Advertisement

Models for HIV/AIDS

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 69)

Abstract

Acquired immunodeficiency syndrome (AIDS) was first identified as a new disease in the homosexual community in San Francisco in 1981. The human immunodeficiency virus (HIV) was identified as the causative agent for AIDS in 1983. The disease has several very unusual aspects. After the initial infection, there are symptoms, including headaches and fever for 2 or 3 weeks. Transmissibility is high for about 2 months, and then there is a very long latent period during which transmissibility is low. At the end of this latent period, which may last 10 years, transmissibility rises, signaling the development of full-blown AIDS. In the absence of treatment, AIDS is invariably fatal. Now, HIV can be treated with a combination of highly active antiretroviral therapy (HAART) drugs, which both reduce the symptoms and prolong the period of low infectivity. While there is still no cure for AIDS, treatment has made it no longer a necessarily fatal disease. To describe the variation of infectivity for HIV, one possibility would be to use a staged progression model, with multiple infective stages having different infectivity. Another possibility would be to use an age of infection model.

References

  1. 1.
    Abu-Raddad, L.J., A.S. Magaret, C., Celum, A. Wald, I.M. Longini Jr, S.G. Self, and L. Corey (2008) Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PloS one, 3(5): e2230.CrossRefGoogle Scholar
  2. 2.
    Alvey, C., Z. Feng, and J.W. Glasser (2015) A model for the coupled disease dynamics of HIV and HSV-2 with mixing among and between genders. Math. Biosci. 265: 82–100.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anderson, R.M., R.M. May, G.F. Medley, and A. Johnson (1986) A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Med. Bio. 3: 229–263.zbMATHCrossRefGoogle Scholar
  4. 4.
    Anderson, R.M. and R.M. May (1987) Transmission dynamics of HIV infection, Nature 326: 137–142.CrossRefGoogle Scholar
  5. 5.
    Anderson, R.M. (1988) The epidemiology of HIV infection: variable incubation plus infectious periods and heterogeneity in sexual activity, J. Roy. Statistical Society A. 151: 66–93.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Anderson, R.M., D.R. Cox, and H.C. Hillier (1989) Epidemiological and statistical aspects of the AIDS epidemic: introduction, Phil. Trans. Roy. Soc. Lond. B 325: 39–44.CrossRefGoogle Scholar
  7. 7.
    Anderson, R. M., S.P. Blythe, S. Gupta, and E. Konings (1989) The transmission dynamics of the human immunodeficiency virus type 1 in the male homosexual community in the United Kingdom: the influence of changes in sexual behavior, Phil. Trans. R. Soc. Lond. B 325: 145–198.Google Scholar
  8. 8.
    Anderson, R.M. and R.M. May (1991) Infectious Diseases of Humans, Oxford Science Publications, Oxford.Google Scholar
  9. 9.
    Aparicio J.P., A.F. Capurro, and C. Castillo-Chávez (2002) Markers of disease evolution: the case of tuberculosis, J. Theor. Biol. 215: 227–237.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bailey, N.T.J. (1988) Statistical problems in the modeling and prediction of HIV/AIDS, Aust. J. Stat. 3OA: 41–55.zbMATHCrossRefGoogle Scholar
  11. 11.
    Barré-Sinoussi, F., J.C. Chermann, F. Rey, M.T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vézinet-Brun, C. Rouzioux, et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science 220: 868–870.CrossRefGoogle Scholar
  12. 12.
    Blower, S.M., A.N. Aschenbach, H.B. Gershengorn, and J.O. Kahn (2001) Predicting the unpredictable: transmission of drug-resistant HIV. Nature medicine, 7(9): 1016.CrossRefGoogle Scholar
  13. 13.
    Blower, S.M. and H. Dowlatabadi (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. International Statistical Review/Revue Internationale de Statistique, 229–243.Google Scholar
  14. 14.
    Blower, S.M., H.B. Gershengorn, and R.M. Grant (2000) A tale of two futures: HIV and antiretroviral therapy in San Francisco. Science, 287(5453): 650–654.CrossRefGoogle Scholar
  15. 15.
    Blower, S. M., K. Koelle, D.E. Kirschner, and J. Mills (2001) Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety. Proc. Natl. Acad. Sci. 98(6): 3618–3623.CrossRefGoogle Scholar
  16. 16.
    Blower, S., and L. Ma (2004) Calculating the contribution of herpes simplex virus type 2 epidemics to increasing HIV incidence: treatment implications. Clinical Infectious Diseases, 39(Supplement 5), S240–S247.CrossRefGoogle Scholar
  17. 17.
    Blower, S.M., T.C. Porco, and G. Darby (1998) Predicting and preventing the emergence of antiviral drug resistance in HSV-2. Nature medicine, 4(6): 673.CrossRefGoogle Scholar
  18. 18.
    Blower S., P. Small, and P. Hopewell (1996) Control strategies for tuberculosis epidemics: new models for old problems, Science, 273: 497–500.CrossRefGoogle Scholar
  19. 19.
    Blythe, S.P. and R.M. Anderson (1988) Distributed incubation and infectious periods in models of the transmission dynamics of the human immunodeficiency virus (HIV), IMA J. Math. Med. Bio. 5: 1–19.zbMATHCrossRefGoogle Scholar
  20. 20.
    Blythe, S.P. and C. Castillo-Chavez (1989) Like-with-like preference and sexual mixing models, Math. Biosci. 96: 221–238.zbMATHCrossRefGoogle Scholar
  21. 21.
    Blythe, S.P., C. Castillo-Chavez, J. Palmer, and M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.zbMATHCrossRefGoogle Scholar
  22. 22.
    Blythe S.P., K. Cooke, C. Castillo-Chavez (1991 Autonomous risk-behavior change, and non-linear incidence rate, in models of sexually transmitted diseases, Biometrics Unit Technical Report B-1048-M.Google Scholar
  23. 23.
    Blythe, S.P., C. Castillo-Chavez and G. Casella (1992) Empirical methods for the estimation of the mixing probabilities for socially structured populations from a single survey sample, Math. Pop. Studies. 3: 199–225.zbMATHCrossRefGoogle Scholar
  24. 24.
    Blythe, S.P., S. Busenberg and C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–284.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Boily, M.C., F.I. Bastos, K. Desai, and B. Masse (2004) Changes in the transmission dynamics of the HIV epidemic after the wide-scale use of antiretroviral therapy could explain increases in sexually transmitted infections: results from mathematical models, Sexually transmitted diseases, 31(2): 100–113.CrossRefGoogle Scholar
  26. 26.
    Brookmeyer, R. and M. H. Gail (1988) A method for obtaining short-term projections and lower bounds on the size of the AIDS epidemic, J. Am. Stat. Assoc., 83:301–308.zbMATHCrossRefGoogle Scholar
  27. 27.
    Busenberg, S., and C. Castillo-Chavez (1989) Interaction, Pair Formation and Force of Infection Terms in Sexually Transmitted Diseases, Lect. Notes Biomath. 83, Springer-Verlag, New York.Google Scholar
  28. 28.
    Busenberg, S., and C. Castillo-Chavez (1991) A general solution of the problem of mixing subpopulations, and its application to risk- and age-structured epidemic models for the spread of AIDS. IMA J. Math. Applied in Med. and Biol. 8: 1–29.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Castillo-Chavez, C., H.W. Hethcote, V. Andreasen, S.A. Levin, S.A. and W-M, Liu (1988) Cross-immunity in the dynamics of homogeneous and heterogeneous populations, Mathematical Ecology, T. G. Hallam, L. G. Gross, and S. A. Levin (eds.), World Scientific Publishing Co., Singapore, pp. 303–316.Google Scholar
  30. 30.
    Castillo-Chavez, C., ed. (1989) Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  31. 31.
    Castillo-Chavez, C. (1989) Review of recent models of HIV/AIDS transmission, in Applied Mathematical Ecology (ed. S. Levin), Biomathematics Texts, Springer-Verlag, 18: 253–262.Google Scholar
  32. 32.
    Castillo-Chavez, C., K. Cooke, W. Huang, S.A. Levin (1989) The role of long periods of infectiousness in the dynamics of acquired immunodeficiency syndrome. In: Castillo-Chavez, C., S.A. Levin, C. Shoemaker (eds.) Mathematical Approaches to Resource Management and Epidemiology, (Lecture Notes Biomathematics, 81, Springer-Verlag, Berlin, Heidelberg. New York. London, Paris, Tokyo, Hong Kong, pp. 177–189.Google Scholar
  33. 33.
    Castillo-Chavez, C., K.L. Cooke, W. Huang, and S.A. Levin (1989) Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus, Applied Math. Letters, 2: 327–331.zbMATHGoogle Scholar
  34. 34.
    Castillo-Chavez, C., K. Cooke, W. Huang, and S.A. Levin (1989) On the role of long incubation periods in the dynamics of HIV/AIDS. Part 2: Multiple group models, Mathematical and Statistical Approaches to AIDS Epidemiology, C. Castillo-Chávez, (ed.), Lecture notes in Biomathematics 83, Springer-Verlag, Berlin-Heidelberg-New York, pp. 200–217.Google Scholar
  35. 35.
    Castillo-Chavez, C., K. Cooke, W. Huang, and S.A. Levin (1989) The role of long incubation periods in the dynamics of HIV/AIDS. Part 1: Single populations models, J. Math. Biol. 27: 373–398.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Castillo-Chavez, C. and S. Busenberg (1990) On the solution of the two-Sex mixing problem, Proceedings of the International Conference on Differential Equations and Applications to Biology and Population Dynamics, S. Busenberg and M. Martelli (eds.), Lecture Notes in Biomathematics Springer-Verlag, Berlin-Heidelberg-New York 92: 80–98.Google Scholar
  37. 37.
    Castillo-Chavez, C., S. Busenberg and K. Gerow (1990) Pair formation in structured populations, Differential Equations with Applications in Biology, Physics and Engineering, J. Goldstein, F. Kappel, W. Schappacher (eds.), Marcel Dekker, New York. pp. 4765.Google Scholar
  38. 38.
    Castillo-Chavez, C., J.X. Velasco-Hernandez, and S. Fridman (1993) Modeling contact structures in biology,(Lect. Notes Biomath. 100, Springer-Varlag.Google Scholar
  39. 39.
    Castillo-Chavez, C., W. Huang and J. Li (1996) On the existence of stable pair distributions, J. Math. Biol. 34: 413–441.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Castillo-Chavez, C. and Z. Feng (1998) Mathematical models for the disease dynamics of tuberculosis, in Advances in mathematical population dynamics-molecules, cells and man (eds. M.A. Horn, G. Simonett, and G. Webb), Vanderbilt University Press, 117–128.Google Scholar
  41. 41.
    Castillo-Chavez, C. and S-F Hsu Schmitz (1997) The evolution of age-structured marriage functions: It takes two to tango, In, Structured-Population Models Marine, Terrestrial, and Freshwater Systems. S. Tuljapurkar and H. Caswell, (eds.), Chapman & Hall, New York, pages 533–550.CrossRefGoogle Scholar
  42. 42.
    Castillo-Chavez, C. and Z. Feng (1997) To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35: 629–656.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Castillo-Chavez, C. and Z. Feng (1998) Global stability of an age-structure model for TB and its applications to optimal vaccination, Math. Biosc. 151: 135–154.zbMATHCrossRefGoogle Scholar
  44. 44.
    Cohen, M.S., N. Hellmann, J.A. Levy, K. DeCock, and J. Lange (2008) The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. The Journal of clinical investigation, 118(4): 1244–1254.CrossRefGoogle Scholar
  45. 45.
    Corey, L., A. Wald, R. Patel, S.L. Sacks, S.K. Tyring, T. Warren, T., …and L.S. Stratchounsky (2004) Once-daily valacyclovir to reduce the risk of transmission of genital herpes. New England Journal of Medicine, 350(1): 11–20.CrossRefGoogle Scholar
  46. 46.
    Cox, D.R. and G.F. Medley (1989) A process of events with notification delay and the forecasting of AIDS, Phil. Trans. Roy. Soc. Lond. B 325: 135–145.CrossRefGoogle Scholar
  47. 47.
    Crawford, C.M., S.J. Schwager, and C. Castillo-Chavez (1990) A methodology for asking sensitive questions among college undergraduates, Technical Report #BU-1105-M in the Biometrics Unit series, Cornell University, Ithaca, NY.Google Scholar
  48. 48.
    Dietz, K. (1988) On the transmission dynamics of HIV, Math. Biosc. 90: 397–414.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Dietz, K. and K.P. Hadeler (1988) Epidemiological models for sexually transmitted diseases, J. Math. Biol. 26: 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Feng, Z. and C. Castillo-Chavez (2000) A model for Tuberculosis with exogenous reinfection, Theor. Pop. Biol., 57: 235–247.zbMATHCrossRefGoogle Scholar
  51. 51.
    Feng, Z., W. Huang, and C. Castillo-Chavez (2001) On the role of variable latent periods in mathematical models for tuberculosis, J. Dyn. Differential Equations, 13: 425–452.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Feng, Z., Z. Qiu, Z. Sang, C. Lorenzo, and J.W. Glasser (2013) Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy. Math. Biosci. 245(2): 171–187.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Foss, A.M., P.T. Vickerman, Z. Chalabi, P. Mayaud, M. Alary, and C.H. Watts (2009) Dynamic modeling of herpes simplex virus type-2 (HSV-2) transmission: issues in structural uncertainty. Bull Math. Biol. 71(3): 720–749.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Foss, A.M., P.T. Vickerman, P. Mayaud, H.A. Weiss, B.M. Ramesh, S. Reza-Paul, S., …and M. Alary (2011) Modelling the interactions between herpes simplex virus type 2 and HIV: implications for the HIV epidemic in southern India. Sexually transmitted infections, 87(1): 22–27.CrossRefGoogle Scholar
  55. 55.
    Gallo, R.C., S.Z. Salahuddin, M. Popovic, G.M. Shearer, M. Kaplan, B.F. Haynes, T. Palker, R. Redfield, J. Oleske, B. Safai, G. White, P. Foster, P.D., Markhamet (1984) Frequent detection and isolation of sytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS, Science 224: 500–503.CrossRefGoogle Scholar
  56. 56.
    Gallo, R.C. (1986) The first human retrovirus, Scientific American 255: 88–98.CrossRefGoogle Scholar
  57. 57.
    Gupta S., R.M. Anderson, and R.M. May (1989) Networks of sexual contacts: implications for the pattern of spread of HIV, AIDS 3: 1–11.CrossRefGoogle Scholar
  58. 58.
    Francis, D.P., P.M. Feorino, J.R. Broderson, H.M. Mcclure, J.P. Getchell, C.R. Mcgrath, B. Swenson, J.S. Mcdougal, E.L. Palmer, and A.K. Harrison (1984) Infection of chimpanzees with lymphadenopathy-associated virus, Lancet 2: 1276–1277.CrossRefGoogle Scholar
  59. 59.
    Hadeler, K.P. (1989) Modeling AIDS in structured populations, 47th Session of the International Statistical Institute, Paris, August/September. Conf. Proc., C1-2: 83–99.Google Scholar
  60. 60.
    Hadeler, K.P. and C. Castillo-Chavez (1995) A core group model for disease transmission, Math. Biosc. 128: 41–55.zbMATHCrossRefGoogle Scholar
  61. 61.
    Hethcote, H.W., H.W. Stech, P. van den Driessche (1981) Nonlinear oscillations in epidemic models, SIAM J. Appl. Math. 40: 1–9.MathSciNetzbMATHGoogle Scholar
  62. 62.
    Hethcote, H.W., J.W. van Ark (1987) Epidemiological methods for heterogeneous populations: proportional mixing, parameter estimation, and immunization programs. Math. Biosc. 84: 85–118.zbMATHCrossRefGoogle Scholar
  63. 63.
    Hethcote, H.W., and J.W. Van Ark (1992) Modeling HIV Transmission and AIDS in the United States, Lecture Notes in Biomathematics 95, Springer-Verlag, Berlin-Heidelberg-New York.zbMATHCrossRefGoogle Scholar
  64. 64.
    Hopf, E. (1942) Abzweigung einer periodischen Lösungen von einer stationaren Lösung eines Differentialsystems,Berlin Math-Phys. Sachsiche Akademie der Wissenschaften, Leipzig, 94: 1–22.Google Scholar
  65. 65.
    Hsu Schmitz, S.F. (1993) Some theories, estimation methods and applications of marriage functions and two-sex mixing functions in demography and epidemiology. Unpublished doctoral dissertation, Cornell University, Ithaca, New York, U.S.A.Google Scholar
  66. 66.
    Hsu Schmitz S.F. and C. Castillo-Chavez (1994) Parameter estimation. Brit. Med. J. 293: 1459–1462.Google Scholar
  67. 67.
    Huang, W., K.L.Cooke, and C. Castillo-Chavez, (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math. —textbf52: 835–854.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Hyman, J.M., E.A. Stanley (1988) A risk base model for the spread of the AIDS virus. Math. Biosciences 90 415–473.Google Scholar
  69. 69.
    Hyman, J.M. and E.A. Stanley (1989) The Effects of Social Mixing Patterns on the Spread of AIDS, Mathematical Approaches to Problems in Resource Management and Epidemiology,(Ithaca, NY, 1987), 190–219, Lecture Notes in Biomathematics, 81, C. Castillo-Chávez, S. A. Levin, and C. A. Shoemaker (Eds.), Springer, Berlin.Google Scholar
  70. 70.
    Isham, V. (1989) Estimation of the incidence of HIV infection, Phil. Trans. Roy. Soc. Lond. B, 325: 113–121.CrossRefGoogle Scholar
  71. 71.
    Kaplan, E.H. What Are the Risks of Risky Sex?, Operations Research, 1989.Google Scholar
  72. 72.
    Kingsley, R. A., R. Kaslow, C.R. Jr Rinaldo, K. Detre, N. Odaka, M. VanRaden, R. Detels, B.F. Polk, J. Chimel, S.F. Kersey, D. Ostrow, B. Visscher (1987) Risk factors for seroconversion to human immunodeficiency virus among male homosexuals, Lancet 1, 345–348.CrossRefGoogle Scholar
  73. 73.
    Kirschner, D. (1999) Dynamics of co-infection with M. tuberculosis and HIV-1, Theor. Pop. Biol., 55: 94–109.zbMATHCrossRefGoogle Scholar
  74. 74.
    Koelle, K., S. Cobey, B. Grenfell, M. Pascual (2006) Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in Humans Science 314: 1898–1903.CrossRefGoogle Scholar
  75. 75.
    Koopman, J, C.P. Simon, J.A. Jacquez, J. Joseph, L. Sattenspiel and T Park (1988) Sexual partner selectiveness effects on homosexual HIV transmission dynamics. Journal of AIDS 1: 486–504.Google Scholar
  76. 76.
    Lagakos, S.W., L. M. Barraj, and V. de Gruttola (1988) Nonparametric analysis of truncated survival data, with applications to AIDS, Biometrika, 75: 515–523.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Lange, J. M. A., Paul, D. A., Huisman, H. G., De Wolf, F., Van den Berg, H., Roe!, C. A., Danner, S. A., Van der Noordaa, J., Goudsmit, J. Persistent HIV antigenaemia and decline of HIV core antibodies associated with transition to AIDS. Brit. Med. J. 293, 1459–1462 (1986).CrossRefGoogle Scholar
  78. 78.
    Luo, X., and C. Castillo-Chavez. (1991) Limit behavior of pair formation for a large dissolution rate. J. Mathematical Systems, Estimation, and Control, 3: 247–264.MathSciNetzbMATHGoogle Scholar
  79. 79.
    May, R.M. and R.M. Anderson (1989) Possible demographic consequence of HIV/AIDS epidemics: II, assuming HIV infection does not necessarily lead to AIDS, in: Mathematical Approaches to Problems in Resource Management and Epidemiology, C. Castillo-Chávez, S.A. Levin, and C.A. Shoemaker (Eds.) Lecture Notes in Biomathematics 81, Springer-Verlag, Berlin-Heidelberg, New York, London, Paris, Tokyo, Hong Kong. pp. 220–248.Google Scholar
  80. 80.
    May, R.M. and R.M. Anderson (1989) The transmission dynamics of human immunodeficiency virus (HIV), in Applied Mathematical Ecology, (ed. S. Levin), Biomathematics Texts, 18, Springer-Verlag, New York.Google Scholar
  81. 81.
    Medley, G.F., R.M. Anderson, D.R. Cox, and L. Billiard (1987) Incubation period of AIDS in patients infected via blood transfusions, Nature 328: 719–721.CrossRefGoogle Scholar
  82. 82.
    Miller, R.K. (1971) The implications and necessity of affinity, J. Biol. Dyn. 4: 456–477.Google Scholar
  83. 83.
    Morin, B., Castillo-Chavez, C. Hsu Schmitz, S-F, Mubayi, A., and X. Wang. Notes From the Heterogeneous: A Few Observations on the Implications and Necessity of Affinity. Journal of Biological Dynamics, Vol. 4, No. 5, 2010, 456–477.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Mukandavire, Z., and W. Garira (2007) Age and sex structured model for assessing the demographic impact of mother-to-child transmission of HIV/AIDS. Bull. Math. Biol. 69: 2061–2092.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Mukandavire, Z., and W. Garira (2007) Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe. J. Math. Biol. 54(5): 669–699.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Naresh, R. and A. Tripathi (2005) Modelling and analysis of HIV-TB Co-infection in a variable size population, Mathematical Modelling and Analysis, 10: 275–286.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Newton, E. A., and J.M. Kuder (2000) A model of the transmission and control of genital herpes. Sexually transmitted diseases, 27: 363–370.CrossRefGoogle Scholar
  88. 88.
    Pickering, J., J.A. Wiley, N.S. Padian, et al. (1986) Modeling the incidence of acquired immunodeficiency syndrome (AIDS) in San Francisco, Los Angeles, and New York, Math. Modelling 7: 661–688.CrossRefGoogle Scholar
  89. 89.
    Porco T. and S. Blower (1998) Quantifying the intrinsic transmission dynamics of tuberculosis, Theor. Pop. Biol., 54: 117–132.zbMATHCrossRefGoogle Scholar
  90. 90.
    Porco, T., P. Small, and S. Blower (2001) Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks, Journal of AIDS, 28: 437–444.Google Scholar
  91. 91.
    Raimundo, S.M., A.B. Engel, H.M. Yang, and R.C. Bassanezi (2003) An approach to estimating the transmission coefficients for AIDS and for tuberculosis using mathematical models, Systems Analysis Modelling Simulation, 43: 423–442.MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Roeger, L.-I.W., Z. Feng and C. Castillo-Chavez (2009) The impact of HIV infection on tuberculosis, Math. Biosc. Eng. 6: 815–837.zbMATHCrossRefGoogle Scholar
  93. 93.
    Rubin, G., D. Umbauch, D., S.-F. Shyu and C. Castillo-Chavez (1992) Application of capture-recapture methodology to estimation of size of population at risk of AIDS and/or Other sexually-transmitted diseases, Statistics in Medicine 11: 1533–49.CrossRefGoogle Scholar
  94. 94.
    Salahuddin, S.Z., J.E. Groopman, P.D. Markham, M.G. Sarngaharan, R.R. Redfield, M.F. McLane, M. Essex, A. Sliski, R.C. Gallo (1984) HTLV-III in symptom-free seronegative persons, Lancet 2: 1418–1420.CrossRefGoogle Scholar
  95. 95.
    Sattenspiel, L. (1989) The structure and context of social interactions and the spread of HIV. In Mathematical and Statistical Approaches to AIDS Epidemiology, Castillo-Chavez, C. (ed.) Lecture Notes in Biomathematics 83. Berlin: Springer-Verlag, pp. 242–259.Google Scholar
  96. 96.
    Sattenspiel, L., J. Koopman, C.P. Simon, and J.A. Jacquez (1990) The effects of population subdivision on the spread of the HIV infection, Am. J. Physical Anthropology 82: 421–429.CrossRefGoogle Scholar
  97. 97.
    Sattenspiel, L. and C. Castillo-Chavez (1990) Environmental context, social interactions, and the spread of HIV, Am. J. Human Biology 2: 397–417.CrossRefGoogle Scholar
  98. 98.
    Schinazi, R.B. (2003) Can HIV invade a population which is already sick? Bull. Braz. Math. Soc. (N.S.), 34: 479–488.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Schwager, S., C. Castillo-Chavez, and H.W. Hethcote (1989) Statistical and mathematical approaches to AIDS epidemiology: A review, In: C. Castillo-Chávez (ed.), Mathematical and Statistical Approaches to AIDS Epidemiology, pp. 2–35. Lecture Notes in Biomathematics, Vol. 83, Springer-Verlag: Berlin.Google Scholar
  100. 100.
    Schinazi, R. B. (1999) Strategies to control the genital herpes epidemic. Math. Biosci. 159(2): 113–121.zbMATHCrossRefGoogle Scholar
  101. 101.
    Schulzer, M., M.P. Radhamani, S. Grybowski, E. Mak, and J.M. Fitzgerald (1994) A mathematical model for the prediction of the impact of HIV infection on tuberculosis, Int. J. Epidemiol., 23: 400–407.CrossRefGoogle Scholar
  102. 102.
    Thieme, H. and C. Castillo-Chavez (1989) On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic, Mathematical and statistical approaches to AIDS epidemiology, C. Castillo-Chavez, (ed.), pp. 157–176. Lecture Notes in Biomathematics 83, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong.Google Scholar
  103. 103.
    Thieme, H.R. and C. Castillo-Chavez (1993) How may infection-age dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53: 1447–1479.MathSciNetzbMATHGoogle Scholar
  104. 104.
    Wald, A., A.G. Langenberg, K. Link, A.E. Izu, R. Ashley, T. Warren, …and L. Corey (2001) Effect of condoms on reducing the transmission of herpes simplex virus type 2 from men to women. JAMA, 285(24): 3100–3106.CrossRefGoogle Scholar
  105. 105.
    West R. and J. Thompson (1996) Modeling the impact of HIV on the spread of tuberculosis in the United States, Math. Biosci., 143: 35–60.zbMATHCrossRefGoogle Scholar
  106. 106.
    White, R.G., E.E.Freeman, K.K. Orroth, R. Bakker, H.A. Weiss, N. O’farrell, …and J.R. Glynn (2008) Population-level effect of HSV-2 therapy on the incidence of HIV in sub-Saharan Africa. Sexually transmitted infections, 84(Suppl 2): ii12–ii18.CrossRefGoogle Scholar
  107. 107.
    Wong-Staal, F., R.C. Gallo (1985) Human T-lymphotropic retroviruses. Nature 317: 395–403.CrossRefGoogle Scholar
  108. 108.
    Wu L.-I., and Z. Feng (2000) Homoclinic bifurcation in an SIQR model for childhood diseases, J. Diff. Equ. 168: 150–167.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations