Ophthalmologic Concerns

  • Thomas H. Mader
  • C. Robert Gibson
  • F. Keith Manuel


This chapter reviews a wide spectrum of ophthalmic issues associated with space flight operations. Current vision standards for space flight and vision demographics are discussed, followed by clinical, anatomic, and physiologic conditions that could affect space flight duties. We will describe more traditional methods of visual correction to include spectacles and contact lenses as well as the utility of several methods of surgical correction. We will also include a discussion of anatomic changes observed in astronauts following long-duration space flight to include disc edema, globe flattening, and hyperopic shifts and review the ground-based and in-flight testing used to study these anomalies. Finally, we discuss common ocular emergencies that could occur during space operations. This chapter focuses primarily on ocular abnormalities that might be expected in healthy subjects during exposure to weightlessness.


Ophthalmologic issues in space flight Space flight and ophthalmologic issues Anatomic changes in astronauts Eye issues in astronauts Ocular emergencies in space Microgravity and ocular abnormalities 


  1. 1.
    NASA Crewmembers Medical Standards Volume 1 – Selection and Periodic Certification, July 2007 (OCHMO 80771201MED).Google Scholar
  2. 2.
    Medical Evaluation Documents (MED) Volume A – Medical Standards for ISS Crewmembers, Rev 3.1, Oct 2010 (SSP50667).Google Scholar
  3. 3.
    NASA. Astronaut Medical Standards, Selection and Annual Medical Certification, Payload Specialist – Class III. Houston: NASA Johnson Space Center; 1997. JSC 25396.Google Scholar
  4. 4.
    Porter J, Gibson CR, Strauss S. Determining spherical power correction for astronaut training underwater. Optom Vis Sci. 2011;88(9):1119–26.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Schanzlin DJ, Santos VR, Waring GO III, et al. Diurnal change in refraction, corneal curvature, visual acuity, and intraocular pressure after radial keratotomy in the PERK study. Ophthalmology. 1986;93:167–75.PubMedGoogle Scholar
  6. 6.
    Snyder RP, Klein P, Solomon J. The possible effect of barometric pressure on the corneas of an RK patient: a case report. Intern Cont Lens Clinics. 1988;15:130–2.Google Scholar
  7. 7.
    White LJ, Mader TH. Refractive changes with increasing altitude after radial keratotomy. Am J Ophthalmol. 1993;115:821–3.PubMedGoogle Scholar
  8. 8.
    Mader TH, White LJ. Refractive changes at extreme altitude after radial keratotomy. Am J Ophthalmol. 1995;119:733–7.PubMedGoogle Scholar
  9. 9.
    Mader TH, Blanton CL, Gilbert BN, et al. Refractive changes during 72-hour exposure to high altitude after refractive surgery. Ophthalmology. 1996;103:1188–95.PubMedGoogle Scholar
  10. 10.
    Simsek S, Demirok A, Cinal A, Yasar T, Yilmaz O. The effect of altitude on radial keratotomy. Japan J Ophthalmol. 1998;42:119–23.Google Scholar
  11. 11.
    Winkle RK, Mader TH, Parmley VC, et al. The etiology of refractive changes at high altitude following radial keratotomy: hypoxia versus hypobaria. Ophthalmology. 1998;105:282–6.PubMedGoogle Scholar
  12. 12.
    Bosch MM, Barthelmes D, Merz TM, et al. New insights into changes in corneal thickness in healthy mountaineers during a very-high-altitude climb to Mount Muztagh Ata. Arch Ophthalmol. 2010;128:184–9.PubMedGoogle Scholar
  13. 13.
    Mader TH, White LJ. Corneal thickness changes in very-high-altitude mountaineers. Arch Ophthalmol. 2010;128(9):1224–5.PubMedGoogle Scholar
  14. 14.
    Ng J, White LJ, Parmley VC, et al. Effects of simulated high altitude on patients who have had radial keratotomy. Ophthalmology. 1996;103:452–7.PubMedGoogle Scholar
  15. 15.
    White LJ, Mader TH. Effects of hypoxia and high altitude following refractive surgery. Ophthalmic Prac. 1997;15:174–8.Google Scholar
  16. 16.
    Schallhorn SC, Blanton CL, Kaupp SE, et al. Preliminary results of photorefractive keratectomy in active-duty United States Navy personnel. Ophthalmology. 1996;103:5–22.PubMedGoogle Scholar
  17. 17.
    Stanley PF, Tanzer DJ, Schallhorn SC. Laser refractive surgery in the United States Navy. Curr Opin Ophthalmol. 2008;19(4):321–4.PubMedGoogle Scholar
  18. 18.
    Maguire L. Keratorefractive surgery, success, and the public health. Am J Ophthalmol. 1994;117:394–8.PubMedGoogle Scholar
  19. 19.
    Baron WS, Munnerlyn C. Predicting visual performance following excimer photorefractive keratectomy. J Refract Corneal Surg. 1992;8:355–62.Google Scholar
  20. 20.
    Maguire LJ, Zabel RW, Parker P, et al. Topography and raytracing analysis of patients with excellent visual acuity 3 months after excimer laser photorefractive keratectomy for myopia. J Refract Corneal Surg. 1991;7:122–8.Google Scholar
  21. 21.
    Camp JJ, Maguire LJ, Cameron BM, et al. A computer model for the evaluation of the effect of corneal topography on optical performance. Am J Ophthalmol. 1990;109:379–86.PubMedGoogle Scholar
  22. 22.
    Gartry DS, Kerr-Muir MG, Marshall J. Excimer laser photorefractive keratectomy. 18 month follow-up. Ophthalmology. 1990;99:1209.Google Scholar
  23. 23.
    Kim JH, Sah WJ, Kim MS, et al. Three year results of photorefractive keratectomy for myopia. J Refract Surg. 1995;11:S248–52.PubMedGoogle Scholar
  24. 24.
    O’Brart DP, Lohmann CP, Fitzke FW, et al. Discrimination between the origins and functional implications of haze and halo at night after photorefractive keratectomy. J Refract Corneal Surg. 1994;10:S281.PubMedGoogle Scholar
  25. 25.
    Wilson SE, Klyce SD, McDonald MB, et al. Changes in corneal topography after excimer laser photorefractive keratectomy for myopia. Ophthalmology. 1991;98:1338–47.PubMedGoogle Scholar
  26. 26.
    Tengroth B, Epstein D, Fagerholm P, et al. Excimer laser photorefractive keratectomy for myopia. Ophthalmology. 1993;100:739–45.PubMedGoogle Scholar
  27. 27.
    Snibson GR, Carson CA, Aldred GF, et al. One-year evaluation of excimer laser photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol. 1995;113:994–1000.PubMedGoogle Scholar
  28. 28.
    Caubet E. Cause of subepithelial corneal haze over 18 months after keratectomy for myopia. J Refract Corneal Surg. 1993;9:S65–70.Google Scholar
  29. 29.
    Maguen E, Salz JJ, Nesburn AB, et al. Results of excimer laser photorefractive keratectomy for the correction of myopia. Ophthalmology. 1994;101:1548–57.PubMedGoogle Scholar
  30. 30.
    Roberts CW, Koester CJ. Optical zone diameters for photorefractive corneal surgery. Invest Ophthalmol Vis Sci. 1993;34:2275–81.PubMedGoogle Scholar
  31. 31.
    Heitzmann J, Binder PS, Kassar BS, Nordan LT. The correction of high myopia using the excimer laser. Ophthalmology. 1993;111:1627–34.Google Scholar
  32. 32.
    Orssaud C, Ganem S, Binaghi M, et al. Photorefractive keratectomy in 176 eyes: 1-year follow-up. J Refract Corneal Surg. 1994;10:S199–205.PubMedGoogle Scholar
  33. 33.
    Mader TH. Bilateral photorefractive keratectomy with intentional unilateral undercorrection performed on an aircraft pilot (guest editorial). J Cataract Refract Surg. 1997;23:145–7.PubMedGoogle Scholar
  34. 34.
    Kaiserman I, Hazarbassanov R, Varssano D, et al. Contrast sensitivity after wave front-guided LASIK. Ophthalmology. 2004;111:454–7.PubMedGoogle Scholar
  35. 35.
    Schallhorn SC, Farjo AA, Huang D, et al. Wave front-guided LASIK for the correction of primary myopia and astigmatism; a report by the American Academy of Ophthalmology (Ophthalmic Technology Assessment). Ophthalmology. 2008;1249-61(2):115.Google Scholar
  36. 36.
    Gibson CR, Mader TH, Schallhorn S, et al. The Visual stability of laser vision correction in an astronaut on a Soyuz Mission to the International Space Station (ISS). J Cataract Refract Surg. 2012;38:1486–91.PubMedGoogle Scholar
  37. 37.
    Davidorf JM. LASIK at 16,000 feet (letter to the editor). Ophthalmology. 1997;104:565–6.PubMedGoogle Scholar
  38. 38.
    Mader TH, Parmley VC, White LJ. Authors’ reply to LASIK at 16,000 feet (letter). Ophthalmology. 1997;104:566.Google Scholar
  39. 39.
    White LJ, Mader TH. Refractive changes at high altitude after LASIK (letter). Ophthalmology. 2000;107:2118.PubMedGoogle Scholar
  40. 40.
    Boes DA, Omura A, Hennessy MJ. The effective of high altitude exposure on myopic laser in situ keratomileusis. J Caratact Refract Surg. 2001;27:1937–41.Google Scholar
  41. 41.
    Dimmig JW, Tabin G. The ascent of Mount Everest following laser in situ keratomileusis. J Refract Surg. 2003;19:48–51.PubMedGoogle Scholar
  42. 42.
    Nelson ML, Brady S, Mader TH, et al. Refractive changes caused by hypoxia after laser in situ keratomileusis surgery. Ophthalmology. 2001;108:542–4.PubMedGoogle Scholar
  43. 43.
    Krueger RR, Burris TE. Intrastromal corneal ring technology. Int Ophthalmol Clin. 1996;36:89–106.PubMedGoogle Scholar
  44. 44.
    Mader TH, Carey WG, Friedl KE, et al. Intraocular lenses in aviators: a review of the US Army experience. Aviat Space Environ Med. 1987;58:690–4.PubMedGoogle Scholar
  45. 45.
    Liddy BS, Boyd K, Takahashi GY. Cataracts, intraocular lens implants, and a flying career. Aviat Space Environ Med. 1990;61:660–1.PubMedGoogle Scholar
  46. 46.
    Moorman DL, Green RP Jr. Cataract surgery and intraocular lenses in military aviators. Aviat Space Environ Med. 1992;63:302–7.PubMedGoogle Scholar
  47. 47.
    Loewenstein A, Geyer O, Biger Y, et al. Intraocular lens in a fighter aircraft pilot. Brit J Ophthalmol. 1991;75:752.Google Scholar
  48. 48.
    Mader TH, Koch DD, Manuel K, Gibson CR, Effenhauser RK, Musgrave S. Stability of vision in an astronaut with bilateral intraocular lenses during space flight. Am J Ophthalmol. 1999;127:342–3.PubMedGoogle Scholar
  49. 49.
    Jones JA, McCarten M, Manuel K, et al. Cataract formation mechanisms and risk in aviation and space crews. Aviat Space Environ Med. 2007;78:A56–66.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118:2058–69.Google Scholar
  51. 51.
    Kalina RE, Mills RP. Acquired hyperopia with choroidal folds. Ophthalmology. 1980;87:44–50.PubMedGoogle Scholar
  52. 52.
    Lavinsky J, Lavinsky D, Lavinsky F, Frutuoso A. Acquired choroidal folds: a sign of idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol. 2007;245:883–8.PubMedGoogle Scholar
  53. 53.
    Friedman D. Idiopathic intracranial hypertension. Curr Pain Headache Rep. 2007;11:62–8.PubMedGoogle Scholar
  54. 54.
    Griebel SR, Kosmorsky GS. Choroidal folds associated with increased intracranial pressure. Am J Ophthalmol. 2000;129:513–6.PubMedGoogle Scholar
  55. 55.
    Sharma M, Volpe NJ, Patel T, Kimmel A. Intracranial hypertension associated with acquired hyperopia and choroidal folds. Retina. 1999;19:260–2.PubMedGoogle Scholar
  56. 56.
    Jacobson DM. Intracranial hypertension and the syndrome of acquired hyperopia with choroidal folds. J Neuroophthalmol. 1995;15:178–85.PubMedGoogle Scholar
  57. 57.
    Cassidy LM, Sanders MD. Choroidal folds and papilloedema. Br J Ophthalmol. 1999;83:1139–43.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Dailey RA, Mills RP, Stimac GK, et al. The natural history and CT appearance of acquired hyperopia with choroidal folds. Ophthalmology. 1986;93:1336–42.PubMedGoogle Scholar
  59. 59.
    Guiffre G, Distefano MG. Optical coherence tomography of chorioretinal and choroidal folds. Acta Ophthalmol Scand. 2007;85:333–6.Google Scholar
  60. 60.
    Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116:548–56.PubMedGoogle Scholar
  61. 61.
    Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol. 1977;95:1458–62.PubMedGoogle Scholar
  62. 62.
    Iwasaki K, Levine BD, Zhang R, et al. Human cerebral autoregulation before, during and after spaceflight. J Physiol. 2007;579:799–810.PubMedGoogle Scholar
  63. 63.
    Frey MA, Mader TH, Bagian JP, et al. Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt. J Appl Physiol. 1993;74:319–25.PubMedGoogle Scholar
  64. 64.
    Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. In: Johnston R, Dietlein L, editors. Biomedical results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977. Available at: Accessed 29 May 2011.
  65. 65.
    Arbeille P, Fomina G, Roumy J, et al. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and space flights. Eur J Appl Physiol. 2001;86:157–68.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Harris BA Jr, Billica RD, Bishop SL, et al. Physical examination during space flight. Mayo Clin Proc. 1997;72:301–8.PubMedGoogle Scholar
  67. 67.
    Herault S, Fomina G, Alferova I, et al. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol. 2000;81:384–90.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Davson H, Domer FR, Hollingsworth JR. The mechanism of drainage of the cerebrospinal fluid. Brain. 1973;96:329–36.PubMedGoogle Scholar
  69. 69.
    Andersson N, Malm J, Eklund A. Dependency of cerebrospinal fluid outflow resistance on intracranial pressure. J Neurosurg. 2008;109:918–22.PubMedGoogle Scholar
  70. 70.
    Alperin N, Lee SH, Mazda M, et al. Evidence for the importance of extracranial venous flow in patients with idiopathic intracranial hypertension (IIH). Acta Neurochir Suppl. 2005;95:129–32.PubMedGoogle Scholar
  71. 71.
    Kapoor KG, Katz SE, Grzybowski DM, Lubow M. Cerebrospinal fluid outflow: an evolving perspective. Brain Res Bull. 2008;77:327–34.PubMedGoogle Scholar
  72. 72.
    Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263:1–9.Google Scholar
  73. 73.
    Wall M. Idiopathic intracranial hypertension. Neuro Clin. 2010;28(3):593–617.Google Scholar
  74. 74.
    Killer HE, Jaggi GP, Flammer J, et al. The optic nerve: a new window into cerebrospinal fluid composition? Brain. 2006;129:1027–30.PubMedGoogle Scholar
  75. 75.
    Killer HE, Jaggi GP, Flammer J, et al. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain. 2007;130:514–20.PubMedGoogle Scholar
  76. 76.
    Kelman SE, Sergott RC, Cioffi GA, et al. Modified optic nerve decompression in patients with functioning lumboperitoneal shunts and progressive visual loss. Ophthalmology. 1991;98:1449–53.PubMedGoogle Scholar
  77. 77.
    Killer HE, Jaggi GP, Miller NR. Papilledema revisited: is its pathophysiology really understood? Clin Exp Ophthalmol. 2009;37:444–7.PubMedGoogle Scholar
  78. 78.
    Killer HE, Subramanian PS. Compartmentalized cerebral spinal fluid. Int Ophthalmol Clin. 2014;54(1):95–102.PubMedGoogle Scholar
  79. 79.
    Mader TH, Gibson CR, Pass AF, et al. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol. 2013;33(3):249–55.PubMedGoogle Scholar
  80. 80.
    Mader TH, Gibson CR, Lee AG, et al. Unilateral loss of spontaneous venous pulsations in an astronaut. J Neuroophthalmol. 2015;35(2):226–7.PubMedGoogle Scholar
  81. 81.
    Draeger J, Wirt H, Schwartz R. Tonometry under microgravity conditions. In: Sahm PR, Jansen R, Keller MH, editors. Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission: D1, Nordenerney, Germany, August 27–29, 1986. Koln: Wissenschaftliche Projektführung DI c/o DFVLR; 1987. p. 503–9.Google Scholar
  82. 82.
    Mader TH, Taylor GR, Hunter N, et al. Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head-down tilt. Aviat Space Environ Med. 1990;61:810–3.PubMedGoogle Scholar
  83. 83.
    Chiquet C, Custaud MA, Le Traon AP, et al. Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma. 2003;12:204–8.PubMedGoogle Scholar
  84. 84.
    Drozdova NT, Grishin EP. State of the visual analyzer during hypokinesia [in Russian]. Kosm Biol Med. 1972;6(4):46–9.PubMedGoogle Scholar
  85. 85.
    Mader TH, Gibson CR, Caputo M, et al. Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol. 1993;115:347–50.PubMedGoogle Scholar
  86. 86.
    Nicogossian AE, Parker JF Jr. Space physiology and medicine. Washington, DC: NASA, Technical Information Branch; 1982;158,165, 166. NASA SP-447.Google Scholar
  87. 87.
    Costa VP, Arcieri ES. Hypotony maculopathy. Acta Ophthalmol Scand. 2007;85:586–97.PubMedGoogle Scholar
  88. 88.
    Westfall AC, Ng JD, Samples JR, Weissman JL. In reply to: Brodsky MC. Flattening of the posterior sclera: hypotony or elevated intracranial pressure [letter]? Am J Ophthalmol. 2004;138:511–2.Google Scholar
  89. 89.
    Berdahl J, Fleischman D, Allingham RR, Fautsch M. Disc swelling and space flight. (letter to the editor). Ophthalmology. 2012;119(6):1290.PubMedGoogle Scholar
  90. 90.
    Draeger J, Wirt H, Schwartz R. Tonometry under microgravity conditions. In: Sahm PR, Jansen R, Keller MH, editors. Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission D-1. 27–29 August 1986; Norderney, Germany. Koln: Wissenschaftliche Projektfuhrung D1; 1987. p. 503–9.Google Scholar
  91. 91.
    Draeger J, Wirt H, Schwartz RTOMEX, Messung d. Augeninnendrucks unter micro-G Bedingungen [“TOMEX” monitoring of intraocular pressure under microG conditions]. Naturwissenschaften. 1986;73:450–2.PubMedGoogle Scholar
  92. 92.
    Draeger J, Schwartz R, Groenhoff S, et al. Self-tonometry under microgravity conditions. Clin Investig. 1993;71:700–3.PubMedGoogle Scholar
  93. 93.
    Draeger J, Schwartz R, Groenhoff S, Stern C. Self tonometry during the German 1993 Spacelab D2 mission. Ophthalmologe. 1994;91(5):697–9.PubMedGoogle Scholar
  94. 94.
    Chung K, Woo SF, Yi S, et al. Diurnal pattern of intraocular pressure is affected by microgravity when measured in space with the pressure phosphene tonometer (PPT). J Glaucoma. 2011;20:488–91.PubMedGoogle Scholar
  95. 95.
    Hoffler GW, Bergman SA, Nicogossian AE. In flight lower limb volume measurements. In: Nicogossian AE, editor. The Apollo-Soyuz test project medical report. Washington, DC: US Government Printing Office; 1977. p. 63–8. NASA SP-411.Google Scholar
  96. 96.
    Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC: US Government Printing Office; l977. p. 886–90. NASA SP-377.Google Scholar
  97. 97.
    Smith TJ, Lewis J. Effective inverted body position on intraocular pressure. Am J Ophthalmol. 1985;99:618–9.Google Scholar
  98. 98.
    Mader TH. Intraocular pressure in microgravity. J Clin Pharmacol. 1991;31:947–50.PubMedGoogle Scholar
  99. 99.
    Moses RA, Hart WM, editors. Adler’s physiology of the eye. St. Louis: C.V. Mosby; 1987. p. 229–38.Google Scholar
  100. 100.
    Pattinson TJ, Gibson CR, Manuel FK, et al. The effects of betaxolol hydrochloride ophthalmic solution on intraocular pressures during transient microgravity. Aviat Space Environ Med. 1999;70:1012–7.PubMedGoogle Scholar
  101. 101.
    Silver DM, Geyer O. Pressure-volume relation for the living human eye. Curr Eye Res. 2000;20:115–20.PubMedGoogle Scholar
  102. 102.
    Kergoat H, Lovasik JV. Seven-degree head-down tilt reduces choroidal pulsatile ocular blood flow. Aviat Space Environ Med. 2005;76:930–4.PubMedGoogle Scholar
  103. 103.
    Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Chylack LT, Peterson LE, Feiveson AH, et al. NASA Study of cataract in astronauts (NASCA) Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2009;172:10–20.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Schein OD, Glynn RJ, Poggio EC, et al. The relative risk of ulcerative keratitis among users of daily wear and extended wear soft contact lenses. N Engl J Med. 1989;321:773–8.PubMedGoogle Scholar
  106. 106.
    Matthews TD, Frazer DG, Minassian DC, et al. The risks of keratitis and patterns of use with disposable contact lenses. Arch Ophthalmol. 1992;110:1559–62.PubMedGoogle Scholar
  107. 107.
    Buehler PO, Schein OD, Stamler JF, et al. The increased risk of ulcerative keratitis among disposable soft contact lens users. Arch Ophthalmol. 1992;110:1555–8.PubMedGoogle Scholar
  108. 108.
    Willcox MD. Management and treatment of contact lens-related Pseudomonas keratitis. Clinc Ophthalmol. 2012;6:919–24.Google Scholar
  109. 109.
    Robertson DM, Petroll WM, Jester JV, Cavanagh HD. Current concepts: contact lens related Pseudomonas keratitis. Cont Lens Anterior Eye. 2007;30(2):94–107.PubMedGoogle Scholar
  110. 110.
    Robertson DM, Petroll WM, Jester JV, Cavanagh HD. The role of contact lens type, oxygen transmission, and care-related solutions in mediating epithelial homeostasis and pseudomonas binding to corneal cells: an overview. Eye Contact Lens. 2007;33:394–8.PubMedGoogle Scholar
  111. 111.
    Hyndiuk RK, Eiferman RA, Caldwell DR, et al. Comparison of ciprofloxacin ophthalmic solution 0.3% to fortified tobramycin-cefazolin in treating bacterial corneal ulcers. Ophthalmology. 1996;103:1854–62.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thomas H. Mader
    • 1
  • C. Robert Gibson
    • 2
  • F. Keith Manuel
    • 3
  1. 1.Colonel (R), US ArmyMoabUSA
  2. 2.Coastal Eye Associates and KBR, NASA Johnson Space CenterHoustonUSA
  3. 3.Department of OphthalmologyBaylor College of MedicineHoustonUSA

Personalised recommendations