takagi, S., and Yoshie, O. (1997) The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J. Biol. Chem. 272, 15,036–15,042.Google Scholar
  53. 53.
    Bonecchi, R., Bianchi, G., Bordignon, P. P., D’Ambrosio, D., Lang, R., Borsatti, A., Sozzani, S., Allavena, P., Gray, P. W., Mantovani, A., and Sinigaglia, F. (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187,129–134.PubMedCrossRefGoogle Scholar
  54. 54.
    Mosmann, T. R. and Coffman, R. L. (1989) Thl and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7,145–173.PubMedCrossRefGoogle Scholar
  55. 55.
    Yoshie, O., Imai, T., and Nomiyama, H. (1997) Novel lymphocyte-specific CC chemokines and their receptors. J. Leukoc. Biol. 62, 634–644.PubMedGoogle Scholar
  56. 56.
    Yoshida, R., Nagira, M., Kitaura, M., Imagawa, N., Imai, T., and Yoshie, O. (1998) Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J. Biol. Chem. 273(12), 7118–7122.PubMedCrossRefGoogle Scholar
  57. 57.
    Baba, M., Imai, T., Nishimura, M., Kakizak, M., Takagi, S., Hieshima, K., Nomiyama, H., and Yoshie, O. (1997) Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J. Biol. Chem. 272, 14,893–14,898.Google Scholar
  58. 58.
    Greaves, D. R., Wang, W., Dairaghi, D. J., Dieu, M. C., Saint-Vis, B., Granz-Bacon, K., Rossi, D., Caux, C., McClanahan, T., Gordon, S., Zlotnik, A., and Schall, T. J. (1997) CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3alpha and is highly expressed in human dendritic cells. J. Exp. Med. 186, 837–844.PubMedCrossRefGoogle Scholar
  59. 59.
    Godiska, R., Chantry, D., Raport, C. J., Schweickart, V. L., LeTrong, H., and Gray, P. W. (1997) Monocyte chemotactic protein-4: tissue-specific expression and signaling through CC chemokine receptor-2. J. Leukoc. Biol. 61, 353–360.PubMedGoogle Scholar
  60. 60.
    Garcia-Zepeda, E. A., Combadiere, C., Rothenber, M. E., Sarafi, M. N., Lavigne, F., Hamid, Q., Murphy, P. M., and Luster, A. D. (1996) Human monocyte chemoattractant protein (MCP)-4 is a novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and nonallergic inflammation that signals through the CC chemokine receptors (CCR)-2 and-3. J. Immunol. 157, 5613–5626.PubMedGoogle Scholar
  61. 61.
    Forssmann, U., Uguccioni, M., Loetscher, P., Dahinden, C. A., Langen, H., Thelen, M., and Baggiolini, M. (1997) Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. J. Exp. Med. 185, 2171–2176.PubMedCrossRefGoogle Scholar
  62. 62.
    White, J. R., Imburgia, C., Dul, E., Apelbaum, E., O’Donnell, K., O’Shannessy, D. J., Johanson, K., Macphee, C., Moores, K., McNulty, D., Scott, G. F., Schleimer, R. P., and Sarau, H. M. (1997) Cloning and functional characterization of a novel human CC chemokine that binds to the CCR3 receptor and activates human eosinophils. J. Leukoc. Biol. 62, 667–675.PubMedGoogle Scholar
  63. 63.
    Roos, R. S. and Moser, B. (1997) Identification of CCR8, the receptor for the human CC chemokine I-309. J. Biol. Chem. 28, 17251–17254.CrossRefGoogle Scholar
  64. 64.
    von Boehmer, O. (1997) T cell development: is notch a key player in lineage decisions? Curr. Biol.7, 308–310.CrossRefGoogle Scholar
  65. 65.
    Robey, E. and Fowlkes, B. J. (1994) Selective events in Tcell development.Annu. Rev. Immunol. 12, 675–705.PubMedCrossRefGoogle Scholar
  66. 66.
    Van Snick, J., Houssiau, F., Proost, P., Van Damme, J., and Renauld, J.-C. (1996) I-309/T cell activation gene-3 chemokine protects murine T cell lymphomas against dexamethasone induced apoptosis. J. Immunol. 157, 2570–2576.PubMedGoogle Scholar
  67. 67.
    Broxmeyer, H. E., Sherry, B., Cooper, S., Lu, L., Maze, R., Beckmann, M. P., Cerami, A., and Ralph, P. (1993) Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J. Immunol. 150, 3448–58.PubMedGoogle Scholar
  68. 68.
    Graham, G. J., Wright, E. G., Hewick, R., Wolpe, S. D., Wilkie, N. M., Donaldson, D., Lorimore, S., and Pragnell, I. B. (1990) Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344, 442–444.PubMedCrossRefGoogle Scholar
  69. 69.
    Hromas, R., Gray, P., Chantry, D., Godiska, R., Krathwohl, M., Fife, K., Belle, G. I., Takeda, J., Aronica, S., Gordon, M., Cooper, S., Broxmeyer, H. E., and Klemsz, M. (1997) Cloning and characterization of Exodus, a novel beta chemokine. Blood 89, 3315–3322.PubMedGoogle Scholar
  70. 70.
    Hromas, R., Kim, C. H., Klemsz, M., Krathwohl, M., Fife, K., Cooper, S., Schnizlein-Bick, C., and Broxmeyer, H. E. (1997) Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. J. Immunol. 159, 2554–2558.PubMedGoogle Scholar
  71. 71.
    Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: Functional cDNA cloning of a seven transmembrane, G-protein-coupled receptor. Science 272, 872–877.PubMedCrossRefGoogle Scholar
  72. 72.
    Deng, H.-K., Liu, R., Ellmeier, W., Choe, S., Derya, U., Burkhart, M., DiMarzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.PubMedCrossRefGoogle Scholar
  73. 73.
    Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Haung, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.PubMedCrossRefGoogle Scholar
  74. 74.
    Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: A RANTES, MIP-la, MIP-13 receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272,1955–1958.PubMedCrossRefGoogle Scholar
  75. 75.
    Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J. (1996) The (3-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85,1135–1148.PubMedCrossRefGoogle Scholar
  76. 76.
    Doranz, B. J., Rucker, J., Yi, J., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Doms, R. W. (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158.PubMedCrossRefGoogle Scholar
  77. 77.
    Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270,1811–1815.PubMedCrossRefGoogle Scholar
  78. 78.
    Paxton, W. A., Martin, S. R., Tse, D., O’Brien, T. R., Skurnick, J., VanDeventer, N. L., Padian, N., Braun, J. F., Kolter, D. P., Wolinsky, S. M., and Koup, R. A. (1996) Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite mulitple high-risk sexual exposures. Nat. Med. 2, 412–417.PubMedCrossRefGoogle Scholar
  79. 79.
    Rucker, J., Edinger, A. L., Sharron, M., Samson, M., Lee, B., Berson, J. F., Yi, Y., Margulies, B., Collman, R. G., Doranz, B. J., Parmentier, M., and Doms, R. W. (1997) Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 71, 8999–9007.PubMedGoogle Scholar
  80. 80.
    Pal, R., Garzino-Demo, A., Markham, P. D., Burns, J., Brown, M., Gallo, R. C., and DeVico, A. L. (1997) Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 278, 695–698.PubMedCrossRefGoogle Scholar
  81. 81.
    Cohen, J. (1997) Exploiting the HIV-chemokine nexus. Science 275, 1261–1264.PubMedCrossRefGoogle Scholar
  82. 82.
    Baggiolini, M. and Moser, B. (1997) Blocking chemokine receptors. J. Exp. Med. 186, 1189–1191.PubMedCrossRefGoogle Scholar
  83. 83.
    Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T. J., and Yoshie, O. (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530.PubMedCrossRefGoogle Scholar
  84. 84.
    Wells, T. N. and Peitsch, M. C. (1997) The chemokine information source: identification and characterization of novel chemokines using the WorldWideWeb and expressed sequence tag database. J. Leukoc. Biol. 61, 545–550.PubMedGoogle Scholar
  85. 85.
    Rossi, D., Vicari, A. P., Franz-Bacon, K., McClanahan, T. K., and Zlotnik, A. (1997) Identification through bioinformatics of two new macrophage proinflammatory human chemokines MIP-3a and MIP-33. J. Immunol. 158, 1033–1036.PubMedGoogle Scholar
  86. 86.
    Yoshida, T., Imai, T., Kakizaki, M., Nishimura, M., and Yoshie, O. (1995) Molecular cloning of a novel C or gamma type chemokine, SCM-1. FEBS Lett. 360, 155–159.PubMedCrossRefGoogle Scholar
  87. 87.
    Chang, M.-S., McNinch, J., Elias, C., 3rd, Manthey, C. L., Grosshans, D., Meng, T., Boone, T., and Andrew, D. P. (1997) Molecular cloning and functional characterization of a novel CC chemokine, stimulated T cell chemotactic protein (STCP-1) that specifically acts on activated T lymphocytes. J. Biol. Chem. 272, 25,229–25,237.Google Scholar
  88. 88.
    Adema, G. J., Hartgers, F., Verstraten, R., de Vries, E., Marland, G., Menon, S., Foster, J., Xu, Y., Nooyen, P., McClanahan, T., Bacon, K. B., and Figdor, C. G. (1997) A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature 387, 713–717.PubMedCrossRefGoogle Scholar
  89. 89.
    Hedrick, J. A. and Zlotnik, A. (1997) Identification and characterization of a novel beta chemokine containing six conserved cysteines. J. Immunol. 159, 1589–1593.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Vicki L. Schweickart
  • Carol J. Raport
  • David Chantry
  • Patrick W. Gray

There are no affiliations available

Personalised recommendations