Advertisement

Musculoskeletal Response to Space Flight

  • Linda C. ShackelfordEmail author
Chapter
  • 246 Downloads

Abstract

This chapter focuses on the effects of weightlessness on the structural integrity of bone, muscle, and connective tissue, with an emphasis on the biomechanical changes, both as cause and effect. With regard to the human, the dominant spaceflight factor influencing physiological changes is weightlessness. Given that functional loading is known to increase bone and muscle mass, loss of bone and muscle integrity are an expected consequence of space flight where such loading is diminished. Losses of muscle strength and volume have been measured after 5- to 16-day Space Shuttle missions. Increased urinary excretion of calcium indicated increased bone resorption during short duration Gemini, Apollo, and Space Shuttle missions. Longer duration Skylab and Mir missions were required to detect changes in bone density. These observed changes raised early concern that muscle atrophy and bone loss could increase risks of long-term space flight to unacceptable levels unless adequate countermeasures were developed to prevent the losses.

Keywords

Exercise countermeasures for space flight Mechanical loading Bone loss in space flight Unloading in microgravity Musculoskeletal deconditioning 

References

  1. 1.
    Dickerman RD, Pertusi R, Smith GH. The upper range of lumbar spine bone mineral density? An examination of the current world record holder in the squat lift. Int J Sports Med. 2000;21(7):469–70.PubMedGoogle Scholar
  2. 2.
    Wieland DC, Krywka C, Mick E, Willumeit-Römer R, Bader R, Kluess D. Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation. Acta Biomater. 2015;25:339–46.PubMedGoogle Scholar
  3. 3.
    Kang H, Hou Z, Qin QH. Experimental study of time response of bending deformation of bone cantilevers in an electric field. J Mech Behav Biomed Mater. 2018;77:192–8. Epub 2017 Sep 13.PubMedGoogle Scholar
  4. 4.
    Goodwin TJ. An optimization of pulsed electromagnetic fields study: Orthofix, Inc.; Orthofix basic science summit, Philadelphia, PA, 7–8 December 2006.Google Scholar
  5. 5.
    WHO Study Group. Assessment of fracture risk and its application to screening for post-menopausal osteoporosis. WHO technical report series 843. Geneva: WHO; 1994.Google Scholar
  6. 6.
    Vose GP, Mack PB. Roentgenologic assessment of femoral neck density as related to fracturing. Am J Roentgenol Radium Therapy, Nucl Med. 1963;89:1296–301.Google Scholar
  7. 7.
    Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS prospective study. Osteoporos Int. 1998;8(3):247–54.PubMedGoogle Scholar
  8. 8.
    Mautalen C, Vega E, González D, Carrilero P, Otaño A, Silberman F. Ultrasound and dual X-ray absorptiometry densitometry in women with hip fracture. Calcif Tissue Int. 1995;57(3):165–8.PubMedGoogle Scholar
  9. 9.
    Jergas M, Genant HK. Spinal and femoral DXA for the assessment of spinal osteoporosis. Calcif Tissue Int. 1997;61(5):351–7.PubMedGoogle Scholar
  10. 10.
    Pulkkinen P, Partanen J, Jalovaara P, Jämsä T. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int. 2004;15(4):274–80. Epub 2004 Feb 3.PubMedGoogle Scholar
  11. 11.
    Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am. 1970;52(3):457–67.PubMedGoogle Scholar
  12. 12.
    Xiaoge D, Eryuan L, Xianping W, Zhiguang Z, Gan H, Zaijing J, Xiaoli P, Hongzhuan T, Hanwen W. Bone mineral density differences at the femoral neck and Ward’s triangle: a comparison study on the reference data between Chinese and Caucasian women. Calcif Tissue Int. 2000;67(3):195–8.PubMedGoogle Scholar
  13. 13.
    Dietrick J, Whedon G, Schor E. Effects of mobilization upon various metabolic and physiologic functions of Normal men. Am J Med. 1948;4:3–36.Google Scholar
  14. 14.
    Mack PB, LaChance P. Effects of recumbency and space flight on bone density. Am J Clin Nutr. 1967;20(11):1194–205.PubMedGoogle Scholar
  15. 15.
    LeBlanc A, Schneider V, Krebs J, Evans H, Jhingram S, Johnson P. Spinal bone mineral after 5 weeks of bed rest. Calcif Tissue Int. 1987;41:259–61.PubMedGoogle Scholar
  16. 16.
    Shackelford L, LeBlanc A, Driscoll T, Evans H, Rianon N, Smith S, Spector E, Feeback D, Lai D. Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol. 2004;97(1):119–29.PubMedGoogle Scholar
  17. 17.
    LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks bed rest. J Bone Miner Res. 1990;5(8):843–50.PubMedGoogle Scholar
  18. 18.
    Hantman DA, Vogel JM, Donaldson CL, Friedman R, Goldsmith RS, Hulley SB. Attempts to prevent disuse osteoporosis by treatment with calcitonin, longitudinal compression and supplementary calcium and phosphate. J Clin Endocrinol Metab. 1973;36(5):845–58.PubMedGoogle Scholar
  19. 19.
    Schnieder V, McDonald J. Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis. Calcif Tissue Int. 1984;36:S151–4.Google Scholar
  20. 20.
    Schneider V, LeBlanc A, Huntoon C. Prevention of space flight induced soft tissue calcification and disuse osteoporosis. Acta Astronaut. 1993;29(2):139–40.PubMedGoogle Scholar
  21. 21.
    Shackelford LC, Feiveson A, Smith SM, Feeback D, Greenisen M. Exercise countermeasure to disuse osteoporosis. J Bone Miner Res. 2001;16(Suppl 1):S485. (abs).Google Scholar
  22. 22.
    Whedon GD, Lutwak L, Rambaut P, Whittle M, Leach C, Reid J, Smith M. Effect of weightlessness on mineral metabolism. Metabolic studies on Skylab orbital flights. Calcif Tissue Res. 1976;21(Suppl):423–30.PubMedGoogle Scholar
  23. 23.
    Tilton FE, Degioanni JC, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med. 1980;51(Supp (11)):1209–13.PubMedGoogle Scholar
  24. 24.
    Rambaut PC, Smith MC, Mack PB, Vogel JM. Skeletal response. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo, Chap.7. NASA SP-368; 1975. p. 303–22.Google Scholar
  25. 25.
    Leach CS, Rambaut PC. Biochemical responses of the Skylab crewmen: an overview. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, Chap. 23. NASA SP-377; 1977. p. 204–16.Google Scholar
  26. 26.
    Vogel JM, Whittle MW, Smith MC, Jr., Rambaut PC. Bone mineral measurement – experiment M078. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, Chap. 23. NASA SP-377; 1977. p. 183–190.Google Scholar
  27. 27.
    LeBlanc A, Schneider V. Can the adult skeleton recover lost bone? Exp Gerontol. 1991;26(2–3):189–201.PubMedGoogle Scholar
  28. 28.
    Stupakov GP, Kazeikin VS, Kozlovskii AP, Korolev VV. Evaluation of the changes in the bone structures of the human axial skeleton in prolonged space flight. Kosm Biol Aviakosm Med. 1984;18:33–7.PubMedGoogle Scholar
  29. 29.
    Oganov VS, Bakulin AV, Novikov VE, Murashko LM, Kabitskaia OE, Morgun VV, Voronin LI, Schneider V, Shakelford L, LeBlanc A. Reactions of the human bone system in space flight: phenomenology. Aviakosm Ekolog Med. 2005;39(6):3–9. Russian.PubMedGoogle Scholar
  30. 30.
    Oganov VS, Cann C, Rakhmanov AS, Ternovoĭ SK. Study of the musculoskeletal system of the spine in humans after long-term space flights by the method of computerized tomography. Kosm Biol Aviakosm Med. 1990;24(4):20–1.PubMedGoogle Scholar
  31. 31.
    Grigoriev AI, Bugrov SA, Bogomolov VV, Egorov AD, Polyakov VV, Tarasov IK, Shulzhenko EB. Main medical results of extended flights on space station Mir in 1986–1990. Acta Astronaut. 1993;29(8):581–5.PubMedGoogle Scholar
  32. 32.
    Grigoriev AI, Bugrov SA, Bogomolov VV, Egorov AD, Kozlavskaya IB, Pestov ID, Poyakov VV, Tarasov IK. Preliminary medical results of the Mir year-long mission. Acta Astronaut. 1991;23:1–8.PubMedGoogle Scholar
  33. 33.
    McCarthy I, Goodship A, Herzog R, Oganov V, Stussi E, Vahlensieck M. Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. Eur J Clin Investig. 2000;30(12):1044–54.Google Scholar
  34. 34.
    Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I. Peripheral computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res. 1992;13:871–82.Google Scholar
  35. 35.
    Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK. Radiation exposure in bone density assessment. Appl Radiat Isot. 1999;50(1):215–36.PubMedGoogle Scholar
  36. 36.
    Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997;20(6):547–51.PubMedGoogle Scholar
  37. 37.
    Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355(9215):1607–11.PubMedGoogle Scholar
  38. 38.
    Kanis J, Johnell O, Johansson H, McClosky E. FRAX TM and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Beck TJ. Hip structural analysis (HAS) program. Oct 29, 2002. Accessed at: https://wwwn.cdc.gov/nchs/data/nhanes3/17a/hip_methods.pdf
  40. 40.
    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Veronin L. Bone mineral and lean tissue loss after long duration spaceflight. J Bone Miner Res. 1996;11:S323. (abs).Google Scholar
  41. 41.
    Beck Thomas J, Whole bone modeling using bone mineral data. MIT OpenCourseWare: Massachusetts Institute of Technology; Fall 2002. http://dspace.mit.edu/bitstream/handle/1721.1/39645/16-423JFall-2002/OcwWeb/Aeronautics-and-Astronautics/16-423JSpace-Biomedical-Engineering%2D%2D-Life-SupportFall2002/LectureNotes/index.htm. Accessed 21 Feb 2017. License: Creative Commons BY-NC-SA.
  42. 42.
    Prevrhal S, Meta M, Genant HK. Two new regions of interest to evaluate separately cortical and trabecular BMD in the proximal femur using DXA. Osteoporos Int. 2004;15(1):12–9. Epub 2003 Nov 4.PubMedGoogle Scholar
  43. 43.
    Peacock M, Liu G, Carey M, Ambrosius W, Turner CH, Hui S, Johnston CC Jr. Bone mass and structure at the hip in men and women over the age of 60 years. Osteoporos Int. 1998;8(3):231–9.PubMedGoogle Scholar
  44. 44.
    Gordon GW, Romaniello SJ, Skulan J, Anbar AD, Smith SM, Zwart S. Astronaut bones: stable calcium isotopes in urine as a biomarker of bone mineral balance. Abstract PA44B-05, presented at the 2016 fall meeting, American Geophysical Union, San Francisco, CA, 12–16 Dec 2016.Google Scholar
  45. 45.
    Gordon GW, Romaniello SJ, Skulan JL, Smith SM, Zwart SR, Letcher A, Anbar AD. Monitoring bone mineral balance in spaceflight using natural calcium isotopes in astronaut urine. In: 12th international symposium on applied isotope geochemistry, Copper Mountain, CO; 2017.Google Scholar
  46. 46.
    LeBlanc A, Shackelford L, Schneider V. Future of bone research in space. Bone. 1998;22((5) Suppl):113S–6S.PubMedGoogle Scholar
  47. 47.
    Schneider V, Oganov V, LeBlanc A, Rakmonov A, Taggart L, Bakulin A, Huntoon C, Grigoriev A, Veronin L. Bone and body mass changes during space flight. Acta Astronaut. 1995;36(8–12):463–6.PubMedGoogle Scholar
  48. 48.
    Oganov VS, Grigoriev AI, Veronin LI, Rakmonov AS, Bakulin AV, Schneider VS, LeBlanc A. Bone mineral density in cosmonauts after 4.5–6 month-long flights aboard orbital station Mir. Aerosp Environ Med. 1992;26(5–6):20–4.Google Scholar
  49. 49.
    Grigoriev AI, Oganov VS, Bakulin AV, Polyakov VV, Voronin LI, Morgun VV, Schneider VS, Marachko LM, Novikov VE, AD LB, Shackelford LC. Clinicophysiological evaluation of bone changes in cosmonauts after long-term space missions. Aerosp Environ Med (Russia). 1998;32(1):21–5.Google Scholar
  50. 50.
    LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Shenkman B, Koslovsyaya I, Oganov V, Bakulin A, Hedrick T, Feeback D. Muscle volume, MRI relaxation times (T2), and body composition after space flight. J Appl Physiol. 2000;89(6):2158–64.PubMedGoogle Scholar
  51. 51.
    Harm DL, Jennings RT, Meck JV, Powell MR, Putcha L, Sams CP, Schneider SM, Shackelford LC, Smith SM, Whitson PA. Genome and hormones: gender differences in physiology. Invited review: gender issues related to spaceflight: a NASA perspective. J Appl Physiol. 2001;91:2374–83.PubMedGoogle Scholar
  52. 52.
    Ruff CB, Beck TJ, LeBlanc AD, Evans HJ, Shackelford L, Oganov V, Schneider V. Effects of prolonged weightlessness on hip structural geometry in Russian cosmonauts. J Bone Miner Res. 1999;14:S205.Google Scholar
  53. 53.
    Beck T Aeronautics and astronautics, space biomedical engineering and life support. Biomechanics: Skeletal Consequences of space flight. Whole Bone Modeling Using Bone Mineral Data. 2002. http://dspace.mit.edu/bitstream/handle/1721.1/39645/16-423JFall-2002/OcwWeb/Aeronautics-and-Astronautics/16-423JSpace-Biomedical-Engineering%2D%2D-Life-SupportFall2002/LectureNotes/index.htm. Accessed 12 Dec 2017.
  54. 54.
    LeBlanc A, Lin C, Evans H, Shackelford L, Martin C, Hedrick T. T2 vertebral bone marrow changes after space flight. Magn Reson Med. 1999;41:495–8.PubMedGoogle Scholar
  55. 55.
    Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, Bakulin AV, Shackelford LC, LeBlanc AD. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41(6):973–8.PubMedGoogle Scholar
  56. 56.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12. Epub 2004 Mar 8.PubMedGoogle Scholar
  57. 57.
    Kozlovskaya IB, Grigoriev AI. Russian system of countermeasures on board the International Space Station (ISS). The First Results. American Institute of Aeronautics and Astronautics, Inc. 54th Annual Astronautical Congress of the International Astronautical Federation and the International Academy of Astronautics, and the International Institute of Space Law 29 Sept–3 Oct 2003, Bremen, Germany.Google Scholar
  58. 58.
    Carpenter RD, LeBlanc AD, Evans H, et al. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut. 2010;67(1–2):71–81.Google Scholar
  59. 59.
    Li W, Kezele I, Collins DL, Zijdenbos A, Keyak J, Kornak J, Koyama A, Saeed I, Leblanc A, Harris T, Lu Y, Lang T. Voxel-based modeling and quantification of the proximal femur using inter-subject registration of quantitative CT images. Bone. 2007;41(5):888–95.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhao Q, Li W, Li C, Chu PW, Kornak J, Lang TF, Fang J, Lu Y. A statistical method (cross-validation) for bone loss region detection after spaceflight. Australas Phys Eng Sci Med. 2010;33(2):163–9.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Hammer A. The structure of the femoral neck: a physical dissection with emphasis on the internal trabecular system. Ann Anat. 2010;192(3):168–77.PubMedGoogle Scholar
  62. 62.
    Stiehl JB, Jacobson D, Carrera G. Morphological analysis of the proximal femur using quantitative computed tomography. Int Orthop. 2007;31(3):287–92.PubMedGoogle Scholar
  63. 63.
    Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44(3):449–53.PubMedGoogle Scholar
  64. 64.
    Beck TJ, Mourtada FA, Ruff CB, Scott WW Jr, Kao G. Experimental testing of a DEXA-derived curved beam model of the proximal femur. J Orthop Res. 1998;16(3):394–8. PubMed PMID: 9671936.PubMedGoogle Scholar
  65. 65.
    Mourtada FA, Beck TJ, Hauser DL, Ruff CB, Bao G. Curved beam model of the proximal femur for estimating stress using dual-energy X-ray absorptiometry derived structural geometry. J Orthop Res. 1996;14(3):483–92. PubMed PMID: 8676262.PubMedGoogle Scholar
  66. 66.
    Langton CM, Pisharody S, Keyak JH. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys. 2009;31(6):668–72.PubMedGoogle Scholar
  67. 67.
    International Society of Clinical Densitometry: 2015 ISCD official positions – adult. http://www.iscd.org/official-positions/2015-iscd-official-positions-adult/. Accessed 14 Dec 2017.
  68. 68.
    Yang S, Leslie WD, Luo Y, Goertzen AL, Ahmed S, Ward LM, Delubac I, Lix LM. Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study. Osteoporos Int. 2018;29(1):191–200. Epub 2017 Oct 6.PubMedGoogle Scholar
  69. 69.
    Yang L, Parimi N, Orwoll ES, Black DM, Schousboe JT, Eastell R, Osteoporotic Fractures in Men (MrOS) Study Research Group. Association of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int. 2018;29(3):643–51. Epub Nov 22.PubMedGoogle Scholar
  70. 70.
    Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES, Osteoporotic Fractures in Men (MrOS) Research Group. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res. 2008;23(8):1326–33.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Schneider SM, Amonette WE, Blazine K, et al. Training with the international Space Station interim resistive exercise device. Med Sci Sports Exerc. 2003;35(11):1935–45.PubMedGoogle Scholar
  72. 72.
    Kozlovskaya IB, Grigoriev AI. Russian system of countermeasures on board of the International Space Station (ISS): the first results. Acta Astronaut. 2004;55:233–7.PubMedGoogle Scholar
  73. 73.
    Lang T, LeBlanc A, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res. 2006;21(8):1224–30.PubMedGoogle Scholar
  74. 74.
    Vico L, van Rietbergen B, Vilayphiou N, Linossier MT, Locrelle H, Normand M, Zouch M, Gerbaix M, Bonnet N, Novikov V, Thomas T, Vassilieva G. Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following international space station missions. J Bone Miner Res. 2017;32(10):2010–21. Jun 2. Epub ahead of print.PubMedGoogle Scholar
  75. 75.
    Oganov VS, Grigoriev AI. Mechanism of human osteopenia and some peculiarities of bone metabolism in weightless condition. Russ J Physiol. 2012;98:395–409.Google Scholar
  76. 76.
    Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27(9):1896–906.PubMedGoogle Scholar
  77. 77.
    Smith SM, Heer M, Shackelford LC, Sibonga JD, Spatz J, Pietrzyk RA, Hudson EK, Zwart SR. Bone metabolism and renal stone risk during International Space Station missions. Bone. 2015;81:712–20.PubMedGoogle Scholar
  78. 78.
    Oganov VS, Personal communication, 1996.Google Scholar
  79. 79.
    Dornemann TM, McMurray RG, Renner JB, Anderson JJB. Effects of high-intensity resistance exercise on bone mineral density and muscle strength of 40-50-year-old women. J Sports Med Phys Fitness. 1997;37:246–51.PubMedGoogle Scholar
  80. 80.
    Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load dependent. J Bone Miner Res. 1996;11:218–25.PubMedGoogle Scholar
  81. 81.
    Tsuzuku S, Shimokata H, Ikegami Y, Yabe K, Wasnich RD. Effects of high versus low-intensity resistance training on bone mineral density in young males. Calcif Tissue Int. 2001;68:342–7.PubMedGoogle Scholar
  82. 82.
    Vincent KR, Braith RW. Resistance exercise and bone turnover in elderly men and women. Med Sci Sport and Exerc. 2002;34:17–23.Google Scholar
  83. 83.
    Heinonen A, Sievanen H, Kyrolainen H, Perttunen J, Kannus P. Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb. Bone. 2001;29(3):279–85.PubMedGoogle Scholar
  84. 84.
    Nikander R, Sievänen H, Heinonen A, Karstila T, Kannus P. Load-specific differences in the structure of femoral neck and tibia between world-class moguls skiers and slalom skiers. Scand J Med Sci Sports. 2008;18(2):145–53.PubMedGoogle Scholar
  85. 85.
    LeBlanc, A. D., L. Shackelford, T. Driscoll. H. Evans, N. Rianon, S. Smith. Alendronate as a potential countermeasure to microgravity induced bone loss. J Bone Miner Res, 16 Suppl 1, 2001, p S285.Google Scholar
  86. 86.
    Schneider VS, McDonald J. Prevention of disuse osteoporosis: clodronate therapy. In: DeLuca HF, Frost HM, Lee WS, Johnston CC, Parfitt AM, editors. Osteoporosis – recent advances in pathogenesis and treatment. Baltimore: University Park Press; 1981. p. 491.Google Scholar
  87. 87.
    Black FO, Paloski WH, Reschke ME, Igarashi M, Guedry F, Andersen DJ. Disruption of postural readaptation by inertial stimuli following space flight. J Vestib Res. 1999;9(5):369–78.PubMedGoogle Scholar
  88. 88.
    Leblanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, Smith SM, Evans H, Spector E, Ploutz-Snyder R, Sibonga J, Keyak J, Nakamura T, Kohri K, Ohshima H. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24(7):2105–14.PubMedGoogle Scholar
  89. 89.
    Smith SA, Watts N, Didier H, LeBlanc A, Spector E, Evans H, King L, Sibonga J. IOF-ISCD (International Osteoporosis Foundation-International Society for Clinical Densitometry) Skeletal Health, Orlando, February 21, 2014. Osteoporos Int. 2014;25(Supplement 1):S53. P167.Google Scholar
  90. 90.
    Thadani SR, Ristow B, Blackwell T, Osteoporotic Fractures in Men Study (MrOS) Research Group, et al. Relationship of bisphosphonate therapy and atrial fibrillation/flutter: outcomes of sleep disorders in older men (MrOS sleep) study. Chest. 2016;149(5):1173–80.PubMedGoogle Scholar
  91. 91.
    Shiba N, Matsuse H, Takano Y, Yoshimitsu K, Omoto M, Hashida R, Tagawa Y, Inada T, Yamada S, Ohshima H. Electrically stimulated antagonist muscle contraction increased muscle mass and bone mineral density of one astronaut – initial verification on the International Space Station. PLoS One. 2015;10(8):e0134736.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Sibonga JD, Spector ER, Keyak JH, Zwart SR, Smith SM, Lang TF. Use of quantitative computed tomography to assess for clinically-relevant skeletal effects of prolonged spaceflight on astronaut hips. J. Clin Densitom. Available Online 26 Aug 2019.  https://doi.org/10.1016/j.jocd.2019.08.005.
  93. 93.
    Spector E, Matsumoto T, Jones J, Shapiro J, et al. Bone loss countermeasures for spaceflight. Poster sessions, presentation number: SA0275; plenary sessions, presentation number: FR0275 September 16, 2016 & September 17, 2016. J Bone Miner Res. 31 (Suppl 1). Available at http://www.asbmr.org/education/2016-abstracts. Accessed 12 Sept 2017.
  94. 94.
    Smith SM, Nillen JL, LeBlanc AD, Lipton A, Demers LM, Lane HW, Leach CS. Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab. 1998;83:3584–91.PubMedGoogle Scholar
  95. 95.
    Smith SM, Heer M. Calcium and bone metabolism during space flight. Nutrition. 2002;18:849–52.PubMedGoogle Scholar
  96. 96.
    Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J Bone Min Res. 2005;20(2):208–18.Google Scholar
  97. 97.
    Zwart SR, Rice BL, Dlouhy H, Shackelford LC, Heer M, Koslovsky M, Smith SM. Dietary acid load and bone turnover during long-duration spaceflight and bed rest. Human research program investigators workshop, Galveston, TX; 2018.Google Scholar
  98. 98.
    Zwart SR, Watts SM, Sams CF, Whitson PA, Smith SM. Reduction of dietary acid load as a potential countermeasure for bone loss associated with spaceflight. NASA technical reports server; 2006. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060048264.pdf
  99. 99.
    Morgan JLL, Skulan JL, Gordon GW, et al. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. PNAS. 2012;109(25):9989–94.PubMedGoogle Scholar
  100. 100.
    Gordon GW, Romaniello SJ, Skulan JL, et al. Natural calcium isotopes provide rapid and precise monitoring of bone mineral balance changes in microgravity. NASA human research program annual investigator workshop. 20 Galveston, TX 01/22/2018–01/25/2018.Google Scholar
  101. 101.
    Mujika I, Padilla S. Muscular characteristics of detraining in humans. Med Sci Sports Exerc. 2001;33(8):1297–303.PubMedGoogle Scholar
  102. 102.
    Greenleaf JE, Bulblian R, Bernauer EM, Haskell WL, Moore T. Exercise training protocols for astronauts in microgravity. J Appl Physiol. 1989;67:2191–204.PubMedGoogle Scholar
  103. 103.
    Fitts RH, Riley DR, Widrick JJ. Microgravity and skeletal muscle. J Appl Physiol. 2000;89:823–39.PubMedGoogle Scholar
  104. 104.
    Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol. 1999;516(Pt 3):915–30.PubMedPubMedCentralGoogle Scholar
  105. 105.
    O’Conner JA, Lanyon LE. The influence of strain rate on adaptive remodeling. J Biomech. 1982;15:767–81.Google Scholar
  106. 106.
    Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol. 1995;269:E438–42.PubMedGoogle Scholar
  107. 107.
    Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23(5):399–407.PubMedGoogle Scholar
  108. 108.
    Lee SMC, Guilliams ME, Siconolfi SF, Greenisen MC, Schneider SM, Shackelford LC. Concentric strength and endurance after long duration spaceflight. Med Sci Sports Exerc. 2000;32:S363.Google Scholar
  109. 109.
    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2):157–60.PubMedGoogle Scholar
  110. 110.
    Ledsome JR, Cole C, Gagnon F, Susak L, Wing P. Long term stability of somatosensory evoked potentials and the effects of microgravity. Aviat Space Environ Med. 1995;66(7):641–4.PubMedGoogle Scholar
  111. 111.
    Hutchinson KJ, Watenpaugh DE, Murthy G, Convertino VA, Hargens AR. Back pain during 6 degrees head down tilt approximates that during actual microgravity. Aviat Space Environ Med. 1995;66(3):256–9.PubMedGoogle Scholar
  112. 112.
    Chang DG, Healey RM, Snyder AJ, Sayson JV, Macias BR, Coughlin DG, Bailey JF, Parazynski SE, Lotz JC, Hargens AR. Lumbar spine Paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the International Space Station. Spine. 2016;41(24):1917–24.PubMedPubMedCentralGoogle Scholar
  113. 113.
    LeBlanc A, Evans HJ, Schneider VS, Wendt RE 3rd, Hedrick TD. Changes in intervertebral disc cross-sectional area with bed rest and space flight. Spine. 1994;19(7):812–7.PubMedGoogle Scholar
  114. 114.
    Ledsome JR, Cole C, Gagnon F, et al. Changes in spinal length, contour, lumbar intervertebral disc distances, and latency of somatosensory evoked potentials during microgravity. 1996. Available from http://www.johnledsome.com/list-of-publications.htm. Accessed 7 June 2017.
  115. 115.
    LeBlanc AD, Schonfeld E, Schneider VS, Evans HJ, Taber KH. The spine: changes in T2 relaxation times from disuse. Radiology. 1988;169(1):105–7.PubMedGoogle Scholar
  116. 116.
    Bailey JF, Miller SL, Khieu K, O’Neill CW, Healey RM, Coughlin DG, Sayson JV, Chang DG, Hargens AR, Lotz JC. From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J. 2018;18(1):7–14. Epub 2017 Sep 28.PubMedGoogle Scholar
  117. 117.
    Harrison MF, Garcia KM, Sargsyan AE, Ebert D, Riascos-Castaneda RF, Dulchavsky SA. Preflight, in-flight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp Med Hum Perform. 2018; Jan;89(1):32–40.PubMedGoogle Scholar
  118. 118.
    Li P, Hou G, Zhang R, Gan Y, Xu Y, Song L, Zhou Q. High-magnitude compression accelerates the premature senescence of nucleus pulposus cells via the p38 MAPK-ROS pathway. Arthritis Res Ther. 2017;19(1):209.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Johnston SL, Campbell MR, Scheuring R, Feiveson AH. Risk of herniated nucleus pulposus among U.S. astronauts. Aviat Space Environ Med. 2010;81(6):566–74.PubMedGoogle Scholar
  120. 120.
    Convertino VA, Sandler H. Exercise countermeasures for spaceflight. Acta Astronaut. 1995;35(4/5):253–70.PubMedGoogle Scholar
  121. 121.
    Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res. 2014;29(7):1639–45.PubMedGoogle Scholar
  122. 122.
    Lackner JR, DiZio P. Artificial gravity as a countermeasure in long-duration space flight. J Neurosci Res. 2000;62:169–76.Google Scholar

Suggested Reading

  1. Orwoll ES, Adler RA, Shreyasee A, et al. Skeletal heath in long-duration astronauts: nature, assessment, and management recommendations from the NASA bone summit. J Bone Miner Res. 2013;28(6):1243–55.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NASA Johnson Space CenterHoustonUSA
  2. 2.Houston Methodist HospitalHoustonUSA

Personalised recommendations