Hypoxia, Hypercarbia, and Atmospheric Control

  • George BeckEmail author
  • Jennifer Law
  • Kira Bacal
  • Michael R. Barratt


As the duration of orbital missions and the size of the crews increase and as plans are made for exploration beyond Earth’s orbit, the ability to provide space crews with a healthy and comfortable living environment grows ever more complex. Advanced environmental control systems will be needed for both planetary exploration missions and permanent settlements beyond Earth’s atmosphere. New technologies will be needed to enhance water reclamation, produce O2, and remove carbon dioxide (CO2). The primary requirements for such a system will be minimal power usage and volume, robust autonomous operation, and a closed-loop design that minimizes reliance on stored consumables. Once we venture beyond low Earth orbit (LEO), the risks associated with radiation increase, the capability for frequent resupply diminishes, and medical assistance and evacuation become less available. Life support systems must become more “closed loop,” more robust, more efficient, more operationally simplified, more automated, and more reliable—while simultaneously requiring less energy-intensive, less massive, and less expensive technology.


Hypoxia in space crews Hypercarbia in space crews Atmospheric control in spacecraft Environmental control systems in spacecraft Space crews and hypoxia and hypercarbia Acute altitude sickness Spacecraft life support system 


  1. 1.
    Jones W, Ingelfinger A. Atmospheric control. In: Parker J, West V, editors. Bioastronautics data book. 2nd ed. Washington: National Aeronautics and Space Administration; 1973. p. 807–846. NASA SP-3006.Google Scholar
  2. 2.
    Malkin V. Barometric pressure and gas composition of spacecraft cabin air. In: Sulzman FM, Genin AM, editors. Life support and habitability, vol. II. Washington: American Institute of Aeronautics and Astronautics; 1993. p. 1–36.Google Scholar
  3. 3.
    Graf J, Finger B, Daues K. Life Support systems for the space environment: basic tenets for designers, Rev. A, June 27, 2002.
  4. 4.
    Norcross J, Norsk P, Law J, et al. Effects of the 8 psia/32% O2 atmosphere on the human in the spaceflight environment. NASA/TM-2013-217377.Google Scholar
  5. 5.
    International Civil Aviation Organization. Manual of the ICAO standard atmosphere. 2nd ed. Montreal: ICAO; 1964.Google Scholar
  6. 6.
    Billings C. Atmosphere. Chapter 2. In: Parker J, West V, editors. Bioastronautics data book. 2nd ed. Washington: National Aeronautics and Space Administration; 1973. p. 1–34. NASA SP-3006.Google Scholar
  7. 7.
    Murray DH, Pilmanis AA, Blue RS, et al. Pathophysiology, prevention, and treatment of ebullism. Aviat Space Environ Med. 2013;84:89–96.PubMedGoogle Scholar
  8. 8.
    Kolesari G, Kindwall E. Survival following accidental decompression to an altitude greater than 74,000 ft (22,555 m). Aviat Space Environ Med. 1982;53(12):1211–4.PubMedGoogle Scholar
  9. 9.
    Harland D. The story of space station Mir. Chichester, UK: Springer Praxis Books; 2005.Google Scholar
  10. 10.
    Smith AM. Acute hypoxia and related symptoms on mild exertion at simulated altitudes below 3048 m. Aviat Space Environ Med. 2007;78(10):979–84.PubMedGoogle Scholar
  11. 11.
    Netzer N, Kingman S, Faulhaber M, Gatterer H, Burtscher M. Hypoxia-related altitude illness. J Travel Med. 2013;20(4):247–55.PubMedGoogle Scholar
  12. 12.
    Petrassi FA, Hodkinson PD, Walters PL, Gaydos SJ. Hypoxic hypoxia at moderate altitudes: review of the state of the science. Aviat Space Environ Med. 2012;83(10):975–84.PubMedGoogle Scholar
  13. 13.
    Gilbert-Kawai ET, Milledge JS, Grocott MP, Martin DS. King of the mountains: Tibetan and Sherpa physiological adaptations for life at high altitude. Physiology (Bethesda). 2014;29(6):388–402.Google Scholar
  14. 14.
    Goldfarb-Rumyantzev AS, Alper SL. Short-term responses of the kidney to high altitude in mountain climbers. Nephrol Dial Transplant. 2014;29(3):497–506.PubMedGoogle Scholar
  15. 15.
    Federal Aviation Regulations. Federal Aviation Administration. 2017.
  16. 16.
    Wessel JH III, Schaefer CM, Thompson MS, Norcross JR, Bekdash OS. Retrospective evaluation of clinical symptoms due to mild hypobaric hypoxia exposure in microgravity. Aerosp Med Hum Perf. 2018;89(9):1–6.Google Scholar
  17. 17.
    Montgomery AB, Luce JM, Murray JF. Retrosternal pain is an early indicator of oxygen toxicity. Am Rev Respir Dis. 1989;139:1548–50.PubMedGoogle Scholar
  18. 18.
    Caldwell PR, Lee WL Jr, Schildkraut HS, et al. Changes in lung volume, diffusing capacity, and blood gases in men breathing oxygen. J Appl Physiol. 1966;21:1477–83.PubMedGoogle Scholar
  19. 19.
    Clark J. Therapeutic and toxic effects of hyperbaric oxygenation. In: Crystal R, West J, et al., editors. The lung: scientific foundations. New York: Raven Press Ltd.; 1991. p. 2123–31.Google Scholar
  20. 20.
    Robertson W, Hargreaves J, Herlocher J, et al. Physiologic response to increased oxygen partial pressure II: respiratory studies. Aerospace Med. 1964;35:618–22.PubMedGoogle Scholar
  21. 21.
    West JB. Fire hazard in oxygen-enriched atmospheres at low barometric pressures. Aviat Space Environ Med. 1997;68(2):159–62.PubMedGoogle Scholar
  22. 22.
    Michel EL, Waligora JM, Horrigan DJ, Shumate WH. Environmental factors. Chapter 5. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, National Aeronautics and Space Administration; 1975.Google Scholar
  23. 23.
    Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. 2015;527(7577):240–4.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Raichle ME, Gusnard DA. Appraising the brain’s energy budget. Proc Natl Acad Sci U S A. 2002;99(16):10237–9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lataste X. The blood-brain barrier in hypoxia. Int J Sports Med. 1992;13:S45–7.PubMedGoogle Scholar
  26. 26.
    Neubauer J, Melton J, Edelman N. Modulation of respiration during brain hypoxia. J Appl Physiol. 1990;68:441–51.PubMedGoogle Scholar
  27. 27.
    Hammond M, Gale GE, Kapitan K, et al. Pulmonary gas exchange in humans during normobaric hypoxic exercise. J Appl Physiol. 1986;16:1749–57.Google Scholar
  28. 28.
    Wagner PD, Gale GE, Moon RE, et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61:260–70.PubMedGoogle Scholar
  29. 29.
    Wood S. Interactions between hypoxia and hypothermia. Annu Rev Physiol. 1991;53:71–85.PubMedGoogle Scholar
  30. 30.
    Vaity C, Al-Subaie N, Cecconi M. Cooling techniques for targeted temperature management post-cardiac arrest. Crit Care. 2015;19:103.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Scirica BM. Therapeutic hypothermia after cardiac arrest. Circulation. 2013;127:244–50.PubMedGoogle Scholar
  32. 32.
    Yoneda I, Tomoda M, Tokumaru O, et al. Time of useful consciousness determination in aircrew members with reference to prior altitude chamber experience and age. Aviat Space Environ Med. 2000;71:72–6.PubMedGoogle Scholar
  33. 33.
    Turner CE, Byblow WD, Gant N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J Neurosci. 2015;35(4):1773–80.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ando S, Hatamoto Y, Sudo M, Kiyonaga A, Tanaka H, et al. The effects of exercise under hypoxia on cognitive function. PLoS One. 2013;8(5):e63630. Scholar
  35. 35.
    Rupp T, Jubeau M, Lamalle L, Warnking JM, Millet GY, Wuyam B, Esteve F, Levy P, Krainik A, Verges S. Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise. J Cereb Blood Flow Metab. 2014;34(11):1802–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ainslie PN, Subudhi AW. Cerebral blood flow and high altitude. High Alt Med Biol. 2014;15(2):133–40.PubMedGoogle Scholar
  37. 37.
    Brinchmann-Hansen O, Myhre K, Sandvik L. Retinal vessel responses to exercise and hypoxia before and after high altitude acclimatisation. Eye (Lond). 1989;3(Pt 6):768–76.Google Scholar
  38. 38.
    Brinchmann-Hansen O, Myhre K. Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude. Aviat Space Environ Med. 1990;61(2):112–6.PubMedGoogle Scholar
  39. 39.
    Connolly DM, Barbur JL, Hosking SL, Moorhead IR. Mild hypoxia impairs chromatic sensitivity in the mesopic range. Invest Ophthalmol Vis Sci. 2008;49(2):820–7.PubMedGoogle Scholar
  40. 40.
    Horng CT, Liu CC, Wu DM, Wu YC, Chen JT, Chang CJ, Tsai ML. Visual fields during acute exposure to a simulated altitude of 7620 m. Aviat Space Environ Med. 2008;79(7):666–9.PubMedGoogle Scholar
  41. 41.
    Connolly DM, Hosking SL. Aviation-related respiratory gas disturbances affect dark adaptation: a reappraisal. Vision Res. 2006;46(11):1784–93.PubMedGoogle Scholar
  42. 42.
    San T, Polat S, Cingi C, Eskiizmir G, Oghan F, Cakir B. Effects of high altitude on sleep and respiratory system and theirs adaptations. ScientificWorldJournal. 2013;2013:241569.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Stadelmann K, Latshang TD, Tarokh L, Lo Cascio CM, Tesler N, Stoewhas AC, Kohler M, Bloch KE, Huber R, Achermann P. Sleep respiratory disturbances and arousals at moderate altitude have overlapping electroencephalogram spectral signatures. J Sleep Res. 2014;23(4):463–8.PubMedGoogle Scholar
  44. 44.
    Latshang TD, Lo Cascio CM, Stöwhas AC, Grimm M, Stadelmann K, Tesler N, Achermann P, Huber R, Kohler M, Bloch KE. Are nocturnal breathing, sleep, and cognitive performance impaired at moderate altitude (1,630-2,590 m)? Sleep. 2013;36(12):1969–76.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Burgess KR, Lucas SJ, Shepheard K, et al. Influence of cerebral blood flow on central sleep apnea at high altitude. Sleep. 2014;37(10):1679–87.PubMedPubMedCentralGoogle Scholar
  46. 46.
    de Aquino Lemos V, Antunes HK, dos Santos RV, Lira FS, Tufik S, de Mello MT. High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology. 2012;49(9):1298–306.PubMedGoogle Scholar
  47. 47.
    West JB. Tolerance to severe hypoxia: lessons from Mt. Everest. Acta Anaesthesiol Scand Suppl. 1990;34:18–23.Google Scholar
  48. 48.
    Sutton J, Reeves J, Wagner P, et al. Operation Everest II: oxygen transport during exercise at extreme hypoxia. J Appl Physiol. 1988;64:1309–21.PubMedGoogle Scholar
  49. 49.
    Agostoni P, Swenson ER, Bussotti M, Revera M, Meriggi P, Faini A, Lombardi C, Bilo G, Giuliano A, Bonacina D, Modesti PA, Mancia G, Parati G. High-altitude exposure of three weeks duration increases lung diffusing capacity in humans. J Appl Physiol (1985). 2011;110(6):1564–71.Google Scholar
  50. 50.
    Farias JG, Jimenez D, Osorio J, et al. Acclimatizaation to chronic intermittent hypoxia in mine workers: a challenge to mountain medicine in Chile. Biol Res. 2013;46(1):59–67.PubMedGoogle Scholar
  51. 51.
    Lambertsen C. Hypoxia, altitude and acclimatization. In: Mountcastle V, editor. Medical physiology. 14th ed. St. Louis: Mosby; 1980.Google Scholar
  52. 52.
    Hackett P, Rabold M. High-altitude medical problems. In: Tintinalli J, Ruiz E, Krome R, editors. Emergency medicine: a comprehensive study guide. 4th ed. New York: McGraw-Hill Company; 1996.Google Scholar
  53. 53.
    Scholz H, Schurek H, Eckardt K, Bauer C. Role of erythropoietin in adaptation to hypoxia. Experientia. 1990;46:1197–201.PubMedGoogle Scholar
  54. 54.
    Young AJ, Young PM. Human acclimatization to high terrestrial altitude. In: Pandolf K, Sawka M, Gonzalez R, editors. Human performance physiology and environmental medicine at terrestrial extremes. Carmel: Cooper Publishing Group; 1988.Google Scholar
  55. 55.
    Hochachka P. Mechanism and evolution of hypoxia-tolerance in humans. J Exp Biol. 1998;201:1243–54.PubMedGoogle Scholar
  56. 56.
    Bebout D, Story D, Roca J, et al. Effects of altitude acclimatization on pulmonary gas exchange during exercise. J Appl Physiol. 1989;67:2286–95.PubMedGoogle Scholar
  57. 57.
    Appenzeller O, Martignoni E. The autonomic nervous system and hypoxia: mountain medicine. J Auton Nerv Syst. 1996;57:1–12.PubMedGoogle Scholar
  58. 58.
    Conkin J. The Mars project: avoiding decompression sickness on a distant planet. Houston: NASA, Lyndon B. Johnson Space Center; 2000. NASA TM 2000-210188.Google Scholar
  59. 59.
    Fenton L, Beck G, Djali S, Robinson M. Hypothermia induced by hyperbaric oxygen is not blocked by serotonin antagonists. Pharmacol Biochem Behav. 1993;44:357–64.PubMedGoogle Scholar
  60. 60.
    Waligora JM, Horrigan DJ, Nicogossian A. The physiology of spacecraft and space suit atmosphere selection. Acta Astronautica. 1991;23:171–7.PubMedGoogle Scholar
  61. 61.
    Nakae H, Tanaka H, Inaba H. Failure to clear casts and secretions following inhalation injury can be dangerous: report of a case. Burns. 2001;27:189–91.PubMedGoogle Scholar
  62. 62.
    Robinson L, Miller RH. Smoke inhalation injuries. Am J Otolaryngol. 1986;7:375–80.PubMedGoogle Scholar
  63. 63.
    Waligora J, Powell M, Sauer R. Spacecraft life-support systems. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1994. p. 109–27.Google Scholar
  64. 64.
    National Oceanic and Atmospheric Administration. Accessed 16 Aug 2018.
  65. 65.
    Eckart P. Spaceflight life support and biospherics. Torrance: Microcosm Press; 1996.Google Scholar
  66. 66.
    Newkirk D. Almanac of Soviet manned space flight. Houston: Gulf Publishing Co; 1990.Google Scholar
  67. 67.
    Rahn H, Fenn WO. The oxygen—carbon dioxide diagram. WADC-TR-53-255, Wright-Patterson Air Force Base, Ohio; 1953.Google Scholar
  68. 68.
    Son CH, Zapata JL, Lin CH. Investigation of airflow and accumulation of carbon dioxide in the Service Module crew quarters. Society of Automotive Engineers. Technical Paper No. 2002-01-2341; 2002.Google Scholar
  69. 69.
    Law J, Young M, Alexander D, Mason S, Wear ML, Méndez CM, Stanley D, Meyers Ryder V, Van Baalen M. Carbon dioxide physiological training at NASA. Aerosp Med Hum Perform. 2017;88(10):1–6.Google Scholar
  70. 70.
    Barer GR, Howard P, Shaw JW. Stimulus-response curves for the pulmonary vascular bed to hypoxia and hypercapnia. J Physiol (Lond). 1970;211:139–55.Google Scholar
  71. 71.
    Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948;27:484–92.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Reivich M. Arterial PCO2 and cerebral hemodynamics. Am J Physiol. 1964;206:25–35.PubMedGoogle Scholar
  73. 73.
    Pingree BJW. Acid-base and respiratory changes after prolonged exposure to 1% carbon dioxide. Clin Sci Mol Med. 1977;52:67–74.PubMedGoogle Scholar
  74. 74.
    Schaefer KE, Hastings BJ, Carey CR, Nicolas G Jr. Respiratory acclimatization to carbon dioxide. J Appl Physiol. 1963;18(6):1071–8.PubMedGoogle Scholar
  75. 75.
    Elliott AR, Prisk GK, Schöllmann C, Hoffmann U. Hypercapnic ventilator response in humans before, during, and after 23 days of low level CO2 exposure. Aviat Space Environ Med. 1998;69:391–6.PubMedGoogle Scholar
  76. 76.
    Sliwka U, Krasney JA, Simon SG, Schmidt P, Noth J. Effects of sustained low-level elevations of carbon dioxide on cerebral blood flow and autoregulation of the intracerebral arteries in humans. Aviat Space Environ Med. 1998;69(3):299–306.PubMedGoogle Scholar
  77. 77.
    Messier AA, Heyder E, Braithwaite WR, McCluggage C, Peck A, Schaefer KE. Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines. Undersea Biomed Res. 1979;6:S57–70.PubMedGoogle Scholar
  78. 78.
    Schaefer KE. Physiological stresses related to hypercapnia during patrols on submarines. Undersea Biomed Res. 1979;6:S15–47.Google Scholar
  79. 79.
    Drummer C, Friedel V, Borger A, Stormer IR, Wolter S, Zittermann A, Wolfram G, Heer M. Effects of elevated carbon dioxide environment on calcium metabolism in humans. Aviat Space Environ Med. 1998;69:291–8.PubMedGoogle Scholar
  80. 80.
    Satish U, Mendell MJ, Shekhar K, et al. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect. 2012;120(12):1671–7. Scholar
  81. 81.
    Rodeheffer CD, Chabal S, Clarke JM, Fothergill DM. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerospace Med Human Perf. 2018;89(6):520–5.Google Scholar
  82. 82.
    Ryder VE, Scully RR, Alexander DJ, Young M, Thomas G, et al., editors. Effects of acute exposure to carbon dioxide upon cognitive functions. 2017 NASA Human Research Program Investigators’ Workshop, 23–26 January, 2017. Galveston, TX.Google Scholar
  83. 83.
    Stankovic A, Alexander D, Oman CM, Schneiderman J. A review of cognitive and behavioral effects of increased carbon dioxide exposure in humans. Hanover: National Aeronautics and Space Administration; 2016. NASA/TM-2016-219277.Google Scholar
  84. 84.
    Law J, Van Baalen M, Foy M, Mason SS, Mendez C, Wear ML, Meyers VE, Alexander D. Relationship between carbon dioxide levels and reported headaches on the international space station. J Occup Environ Med. 2014;56(5):477–83.PubMedGoogle Scholar
  85. 85.
    Law J, Watkins S, Alexander D. In-flight carbon dioxide exposures and related symptoms: association, susceptibility, and operational implications. Hanover: National Aeronautics and Space Administration; 2010. NASA/TP-2010- 216126.Google Scholar
  86. 86.
    Polyakov VV, Lacota NG, Gundel A. Human thermohomeostasis onboard “Mir” and in simulated microgravity studies. Acta Astronautica. 2001;49:137–43.PubMedGoogle Scholar
  87. 87.
    Fortney SM, et al. Body temperature and thermoregulation during submaximal exercise after 115-day spaceflight. Aviat Space Environ Med. 1998;69:137–41.PubMedGoogle Scholar
  88. 88.
    Stahn AC, Werner A, Optaz O, et al. Increased core body temperature in astronauts during long-duration space missions. Sci Rep. 2017;7, Article No. 16180.
  89. 89.
    Wieland PO. Designing for human presence in space: an introduction to environmental control and life support systems. Marshall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1994. Chapter 5. NASA RP-1324.Google Scholar
  90. 90.
    Churchill SE, editor. Fundamentals of space life sciences. Malabar: Krieger Publishing Co; 1997.Google Scholar
  91. 91.
    Rippstein WJ, Schneider HJ. Toxicological aspects of the Skylab program. In: Johnson RS, Dietlein LF, editors. Biomedical results from Skylab. Washington: U.S. Government Printing Office; 1977. p. 70–3. NASA SP-377.Google Scholar
  92. 92.
    ASME AG-1-2003 code on nuclear air and gas treatment. American Society of Mechanical Engineers, New York 10017-2392; 2003.Google Scholar
  93. 93.
    Wieland PO. Designing for human presence in space: an introduction to environmental control and life support systems. Marshall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1994. Appendix C, C.2. NASA RP-1324.Google Scholar
  94. 94.
    Wieland PO. Designing for human presence in space: an introduction to environmental control and life support systems. Marshall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1994. 2.3. NASA RP-1324.Google Scholar
  95. 95.
    Link MM. Space medicine in project Mercury. Washington: NASA Scientific and Technical Information Division; 1965. NASA SP-4003.Google Scholar
  96. 96.
    Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington: NASA Scientific and Technical Information Division; 1975. NASA SP-368.Google Scholar
  97. 97.
    Hacker BC, Grimwood JM. On the shoulders of Titans: a history of project Gemini. Washington: NASA Scientific and Technical Information Division; 1977. NASA SP-4203.Google Scholar
  98. 98.
    Collins M. Carrying the fire: an astronaut’s journeys. New York: Farrar, Straus, and Giroux, Inc.; 1974.Google Scholar
  99. 99.
    Nicogossian A, Mohler S, Gazenko O, Grigoriev AI, series editors. Space biology and medicine: Joint U.S./Russian Publication in Five Volumes. p. 24.Google Scholar
  100. 100.
    Ezell EC, Ezell LN. The partnership: a history of the Apollo-Soyuz test project. Washington: NASA Scientific and Technical Information Division; 1978. NASA SP-4209.Google Scholar
  101. 101.
    Williams DE, Dake JR. International Space Station environmental control and life support system status for the prior year: 2010-2011. In: 42nd International Conference on Environmental Systems, 15–19 July 2012. San Diego: American Institute of Aeronautics and Astronautics.Google Scholar
  102. 102.
    Hackett PH, Roach RC. High-altitude medicine. In: Auerbach PS, editor. Wilderness medicine. 3rd ed. St. Louis: Mosby Year Book; 1995. p. 3.Google Scholar
  103. 103.
    Rousseau J. Atmospheric control systems for space vehicles. Report No. ASD-TDR-62-527. Los Angeles: AiResearch Manufacturing Division; 1963.Google Scholar
  104. 104.
    NASA Space Flight Human-System Standard, vol 2. Human factors, habitability, and environmental health. Section 6: natural and induced environments. NASA-STD-3001, vol 2, Rev A; 2015.Google Scholar
  105. 105.
    Pickard JS, Gradwell DP. Respiratory physiology and protection against hypoxia. In: Davis JR, et al., editors. Fundamentals of aerospace medicine. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. p. 64.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • George Beck
    • 1
    Email author
  • Jennifer Law
    • 2
  • Kira Bacal
    • 3
  • Michael R. Barratt
    • 4
  1. 1.Department of Ventilation ScienceZOLL Medical CorporationChelmsfordUSA
  2. 2.Department of Preventive Medicine and Community HealthUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
  4. 4.NASA Johnson Space CenterHoustonUSA

Personalised recommendations