Advertisement

Decompression-Related Disorders

  • Andrew A. Pilmanis
  • Jonathan B. Clark
Chapter

Abstract

The physiological zone from sea level to 3048 m (10,000 ft.) encompasses the pressure to which humans are well adapted, although if appropriately acclimated, they can survive the summit of Earth’s highest mountain (Mt. Everest at 8850 m/29,028 ft.) without supplemental oxygen. At higher altitudes, artificial systems are required to supply needed oxygen and, eventually, sufficient ambient pressure. The most effective means of preventing physiological problems in aircraft and spacecraft is to provide cabin pressurization so that occupants are never exposed to pressures outside the physiological zone. Unfortunately, failure of structures, hardware, or procedures may lead to unwanted and hazardous decompression events. This chapter will review cabin pressurization schemes, events that might lead to loss of pressure, and the major medical concerns of decompression.

Keywords

Decompression-related disorders Aircraft decompression medical issues Spacecraft decompression health issues Cabin pressurization in spacecraft Hypobaric decompression Decompression sickness during space flight 

Notes

Acknowledgments

The authors are grateful for the patient, critical review of the manuscript and comments by the editorial team.

References

  1. 1.
    Basic Guidelines for Crew Activities during ISS Depressurization. International Space Station Program, National Aeronautics and Space Administration; July 2005 SSP-50506.Google Scholar
  2. 2.
    David L. Space debris, a growing challenge. AIAA Aerospace America Oct 2009, p. 30–36; National Research Council. Limiting future collision risk to spacecraft: an assessment of NASA’s meteoroid and orbital debris programs. National Academies Press; 2011.Google Scholar
  3. 3.
    7th European conference on space debris. April 18–21, Darmstadt, Germany 2017. Accessible at https://conference.sdo.esoc.esa.int/proceedings/list
  4. 4.
    Potter AE. Ground-based optical observations of orbital debris: a review. Adv Space Res. 1995;16(11):35–45.Google Scholar
  5. 5.
    Ackermann, MR, Cox DD, Kiziah RR, Zimmer PC, McGraw JT, and Cox DD. A systematic examination of ground-based and space-based approaches to optical detection and tracking of artificial satellites. No. SAND2015-3726C. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); 2015.Google Scholar
  6. 6.
    National Research Council (U.S.). Orbital debris; a technical assessment. Committee on Space Debris. Aeronautics and Space Engineering Board. Commission on Engineering and Technical Systems. Washington, DC: National Academy Press; 1995.Google Scholar
  7. 7.
    McKnight DS. Examination of possible collisions in space. Acta Astronautica. 1992;26(7):497–500.Google Scholar
  8. 8.
    Pelton JN. The space debris threat and the Kessler syndrome. Chapter 2. In: Space debris and other threats from outer space. New York: Springer; 2013. p. 17–23.Google Scholar
  9. 9.
    Kessler DJ, Cour-Palais BG. Collision frequency of artificial satellites: the creation of a debris belt. J Geophys Res Space Physics. 1978;83(A6):2637–46.Google Scholar
  10. 10.
    Stuckey W. Lessons learned from the long duration exposure facility. Journal of the IES. 1993;36(5):38–42.Google Scholar
  11. 11.
    Clark LG. The long duration exposure facility (LDEF), mission 1 experiments. NASA SP-473; 1984.Google Scholar
  12. 12.
    Liou J-C, Hall DT, Krisko PH, Opiela JN. LEGEND–A three-dimensional LEO-to-GEO debris evolutionary model. Advances in Space Research. 2004;34(5):981–6.Google Scholar
  13. 13.
    Liou J-C, Matney MJ, Anz-Meador PD, Kessler D, Jansen M, Theall JR. The new NASA orbital debris engineering model ORDEM2000. NASA/TP-2002-210780. 2002;Google Scholar
  14. 14.
    Krisko P. NASA’s new orbital debris engineering model, ORDEM2010//4th IAASS Conf. Huntsville, Alabama; 2010.Google Scholar
  15. 15.
    Liou J-C, Johnson NL. Risks in space from orbiting debris. Science. 2006;311(5759):340–1.PubMedGoogle Scholar
  16. 16.
    Liou J-C. An updated assessment of the orbital debris environment in LEO. Orbital Debris Quarterly News. January 2010; Vol 14, Issue 1.Google Scholar
  17. 17.
    Bjorkman MD, Christiansen EL, Lear DM, Prior TG, Hyde JL. Bumper 3: micrometeoroid and orbital debris risk assessment tool, software user manual. Houston: NASA Johnson Space Center; 2014.Google Scholar
  18. 18.
    Christiansen EL, Nagy K, Lear DM, Prior TG. Space station MMOD shielding. Acta Astronaut. 2009;65(7):921–9.Google Scholar
  19. 19.
    Kessler DJ, Gleghorn GJ, National Research Council. Limiting future collision risk to spacecraft: an assessment of NASA’s meteoroid and orbital debris programs. Washington, DC: National Academies Press; 2011.Google Scholar
  20. 20.
    National Research Council (U.S.). Protecting the space shuttle from meteoroids and orbital debris. Committee on Space Shuttle Meteoroid/Debris Risk Management. Aeronautics and Space Engineering Board. Commission on Engineering and Technical Systems. Washington, DC: National Academy Press; 1997.Google Scholar
  21. 21.
    Evans S, Lewis H, Williamsen J, Evans H, Bohl W. Bounding the risk of crew loss following orbital debris penetration of the international Space Station at assembly stages 1J and 1E. Adv Space Res. 2004;34(5):1104–8.PubMedGoogle Scholar
  22. 22.
    Gallini TE, Hackwell JA, Marin DC, Zambran M, Peterson GE, Lynch DK. Micrometeoroid and orbital debris environments for the international space station. No. AEROSPACE-TR-2008 (8570)-1. Aerospace Corp El Segundo CA; 2007.Google Scholar
  23. 23.
    Williamsen JE. Orbital debris risk analysis and survivability enhancement for freedom station manned modules. AIAA-92-1410. AIAA Space programs and technologies conference March 24–27, 1992.Google Scholar
  24. 24.
    Leonov A. Two sides of the Moon: our story of the cold war space race. New York: St. Martin’s Griffin; 2006.Google Scholar
  25. 25.
    Kleiman J. Protection of materials and structures from the space environment ICPMSE 6. Dordrecht: Kluwer Academic Publishers; 2006. p. 41–42. In: Protection of materials and structures from the space environment. J Kleiman and Z Iskanderova, eds; 2017.Google Scholar
  26. 26.
    Pate-Cornell E, Sachon M. Risks of particle hits during space walks in low earth orbit. IEEE Trans Aerosp Electron Syst. 2001;37(1):134–46.Google Scholar
  27. 27.
    Kumar KV, Walligora JM. The effects of different rates of ascent on the incidence of altitude decompression sickness. NASA-TM-100472; 1989.Google Scholar
  28. 28.
    Weien RW, Rapid Decompression and Decompression Sickness. In: Pilmanis AA, Sears WJ, editors. Raising the operational ceiling: A workshop on the life support and physiological issues of flight at 60,000 feet and above. USAF Armstrong Laboratory Special Report # USAF AL/CF-SR-1995-0021. San Antonio: Brooks AFB; 1995. p. 390pp.Google Scholar
  29. 29.
    Hitchcock FA, Whitehorn WV, Edelmann A. Tolerance of normal men to explosive decompression. J Appl Phys. 1948;1:418–29.Google Scholar
  30. 30.
    Clark JB. Crew survival lessons learned from the Columbia mishap. JBIS. 2009;62:246–51.Google Scholar
  31. 31.
    Fulton JF, editor. Decompression sickness. Philadelphia: W.B. Saunders; 1951.Google Scholar
  32. 32.
    Fryer DI. Subatmospheric decompression sickness in man. AGARDograph #125 1969:343pp.Google Scholar
  33. 33.
    Adler HF. Dysbarism. USAFSAM aeromedical review #1–64 1964:166pp.Google Scholar
  34. 34.
    Gillies JA. A textbook of aviation physiology. Oxford: Pergamon Press; 1965.Google Scholar
  35. 35.
    Bendrick GA, Ainscough MJ, Pilmanis AA, Bisson RU. Prevalence of decompression sickness symptoms in U-2 pilots. Aviat Space Environ Med. 1996;67:199–206.PubMedGoogle Scholar
  36. 36.
    Neubauer JC, Dixon JP, Herndon CM. Fatal pulmonary decompression sickness: a case report. Aviat Space Environ Med. 1988;59:1181–4.PubMedGoogle Scholar
  37. 37.
    Fryer DI. Pathological findings in fatal sub-atmosphere decompression sickness. Med Sci Law. 1962;2:110–23.Google Scholar
  38. 38.
    Gibbons JA, Ramsey C, Wright JK, Pilmanis AA. Case history of serious altitude decompression sickness following increased rate of ascent. Aviat Space Environ Med. 2003;74:675–8.PubMedGoogle Scholar
  39. 39.
    Wolf CW, Petzel DH, Seidl G, Burghuber OC. A case of decompression sickness in a commercial pilot. Aviat Space Environ Med. 1989;60:990–3.PubMedGoogle Scholar
  40. 40.
    Black WR, Dehart RH. DCS: an increasing risk for the private pilot. Aviat Space Environ Med. 1992;63:200–2.PubMedGoogle Scholar
  41. 41.
    Ward CA, Koheil A, McCulloch D, et al. Activation of complement at plasma-air or serum-air interface of rabbits. J Appl Physiol. 1986;60:1651–8.PubMedGoogle Scholar
  42. 42.
    Philp RB. A review of blood changes associated with compression-decompression: relationship with decompression sickness. Undersea Biomed Res. 1974;1:117–50.PubMedGoogle Scholar
  43. 43.
    Philp RB, Inwood MJ, Warren BA. Interactions between gas bubbles and components of the blood: implications in decompression sickness. Aerosp Med. 1972b;43:946–53.PubMedGoogle Scholar
  44. 44.
    Thorsen T, Lie RT, Holmsen H. Introduction of platelet aggregation in vitro by microbubbles of nitrogen. Undersea Biomed Res. 1989;16:453–64.PubMedGoogle Scholar
  45. 45.
    Thom SR, Milovanova TN, Bogush M, Bhopale VM, Yang M, Bushmann K, et al. Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving. J Appl Physiol. 2012;112(8):1268–78.PubMedGoogle Scholar
  46. 46.
    Thom SR, Milovanova TN, Bogush M, Yang M, Bhopale VM, Pollock NW, et al. Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving. J Appl Physiol. 2013;114(10):1396–405.PubMedGoogle Scholar
  47. 47.
    Ikels KG. Production of gas bubbles in fluids by tribonucleation. J Appl Physiol. April 1970;28(4):524–7.Google Scholar
  48. 48.
    Collins M. Carrying the fire: an astronaut’s journeys. New York: Farrar, Straus and Giroux; 2001. Originally published 1974.Google Scholar
  49. 49.
    Powell MR, Waligora J, Norfleet W. Decompression in simulated microgravity; bed rest and its influence on stress-assisted nucleation. Undersea Biomed Res. 1992;19(Suppl):54.Google Scholar
  50. 50.
    Powell MR, Waligora JM, Norfleet WT, Kumar KV. Project Argo: gas phase formation in simulated microgravity. Houston: NASA Johnson Space Center; 1993. NASA TM-104762Google Scholar
  51. 51.
    Balldin UI, Pilmanis AA, Webb JT. The effect of simulated weightlessness on hypobaric decompression sickness. Aviat Space Environ Med. 2002a;73:773–8.PubMedGoogle Scholar
  52. 52.
    Webb JT, Beckstrand DP, Pilmanis AA, Balldin UI. Decompression sickness during simulated extravehicular activity: to ambulation vs. non-ambulation. Aviat Space Environ Med. 2005a;76:778–81.PubMedGoogle Scholar
  53. 53.
    Pilmanis AA, editor. Proceedings of the 1990 hypobaric decompression sickness workshop. USAF Armstrong laboratory special report. Report Number: USAF AL-SR-1992-005. San Antonio: Brooks AFB; 1992.Google Scholar
  54. 54.
    Spencer MP. Decompression limits or compressed air determined by ultrasonically detected blood bubbles. J Appl Physiol. 1976;40:229–35.PubMedGoogle Scholar
  55. 55.
    Pilmanis AA, Olson RM, Fischer MD, Wiegman JF, Webb JT. Exercise-induced altitude decompression sickness. Aviat Space Environ Med. 1999;70:22–9.PubMedGoogle Scholar
  56. 56.
    Webb JT, Pilmanis AA. Venous gas emboli detection and endpoints for decompression sickness research. SAFE J. 1992;22:22–5.Google Scholar
  57. 57.
    Bayne CG, Hunt WS, Johanson DC, Flynn ET, Weathersby PK. Doppler bubble detection and decompression sickness: a prospective clinical trial. Undersea Biomed Res. 1985;12(3):327–32.PubMedGoogle Scholar
  58. 58.
    Conkin J. Preventing decompression sickness over three decades of extravehicular activity. NASA Technical Publication – 2011-216147; June 2011.Google Scholar
  59. 59.
    Olson RM, Krutz RW Jr. Significance of delayed symptom onset and bubble growth in altitude decompression sickness. Aviat Space Environ Med. 1991;62:296–9.PubMedGoogle Scholar
  60. 60.
    Olson RM, Pilmanis AA, Scoggins TE. Echo imaging in decompression sickness research. SAFE J. 1992;22:26–9. 29th Annual SAFE Symposium Proceedings 1991:278–82Google Scholar
  61. 61.
    Olson RM. Echo imaging techniques determine the size of intravascular bubbles in decompression sickness. AL/CF-TR-1994-0033 1994:36pp.Google Scholar
  62. 62.
    Butler BD, Hills BA. The lung as a filter for microbubbles. J Appl Physiol. 1979;47(3):537–43.PubMedGoogle Scholar
  63. 63.
    Butler BD, Hills BA. Transpulmonary passage of venous air emboli. J Appl Physiol. 1985;59(2):543–7.PubMedGoogle Scholar
  64. 64.
    Powell MR, Norfleet WT, Kumar KV, Butler BD. Patent foramen ovale and hypobaric decompression. Aviat Space Environ Med. 1995;65:273–5.Google Scholar
  65. 65.
    Pilmanis AA, Meissner FW, Olson RM. Left ventricular gas emboli in six cases of altitude-induced decompression sickness. Aviat Space Environ Med. 1996;67:1092–6.PubMedGoogle Scholar
  66. 66.
    Lee VM, Hay AE. Altitude decompression illness – The operational risk at sustained altitudes up to 35,000 ft. In: Proceedings of the HFM symposium on “operational medical issues in hypo and hyperbaric conditions”, NATO RTO, 16-20Oct00, Toronto, Canada; 2001. (37-1), CD:MP-062-40.pdf. 11pp.Google Scholar
  67. 67.
    Diesel DA, Ryles MT, Pilmanis AA, Balldin UI. Non-invasive measurement of pulmonary artery pressure in humans with simulated altitude-induced venous gas emboli. Aviat Space Environ Med. 2002;73:128–33.PubMedGoogle Scholar
  68. 68.
    Foster PP, Boriek AM, Butler BD, Gernhardt ML, Bove, Pilmanis AA (Supplement Associate Editor). Patent foramen ovale and paradoxical systemic embolism: a bibliographic review. Aviat Space Environ Med 2003; 74,6 Section II, Supplement:64pp.Google Scholar
  69. 69.
    Ryles MT, Pilmanis AA. The initial signs and symptoms of altitude decompression sickness. Aviat Space Environ Med. 1996;67:983–9.PubMedGoogle Scholar
  70. 70.
    Conkin J, Pilmanis AA, Webb JT. Case descriptions and observations about cutis marmorata from hypobaric decompressions. NASA/TP-2002-210779; April 2002.Google Scholar
  71. 71.
    Balldin UI, Pilmanis AA, Webb JT. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli. Aviat Space Environ Med. 2002b;73:996–9.PubMedGoogle Scholar
  72. 72.
    Rudge FW. Variations in the presentation of altitude-induced chokes. Aviat Space Environ Med. 1995;66:1185–7.PubMedGoogle Scholar
  73. 73.
    Behnke A. As quoted in Davis JC, Youngblood DA: definitive treatment of decompression sickness and arterial gas embolism. Hyperbaric Undersea Med. 1978;1:2–7.Google Scholar
  74. 74.
    Liske E, Crowley WJ Jr, Lewis JA. Altitude decompression sickness with focal neurological manifestations. Aerosp Med. 1967;38:304–6.Google Scholar
  75. 75.
    Balldin UI, Pilmanis AA, Webb JT. Central nervous system decompression sickness and venous gas emboli in hypobaric conditions. Aviat Space Environ Med. 2004;75:969–72.PubMedGoogle Scholar
  76. 76.
    Bryce LM, Butler WP, Pilmanis AA, King H. Headache and altitude decompression sickness: joint pain or neurological pain? Aviat Space Environ Med. 2006;76:1074–8.Google Scholar
  77. 77.
    Butler FK. Decompression sickness presenting as optic neuropathy. Aviat Space Environ Med. 1991;62:346–50.PubMedGoogle Scholar
  78. 78.
    Webb JT, Fischer MD, Heaps CL, Pilmanis AA. Exercise-enhanced preoxygenation increases protection from decompression sickness. Aviat Space Environ Med. 1996;67:618–24.PubMedGoogle Scholar
  79. 79.
    Webb JT, Pilmanis AA, Balldin UI. Altitude decompression sickness at 7,620 m following prebreathe enhanced with exercise periods. Aviat Space Environ Med. 2004;75:859–64.PubMedGoogle Scholar
  80. 80.
    Webb JT, Pilmanis AA, Fischer MD, Kannan N. Enhancement of preoxygenation for decompression sickness protection: effect of exercise duration. Aviat Space Environ Med. 2002;73:1161–6.PubMedGoogle Scholar
  81. 81.
    Hankins TC, Webb JT, Neddo GC, Pilmanis AA, Mehm WJ. Test and evaluation of exercise-enhanced preoxygenation in U-2 operations. Aviat Space Environ Med. 2000;71:822–6.PubMedGoogle Scholar
  82. 82.
    Michaelson RS, Pilmanis AA, Morgan T. Report of evaluation of decompression sickness, Beale AFB10-14 AUG 2009. AFRL-SA-BR-TR-2010-0008; Sept 2009.Google Scholar
  83. 83.
    Webb JT, Woodrow AD, Maresh RW. Decompression sickness and U-2 operations: summary of research findings and recommendations regarding use of exercise during prebreathe. AFRL-SA-BR-TR-2009-0018; March 2010.Google Scholar
  84. 84.
    Jersey SL, Hundemer GL, Stuart RP, West KN, Michaelson RS, Pilmanis AA. Neurological altitude decompression sickness among U-2 pilots: 2002–2009. Aviat Space Environ Med. 2011;82:1–10.Google Scholar
  85. 85.
    Hundemer GL, Jersey SL, Stuart RP, Butler WP, Pilmanis AA. Altitude decompression sickness incidence among U-2 pilots: 1994-2010. ASEM. 2012;83(10):968–74.Google Scholar
  86. 86.
    Jersey SL, Baril RT, McCarty RD, Millhouse CM. Severe neurological decompression sickness in a U-2 pilot. Aviat Space Environ Med. 2010;81:64–8.PubMedGoogle Scholar
  87. 87.
    Jersey SL, Jesinger RA, Palka P. Brain magnetic resonance imaging anomalies in U-2 pilots with neurological decompression sickness. Aviat Space Environ Med. 2013;84:3–11.PubMedGoogle Scholar
  88. 88.
    Mcguire SA, Sherman PM, Brown AC, Robinson AY, Tate DF, Fox PT, Kochunov PV. Hyperintense white matter lesions in 50 high altitude pilots with neurologic decompression sickness. Aviat Space Environ Med. 2012;83:1117–22.PubMedPubMedCentralGoogle Scholar
  89. 89.
    McGuire SA, Tate DF, Wood J, et al. Lower neurocognitive function in U-2 pilots: relationship to white matter hyperintensities. Neurology. 2014;83:638645.Google Scholar
  90. 90.
    Pilmanis AA, Wright B, Bryant D, Wade M. U-2S cockpit altitude reduction effort rapid decompression: physiological risk review. AFRL-SA-WP-SR-2014-000; January 2014.Google Scholar
  91. 91.
    McGuire S, Sherman P, Profenna L, et al. White matter hyperintensities on MRI in high-altitude U-2 pilots. Neurology. 2013;81:729–35.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Norcross J, Sherman P, McGuire S, Kochunov P. Initial incidence of white matter hyperintensities on MRI in astronauts. In: Presented at the NASA human research program investigators work shop 2016 Feb 8–11th, Galveston TX.Google Scholar
  93. 93.
    Lee JK, Kopplemans V, Riascos RF, Hasan KM, Pasternack O, Mulavara AP, Bloomberg JJ, Seidler RD. Spaceflight-Associated Brain White Matter Microstructural Changes and Intracranial Fluid Redistribution. JAMA Neurol. 2019;76(4):412–419.Google Scholar
  94. 94.
    Tarver W, Brunstetter T. Microgravity ocular syndrome clinical update 2017. In: Presented at the NASA human research program investigator’s workshop, 2017, Jan 23–26. Galveston, TX.Google Scholar
  95. 95.
    Webb JT, Pilmanis AA, Balldin UI, Fischer JR. Altitude decompression sickness susceptibility: influence of anthropometric and physiologic variables. Aviat Space Environ Med. 2005;76:547–51.PubMedGoogle Scholar
  96. 96.
    Webb JT, Krause KM, Pilmanis AA, Fischer MD, Kannan N. The effect of exposure to 35,000 ft on incidence of altitude decompression sickness. Aviat Space Environ Med. 2001;72:509–12.PubMedGoogle Scholar
  97. 97.
    Webb JT, Pilmanis AA. Fifty years of decompression sickness research at Brooks AFB, TX: 1960–2010. Aviat Space Environ Med. 2011;82(5 suppl):A1–25.PubMedGoogle Scholar
  98. 98.
    Voge VM. Probable bends at 14,000 feet: a case report. Aviat Space Environ Med. 1989;60:1102–3.PubMedGoogle Scholar
  99. 99.
    Cheng H, Buhrman JR, Webb JT, Pilmanis AA. Development of the AFRL aircrew performance and protection data Bank. AFRL technical report, AFRL-RH-WP-TR-2008-0001; Dec 2007.Google Scholar
  100. 100.
    Webb JT, Pilmanis AA, O'Connor RB. An abrupt zero-preoxygenation altitude threshold for decompression sickness symptoms. Aviat Space Environ Med. 1998;69:335–40.PubMedGoogle Scholar
  101. 101.
    Webb JT, Pilmanis AA. Breathing gas of 100% oxygen compared with 50% oxygen, 50% nitrogen reduces altitude-induced venous gas emboli. Aviat Space Environ Med. 1993;64:808–12.PubMedGoogle Scholar
  102. 102.
    Webb JT, Pilmanis AA. Decompression sickness risk vs time and altitude. 31st annual SAFE symposium proceedings. 1994:212–6.Google Scholar
  103. 103.
    Webb JT, Pilmanis AA. Decompression sickness risk vs. time at 22,500-30,000 feet. SAFE J. 1995b;25:133–5.Google Scholar
  104. 104.
    Webb JT, Pilmanis AA. Altitude decompression sickness risk prediction. SAFE J. 1995c;25:136–41.Google Scholar
  105. 105.
    Haske TL, Pilmanis AA. Decompression sickness latency as a function of altitude to 25,000 ft. Aviat Space Environ Med. 2002;73:1059–62.PubMedGoogle Scholar
  106. 106.
    Pilmanis AA, Webb JT, Kannan N, Balldin UI. The risk of altitude decompression sickness at 12,000 m and the effect of ascent rate. Aviat Space Environ Med. 2003;74:1052–7.PubMedGoogle Scholar
  107. 107.
    Files DS, Webb JT, Pilmanis AA. Retrospective analysis of 23 years of USAF and USN aircraft cabin depressurization incidents. Aviat Space Environ Med. 2005;76:523–9.PubMedGoogle Scholar
  108. 108.
    Pilmanis AA, Webb JT, Kannan N, Balldin UI. The effect of repeated altitude exposures on the incidence of decompression sickness. Aviat Space Environ Med. 2002;73:525–31.PubMedGoogle Scholar
  109. 109.
    Webb JT, Balldin UI, Pilmanis AA. Prevention of decompression sickness in current and future fighter aircraft. Aviat Space Environ Med. 1993;64:1048–50.PubMedGoogle Scholar
  110. 110.
    Webb JT, Pilmanis AA, Kannan N, Olson RM. The effect of staged decompression while breathing 100% oxygen on altitude decompression sickness. Aviat Space Environ Med. 2000;71:692–8.PubMedGoogle Scholar
  111. 111.
    Pilmanis AA, Webb JT, Balldin UI. Partial pressure of nitrogen in breathing mixtures and risk of altitude decompression sickness (DCS). Aviat Space Environ Med. 2005;76:635–41.PubMedGoogle Scholar
  112. 112.
    Webb JT, Pilmanis AA. Preoxygenation time versus decompression sickness incidence. SAFE J. 1999;29:75–8.PubMedGoogle Scholar
  113. 113.
    Cooke JP. Denitrogenation interruptions with air. Aviat Space Environ Med. 1976;47:1205–9.Google Scholar
  114. 114.
    Pilmanis AA, Webb JT, Balldin UI, Conkin J, Fischer JR. Air break during preoxygenation and risk of altitude decompression sickness. Aviat Space Environ Med. 2010;81:1–7.Google Scholar
  115. 115.
    Krutz RW Jr, Dixon GA. The effects of exercise on bubble formation and bends susceptibility at 9,100 m (30,000 ft; 4.3 psia). Aviat Space Environ Med. 1987;58:A97–9.PubMedGoogle Scholar
  116. 116.
    Webb JT, Morgan TR, Sarsfield SD. Altitude decompression sickness risk and physical activity during exposure. Aerosp Med Hum Perform. 2016;87(6):516.PubMedGoogle Scholar
  117. 117.
    Webb JT, Pilmanis AA, Fischer MD. Moderate exercise after altitude exposure fails to induce decompression sickness. Aviat Space Environ Med. 2002a;73:872–5.PubMedGoogle Scholar
  118. 118.
    Bassett BE. Decompression procedures for flying after diving, and diving at altitudes above sea level. USAFSAM-TR-82-47 1982:41pp.Google Scholar
  119. 119.
    Sheffield PJ (ed). Flying after diving. UHMS publication # 77 (FLYDIV); Dec 1989.Google Scholar
  120. 120.
    Vann RD, Denoble P, Emmerman MN, Corson KS. Flying after diving and decompression sickness. Aviat Space Environ Med. 1993;64:801–7.PubMedGoogle Scholar
  121. 121.
    Pollock NW, Fitzpatrick DT. NASA flying after diving procedures. In: Sheffield P, Vann RD, editors. DAN flying after recreational diving workshop proceedings. Durham: Divers Alert Network; 2004. p. 59–64.Google Scholar
  122. 122.
    Pollock NW, Natoli MJ, Gerth WA, Thalmann ED, Vann RD. Risk of decompression sickness during exposure to high cabin altitude after diving. Aviat Space Environ Med. 2003;74:1163–8.PubMedGoogle Scholar
  123. 123.
    Cialoni D, Pieri M, Balestra C, Marroni A. Flying after diving: in-flight echocardiography after a scuba diving week. Aviat Space Environ Med. 2014;85(10):993–8.PubMedGoogle Scholar
  124. 124.
    Webb JT, Kannan N, Pilmanis AA. Gender not a factor for altitude decompression sickness risk. Aviat Space Environ Med. 2003;74:2–10.PubMedGoogle Scholar
  125. 125.
    Kohn RR. Heart and cardiovascular system. In: Finch CE, editor. The biology of aging. Handbook of the biology of aging. New York: Van Nostrand Reinhold; 1977.Google Scholar
  126. 126.
    Muscle GE. In: Finch CE, editor. The biology of aging. Handbook of the biology of aging. New York: Van Nostrand Reinhold; 1977.Google Scholar
  127. 127.
    Motley HL, Chinn HI, Odell FA. Studies on bends. J Aviat Med. 1945;16:210–34.Google Scholar
  128. 128.
    Sulaiman ZM, Pilmanis AA, O'Connor RB. Relationship between age and susceptibility to decompression sickness. Aviat Space Environ Med. 1997;68:695–8.PubMedGoogle Scholar
  129. 129.
    Webb JT, Pilmanis AA. Altitude DCS susceptibility factors. In: Proceedings of the HFM symposium on operational medical issues in hypo and hyperbaric conditions. NATO RTO, 16-20Oct00, Toronto, Canada; 2001. Available on CD from NATO Research and Technology Organisation (Technical Report RTO-MP-62; ADP011062; ISBN 92-837-0030-0); 2003.Google Scholar
  130. 130.
    Kumar KV, Waligora JM, Powell MR. Epidemiology of decompression sickness under simulated space extravehicular activities. Aviat Space Environ Med. 1993;64:1032–9.PubMedGoogle Scholar
  131. 131.
    Dixon GA, Krutz RW Jr, Fischer JR. Decompression sickness and bubble formation in females exposed to a simulated 7.8 psia suit environment. Aviat Space Environ Med. 1988;59:1146–9.PubMedGoogle Scholar
  132. 132.
    Weien RW, Baumgartner N. Altitude decompression sickness: hyperbaric therapy results in 528 cases. Aviat Space Environ Med. 1990;61:833–6.PubMedGoogle Scholar
  133. 133.
    Rudge FW. Relationship of menstrual history to altitude chamber decompression sickness. Aviat Space Environ Med. 1990;61:657–9.PubMedGoogle Scholar
  134. 134.
    Maio DA, Allen TH, Bancroft RW. Decompression sickness in simulated Apollo space-cabin. Aerosp Med. 1969;40:1114–8.PubMedGoogle Scholar
  135. 135.
    Beard SE, Allen TH, McIver RG, Bancroft RW. Comparison of helium and nitrogen in production of bends in simulated orbital flights. Aerosp Med. 1967;38:331–7.PubMedGoogle Scholar
  136. 136.
    Ikels KG. Determination of the solubility of nitrogen in water and extracted human fat. J Gas Chromatog. 2:374–9; SAM-TDR-64-1 1964:9ppGoogle Scholar
  137. 137.
    Allen TH, Beard SE. Decompression sickness in simulated “zoom” flights. J Appl Physiol. 1969;26:182–7.PubMedGoogle Scholar
  138. 138.
    Degner EA, Ikels KG, Allen TH. Dissolved nitrogen and bends in oxygen-nitrogen mixtures during exercise at decreased pressures. Aerosp Med. 1965;36:418–24.Google Scholar
  139. 139.
    Webb JT, Smead KW, Jauchem JR, Barnicott PT. Blood factors and venous gas emboli: surface to 429 mmHg (8.3 psi). Undersea Biomed Res. 1988;15:107–21.PubMedGoogle Scholar
  140. 140.
    Webb JT, McGlasson DL, Pilmanis AA. Complement proteins and decompression sickness susceptibility. AL-TR-1992-0068 1992:16pp.Google Scholar
  141. 141.
    Boycott AE, Damant GCC, Haldane JS. The prevention of compressed-air illness, vol. VIII: J Hyg; 1908. p. 342.Google Scholar
  142. 142.
    Rossing RG, Danford MB, Bell EL, Garcia R. Mathematical models for the analysis of the nitrogen washout curve. SAM-TR-67-100 1967:55pp.Google Scholar
  143. 143.
    Allen TH, Maio DA, Bancroft RW. Body fat, denitrogenation and decompression sickness in men exercising after abrupt exposure to altitude. Aerosp Med. 1971;42:518–24.PubMedGoogle Scholar
  144. 144.
    Gernhardt ML. Development and evaluation of a decompression stress index based on tissue bubble dynamics. Ph.D Dissertation, University of Pennsylvania, UMI #9211935; 1991.Google Scholar
  145. 145.
    Webb JT. Documentation for the USAF School of Aerospace Medicine Altitude Decompression Sickness Research Database. AFRL-SA-BR-SR-2009-0007; 2010:67.Google Scholar
  146. 146.
    Pilmanis AA, Petropoulos L, Kannan N, Webb JT. Decompression sickness risk model: development and validation by 150 prospective hypobaric exposures. Aviat Space Environ Med. 2004;75:749–59.PubMedGoogle Scholar
  147. 147.
    AFRL Altitude DCS Risk Assessment Computer model website (requires registration). https://biodyn.istdayton.com/CBDN
  148. 148.
    Kannan N, Raychaudhuri A, Pilmanis AA. A logistic model for altitude decompression sickness. Aviat Space Environ Med. 1998;69:965–70.PubMedGoogle Scholar
  149. 149.
    Pilmanis AA, Petropoulos L, Kannan N, Evans F, Webb JT. Altitude decompression sickness risk assessment computer (ADRAC). 37th annual SAFE association symposium proceedings 1999:7pp.Google Scholar
  150. 150.
    Schreiner HR, Hamilton RW (eds). Validation of decompression tables. UHMS Publication 74(VAL) 1-1-88; May 1989.Google Scholar
  151. 151.
    Gernhardt ML, Conkin J, Foster PP, et al. Design and testing of a two hour oxygen prebreathe protocol for space walks from the International Space Station. Undersea Biomed Res. 2000;27:1.Google Scholar
  152. 152.
    National Aeronautics and Space Administration. Decompression sickness procedures and guidelines. Houston: NASA-Johnson Space Center; 1998. JPG-1800.3Google Scholar
  153. 153.
    Malette WG, Fitzgerald JB, Cockett ATK. Dysbarism – a review of 35 cases with suggestions for therapy. Aerosp Med. 1962;33:1132–9.PubMedGoogle Scholar
  154. 154.
    McIver RG, Leverett SD Jr. Cardiorespiratory responses of anesthetized dogs to compression therapy following experimental decompression sickness. Aerosp Med. 1964;35:443–8.PubMedGoogle Scholar
  155. 155.
    McIver RG, Kronenberg RS. Treatment of altitude dysbarism with oxygen under high pressure; report of three cases. Aerosp Med. 1966;37:1266–9.PubMedGoogle Scholar
  156. 156.
    McIver RG. Management of bends arising during space flight. Aerosp Med. 1968;39:1084–6.PubMedGoogle Scholar
  157. 157.
    Bason R, Pheeny H, Dully FE Jr. Incidence of decompression sickness in Navy low-pressure chambers. Aviat Space Environ Med. 1976;47:995–7.PubMedGoogle Scholar
  158. 158.
    Wirjosemito SA, Touhey JE, Workman WT. Type II altitude decompression sickness (DCS): US Air Force experience with 133 cases. Aviat Space Environ Med. 1989;60:256–62.PubMedGoogle Scholar
  159. 159.
    Butler WP, Topper SM, Dart TS. USAF treatment table 8: treatment for altitude decompression sickness. Aviat Space Environ Med. 2002;73:751.46–9.Google Scholar
  160. 160.
    U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washington, DC: U.S. Navy; 1993.Google Scholar
  161. 161.
    Pilmanis A. Treatment for air embolism and decompression sickness. SPUMS J. 1987;17(1):27–32.Google Scholar
  162. 162.
    Faralli F, Seyer J, Ducassé JL, Izard P, James PB, Brubakk AO, Barthelemy A, Bergmann E, Sainty JM, Grandjean B. Decompression illness. In: Handbook on hyperbaric medicine. Milan: Springer; 1996. p. 135–228.Google Scholar
  163. 163.
    Moon RE, Gorman DF. Treatment of decompression disorders. In: Brubakk AO, Neuman TS, editors. Bennett and Elliots physiology and medicine of diving. London: Saunders; 2003. p. 600–50.Google Scholar
  164. 164.
    Norfleet WT. Decompression-related disorders: decompression sickness, arterial gas embolism, and ebullism syndrome. In: Principles of clinical medicine for space flight. New York: Springer; 2008. p. 223–46.Google Scholar
  165. 165.
    Rudge FW. The role of ground level oxygen in the treatment of altitude chamber decompression sickness. Aviat Space Environ Med. 1992;63(12):1102–5.PubMedGoogle Scholar
  166. 166.
    Dart TS, Butler W. Towards new paradigms for the treatment of hypobaric decompression sickness. Aviat Space Environ Med. 1998;69(4):403–9.PubMedGoogle Scholar
  167. 167.
    Rudge FW, Shafer MR. The effect of delay on treatment outcome in altitude-induced decompression sickness. Aviat Space Environ Med. 1991;62:687–90.PubMedGoogle Scholar
  168. 168.
    Krause KM, Pilmanis AA. Effectiveness of ground-level oxygen in the treatment of altitude decompression sickness. Aviat Space Environ Med. 2000;71:115–8.PubMedGoogle Scholar
  169. 169.
    Muehlberger PM, Pilmanis AA, Webb JT, Olson JE. Altitude decompression sickness symptom resolution during descent to ground level. Aviat Space Environ Med. 2004;75(6):496–9.PubMedGoogle Scholar
  170. 170.
    Berry CA, Hekhuis GL. X-ray survey for bone changes in low-pressure chamber operators. Aerosp Med. 1960;31:760.Google Scholar
  171. 171.
    Hodgson CJ, Davis JC, Randolph CL Jr, Chambers GH. Seven year follow-up x-ray survey for bone changes in low pressure chamber operators. Aerosp Med. 1968;39:417–22.PubMedGoogle Scholar
  172. 172.
    McIver RG, Beard SE, Bancroft RW, Allen TH. Treatment of decompression sickness in simulated space flight. Aerosp Med. 1967;38:1034–6.PubMedGoogle Scholar
  173. 173.
    Kimbrell PN. Treatment of altitude decompression sickness. In: Moon RE, Sheffield PJ, editors. Treatment of decompression sickness. Kensington: Undersea and Hyperbaric Medical Society; 1996. p. 43–51.Google Scholar
  174. 174.
    Henninger DL. Recommendations for exploration spacecraft internal atmospheres. Final report of the NASA Exploration Atmospheres Working Group; Jan 2006 JSC-63309/NASA TP-2010-216134.Google Scholar
  175. 175.
    Norcross J, Norsk P, Law J, Arias D, Conkin J, Perchonok M, Menon A, et al. Effects of the 8 psia/32% O2 atmosphere on the human in the spaceflight environment. Hanover: National Aeronautics and Space Administration Center for AeroSpace Information; 2013. TM-2013-217377Google Scholar
  176. 176.
    Norcross JR, Conkin J, Wessel JH III, Norsk P, Law J, Arias D, Goodwin T, et al. Evidence report: risk of hypobaric hypoxia from the exploration atmosphere. Houston: NASA Johnson Space Center; 2015.Google Scholar
  177. 177.
    Ferris EB, Engel GL. The clinical nature of high altitude decompression sickness. In: Fulton JF, editor. Decompression sickness. Philadelphia: Saunders; 1951. p. 4–52.Google Scholar
  178. 178.
    Weenink RP, Hollmann MW, Van Hulst RA. Acute neurological symptoms during hypobaric exposure: consider cerebral air embolism. Aviat Space Environ Med. 2012;83:1084–91.PubMedGoogle Scholar
  179. 179.
    Robinson T, Evangelista JS III, Latham E, Mukherjee ST, Pilmanis A. Recurrence of neurological deficits in an F/A-18D pilot following loss of cabin pressure at altitude. Aerosp Med Hum Perform. 2016;87(8):740–4.PubMedGoogle Scholar
  180. 180.
    Butler BD, Laine GA, Lieman BC, et al. Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs. Ann Thorac Surg. 1988;45:198–202.PubMedGoogle Scholar
  181. 181.
    Dutka AJ, Polychronidis JE, Mink RB, Hallenbeck JM. The Trendelenburg position after cerebral air embolism in dogs: effects on the somatosensory evoked potential, intracranial pressure, and blood-brain barrier. No. NMRI-90-116. Naval Medical Research Inst Bethesda MD; 1990.Google Scholar
  182. 182.
    Murray DH, Pilmanis AA, Blue RS, Pattarini JM, Law J, Bayne CG, Turney MW, Clark JB. Pathophysiology, prevention, and treatment of ebullism. Aviat Space Environ Med. 2013;84(2):89–96.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Bancroft RW, Dunn JE. Ebullism. San Antonia: USAF School of Aerospace Medicine, Aerospace Medicine Division (AFSC); 1965. Report No: SAM TR 65-48Google Scholar
  184. 184.
    Kolesari GL, Kindwell EP. Survival following accidental decompression to an altitude greater than 74,000Feet (22,555m). Aviat Space Environ Med. 1982;52(12):1211–4.Google Scholar
  185. 185.
    Burch BH, Kemph JP, Vail EG, Frye SA, Hitchcock FA. Some effects of explosive decompression to 30mmHg upon the hearts of dogs. J Aviat Med. 1952;23:159–67.PubMedGoogle Scholar
  186. 186.
    Cole CR, Chamberlain DM, Burch BH, Kemph JP, Hitchcock FA. Pathological effects of explosive decompression to 30mm hg. J Appl Physiol. 1953;6(2):96–104.PubMedGoogle Scholar
  187. 187.
    Cooke JP, Fife WP, Bancroft RW. Comparative cardiovascular responses of baboons and dogs to near-vacuum pressures. Aerosp Med. 1969;40(1):51–4.PubMedGoogle Scholar
  188. 188.
    Edelmann A, Hitchcock FA. Observations of dogs exposed to and ambient pressure of 30mmHg. Columbus: Ohio State University, Laboratory of Aviation Physiology; 1953. Report No: WADC TR 53-191Google Scholar
  189. 189.
    Pilmanis AA, Stegmann BJ, Wolf EG, Kemper GB. Survival after exposure to extreme altitude (ebullism). San Antonio: USAF School of Medicine, Aerospace Medicine Division (AFSC); 1992. Report No: SGO R92-020aGoogle Scholar
  190. 190.
    Roth EM. Compendium of human responses to the aerospace environment. Houston: NASA; 1968. Report No: CR 1205 (III)Google Scholar
  191. 191.
    Cooke JP, Gee GF. Effect of near-vacuum exposures on pulmonary circulation in dogs. Proc Soc Exp Biol Med. 1970;133(3):911–3.PubMedGoogle Scholar
  192. 192.
    Cooke JP, Cain SM, Bancroft RW. High venous pressure during exposure of dogs to near-vacuum conditions. Aerosp Med. 1967;38(10):1021–4.PubMedGoogle Scholar
  193. 193.
    Lutz W. Die Decpressions- (Druckfall) Atelektase. Dayton: Wright Patterson Air Force Base Aeromedical Library Archives; 1943. Report No: 4R7775EGoogle Scholar
  194. 194.
    Ward JE. The true nature of the boiling of body fluids in space. J Aviat Med. 1956;27(5):429–39.PubMedGoogle Scholar
  195. 195.
    Stegmann BJ, Pilmanis AA, Wolf EG, Derion T, Fanton JW, Davis H, Kemper GB. Evaluation of medical treatments to increase survival of ebullism in guinea pigs. (Abstract) space operations application and research (SOAR’92) workshop. NASA conference publication 3187, 1993; II: 544.Google Scholar
  196. 196.
    Dunn JE, Bancroft RW, Haymaker W, Foft DW. Experimental animal decompressions to less than 2mmHg absolute (pathological effects). Aerosp Med. 1965;36:725–32.PubMedGoogle Scholar
  197. 197.
    Hall WM, Corey EL. Anoxia in explosive decompression injury. Am J Phys. 1950;160(2):361–5.Google Scholar
  198. 198.
    Henry JP, Greeley PO, Meehan JP, Drury DR. A case of sudden swelling of the hands occurring at 58,000 feet simulated altitude. Aeromedical Labs. University of Southern California. Los Angeles, CA. OSRD Contract: OEM CMR-288. Report #393. 1; Dec 1944.Google Scholar
  199. 199.
    Henry JP. Problems of escape during flight above 50,000 feet. In: White CS, Benson Jr OO, editors. Physics of medicine of the upper atmosphere. Albuquerque: University of New Mexico Press; 1952. p. 516–32.Google Scholar
  200. 200.
    Kittinger J, Ryan C. Come up and get me: an autobiography of Colonel Joe Kittinger. Albuquerque: UNM Press; 2010.Google Scholar
  201. 201.
    Balldin UI. Explosive decompression sickness of subjects up to a 20,000 m altitude using a two-pressure flying suit. Aviat Space Environ Med. 1978;49(4):599–602.PubMedGoogle Scholar
  202. 202.
    NASA Johnson Space Center oral history project, Edited oral history transcript of James W. McBarron II. Interviewed by Rebecca Wright Houston, Texas – 28 September 2012. https://www.jsc.nasa.gov/history/oral_histories/McBarronJW/McBarronJW_9-28-12.htm
  203. 203.
    USAF Safety center letter to Armstrong lab BAFB TX dated 14 Jun 1993 concerning major aircraft accident of F-I04C, Nov 1968 NW of Edwards AFB, California.Google Scholar
  204. 204.
    Ryan C. The pre-astronauts. In: Manned ballooning on the threshold of space. Annapolis: Naval Institute; 1995. p. 256–7.Google Scholar
  205. 205.
    Shayler D. Disasters and accidents in manned spaceflight. Springer Science & Business Media, Springer-Verlag, London. 2000. p. 37.Google Scholar
  206. 206.
    Ehrenfried M. Stratonauts: pioneers venturing into the stratosphere. Springer International Publishing, Switzerland. 2014. p. 152–3.Google Scholar
  207. 207.
    Roth EM. Rapid (explosive) decompression emergencies in pressure-suited subjects. NASA CR-1223; 1968.Google Scholar
  208. 208.
    Murray DH. Ebullism: planning, prevention, and treatment for spaceflight participants. Capstone thesis, University of Texas Medical Branch; 2010.Google Scholar
  209. 209.
    Hall R, Shayler D. Soyuz: a universal spacecraft. New York: Springer; 2004.Google Scholar
  210. 210.
    NASA System failure case studies: descent into the void; Sept 2010. Available at: https://nsc.nasa.gov/SFCS/SystemFailureCaseStudy/Details/61
  211. 211.
    Kolesari GL, Kindwall EP. Survival following accidental decompression to an altitude greater than 74,000 feet (22,555 m). Aviat Space Environ Med. 1982;53(12):1211–4.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Kolesari GL, Kindwall EP, Kizer KW. Survival following accidental decompression to an altitude greater than 74,000 Feet (22,555 m). J Occup Environ Med. 1983;25(5):426.Google Scholar
  213. 213.
    Stepaniak PC, Davis JR, Lane H. Loss of signal: aeromedical lessons learned from the STS-107 Columbia Space Shuttle Mishap: Government Printing Office; 2014. NASA SP-2014-616. p. 102–3.Google Scholar
  214. 214.
    Boyle J III. Theoretical trans-respiratory pressure during rapid decompression: I. model experiments and II. Animal experiments. Aerosp Med. 1973;44:153–62.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Andrew A. Pilmanis
    • 1
  • Jonathan B. Clark
    • 2
  1. 1.US Air Force Research Laboratory (retired)Brooks City BaseSan AntonioUSA
  2. 2.Department of Neurology, Space MedicineBaylor College of MedicineHoustonUSA

Personalised recommendations