Challenges, Opportunities and Theoretical Epidemiology

  • Fred Brauer
  • Carlos Castillo-Chavez
  • Zhilan Feng
Part of the Texts in Applied Mathematics book series (TAM, volume 69)


Lessons learned from the HIV pandemic, SARS in 2003, the 2009 H1N1 influenza pandemic, the 2014 Ebola outbreak in West Africa, and the ongoing Zika outbreaks in the Americas can be framed under a public health policy model that responds after the fact. Responses often come through reallocation of resources from one disease control effort to a new pressing need. The operating models of preparedness and response are ill-equipped to prevent or ameliorate disease emergence or reemergence at global scales. Epidemiological challenges that are a threat to the economic stability of many regions of the world, particularly those depending on travel and trade, remain at the forefront of the Global Commons. Consequently, efforts to quantify the impact of mobility and trade on disease dynamics have dominated the interests of theoreticians for some time. Our experience includes an H1N1 influenza pandemic crisscrossing the world during 2009 and 2010, the 2014 Ebola outbreaks, limited to regions of West Africa lacking appropriate medical facilities, health infrastructure, and sufficient levels of preparedness and education, and the expanding Zika outbreaks, moving expeditiously across habitats suitable for Aedes aegypti. These provide opportunities to quantify the impact of disease emergence or reemergence on the decisions that individuals take in response to real or perceived disease risks. The case of SARS 2003 in 2003, the efforts to reduce the burden of H1N1 influenza cases in 2009, and the challenges faced in reducing the number of Ebola cases in 2014 are the three recent scenarios that required a timely global response. Studies addressing the impact of centralized sources of information, the impact of information along social connections, or the role of past disease outbreak experiences on the risk-aversion decisions that individuals undertake may help identify and quantify the role of human responses to disease dynamics while recognizing the importance of assessing the timing of disease emergence and reemergence. The co-evolving human responses to disease dynamics are prototypical of the feedbacks that define complex adaptive systems. In short, we live in a socioepisphere being reshaped by ecoepidemiology in the “Era of Information.”


  1. 1.
    Anderson, R.M., R. M. May, and B. Anderson (1992) Infectious Diseases of Humans: Dynamics and Control, volume 28. Wiley Online Library.Google Scholar
  2. 2.
    Andersson, D.I. and B. R. Levin (1999) The biological cost of antibiotic resistance. Current opinion in microbiology 2: 489–493.CrossRefGoogle Scholar
  3. 3.
    Andreasen, V. (2003) Dynamics of annual influenza a epidemics with immuno-selection, J. Math. Biol. 46: 504–536.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Andreasen, V., J. Lin, and S. A. Levin (1997) The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. Math. Biol. 35: 825–842.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    J. Arino, J., R. Jordan, and P. Van den Driessche (2007) Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosc. 206: 46–60.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Arino, J. and P. Van Den Driessche (2003) The basic reproduction number in a multi-city compartmental epidemic model, In Positive Systems, pages 135–142. SpringerGoogle Scholar
  7. 7.
    Arino, J. and P. Van den Driessche (2003) A multi-city epidemic model, Mathematical Population Studies 10: 175–193.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Arino, J. and P. van den Driessche (2006) Metapopulation epidemic models, a survey, Fields Institute Communications 48: 1–13.Google Scholar
  9. 9.
    Auld, M.C. (2003) Choices, beliefs, and infectious disease dynamics, J. Health Economics 22:361–377.CrossRefGoogle Scholar
  10. 10.
    Bailey, N.T., et al, (1982) The biomathematics of malaria: the biomathematics of diseases: 1, The biomathematics of malaria. The Biomathematics of Diseases 1.Google Scholar
  11. 11.
    Bajardi, P. C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, and A. Vespignani (2011) Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic, PloS One 6: e16591.CrossRefGoogle Scholar
  12. 12.
    Banks, H.T. and C. Castillo-Chavez (2003) Bioterrorism: Mathematical Modeling Applications in Homeland Security. SIAM.Google Scholar
  13. 13.
    Bansal, S., B. T. Grenfell, and L. A. Meyers (2007) When individual behaviour matters: homogeneous and network models in epidemiology, J. Roy. Soc. Interface 4: 879–891.CrossRefGoogle Scholar
  14. 14.
    Baroyan, O., L. Rvachev, U. Basilevsky, V. Ermakov, K. Frank, M. Rvachev, and V. Shashkov (1971) Computer modelling of influenza epidemics for the whole country (USSR), Adv. in Applied Probability 3: 224–226.CrossRefGoogle Scholar
  15. 15.
    Bellomo, N., B. Piccoli, and A. Tosin (2012) Modeling crowd dynamics from a complex system viewpoint, Math. models and methods in applied sciences 22,(supp02): 1230004.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bergstrom, C. T., Lo, M., & Lipsitch, M. (2004) Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance, Proc Natl Acad Sci. 101: 13285–13290.Google Scholar
  17. 17.
    Bichara, D. and C. Castillo-Chavez (2016) Vector-borne diseases models with residence times–a Lagrangian perspective, Math. Biosc. 281: 128–138.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bichara, D., Y. Kang, C. Castillo-Chavez, R. Horan, and C. Perrings (2015) SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol. 77: 2004–2034.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Brauer F., and C. Castillo-Chávez (2013) Mathematical models for communicable diseases. No. 84 in CBMS-NSF regional conference series in applied mathematics Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  20. 20.
    Brauer, F., P. van den Driessche and J. Wu, eds. (2008) Mathematical Epidemiology, Lecture Notes in Mathematics, Mathematical Biosciences subseries 1945, Springer, Berlin - Heidelberg - New York.zbMATHGoogle Scholar
  21. 21.
    Castillo-Chavez, C. (2002) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: an Introduction, Volume 1. Springer Science & Business Media.Google Scholar
  22. 22.
    Castillo Chavez, C. (2002) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, volume 126. Springer, 2002.Google Scholar
  23. 23.
    Castillo-Chavez, C. (2013) Mathematical and Statistical Approaches to AIDS Epidemiology, volume 83. Springer Science & Business Media.Google Scholar
  24. 24.
    Castillo-Chavez, C., K. Barley, D. Bichara, D. Chowell, E. D. Herrera, B. Espinoza, V. Moreno, S. Towers, and K. Yong (2016) Modeling Ebola at the mathematical and theoretical biology institute (MTBI). Notices of the AMS 63.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Castillo-Chavez, C., D. Bichara, and B. R. Morin (2016) Perspectives on the role of mobility, behavior, and time scales in the spread of diseases, Proc. Nat. Acad. Sci. 113: 14582–14588.CrossRefGoogle Scholar
  26. 26.
    Castillo-Chavez, C. and G. Chowell (2011) Preface: Mathematical models, challenges, and lessons learned Special volume on influenza dynamics, volume 8. Math. Biosc. Eng. 8:1–6.Google Scholar
  27. 27.
    Castillo-Chavez, C., R. Curtiss, P. Daszak, S. A. Levin, O. Patterson-Lomba, C. Perrings, G. Poste, and S. Towers (2015) Beyond Ebola: Lessons to mitigate future pandemics, The Lancet Global Health 3: e354–e355.CrossRefGoogle Scholar
  28. 28.
    Castillo-Chavez,C., Z. Feng, et al (1996) Optimal vaccination strategies for TB in age-structure populations, J. Math. Biol. 35: 629–656.Google Scholar
  29. 29.
    Castillo-Chavez, C., H. W. Hethcote, V. Andreasen, S. A. Levin, and W. M. Liu (1988) Cross-immunity in the dynamics of homogeneous and heterogeneous populations, Proceedings of the Autumn Course Research Seminars Mathematical Ecology, pages 303–316.Google Scholar
  30. 30.
    Castillo-Chavez, C., H. W. Hethcote, V. Andreasen, S. A. Levin, and W. M. Liu (1989) Epidemiological models with age structure, proportionate mixing, and cross-immunity, J. Math. Biol. 27: 233–258.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Castillo-Chavez, C. and B. Song (2004) Dynamical models of tuberculosis and their applications, Math. Biosc. Eng. 1: 361–404.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Castillo-Chavez, C., B. Song, and J. Zhang (2003) An epidemic model with virtual mass transportation: the case of smallpox in a large city, In Bioterrorism: Mathematical Modeling Applications in Homeland Security, pages 173–197. SIAM.Google Scholar
  33. 33.
    Cauchemez, S., A. Bhattarai, T. L. Marchbanks, R. P. Fagan, S. Ostroff, N. M. Ferguson, D. Swerdlow, S. V. Sodha, M. E. Moll, F. J. Angulo, et al (2011) Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza, Proc. Nat. Acad. Sci. 108: 2825–2830.CrossRefGoogle Scholar
  34. 34.
    Chen, F., M. Jiang, S. Rabidoux, and S. Robinson (2011) Public avoidance and epidemics: insights from an economic model, J. Theor. Biol. 278:107–119.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Chen F. (2004) Rational behavioral response and the transmission of stds. Theor. Pop. Biol. 66 :307–316.zbMATHCrossRefGoogle Scholar
  36. 36.
    Chen, F.H. (2009) Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases, Math. Biosc. 217: 125–133.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Chew, C. and G. Eysenbach (2010) Pandemics in the age of twitter: content analysis of tweets during the 2009 h1n1 outbreak, PloS One 5: e14118, 2010.CrossRefGoogle Scholar
  38. 38.
    Chow, K., X. Wang, R. Curtiss III, and C. Castillo-Chavez (2011) Evaluating the efficacy of antimicrobial cycling programmes and patient isolation on dual resistance in hospitals, J. Biol. Dyn. 5: 27–43, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Chow, K.C., X. Wang, and C. Castillo-Chávez (2007) A mathematical model of nosocomial infection and antibiotic resistance: evaluating the efficacy of antimicrobial cycling programs and patient isolation on dual resistance Mathematical and Theoretical Biology Institute archive, 2007.Google Scholar
  40. 40.
    Chowell, G., P. W. Fenimore, M. A. Castillo-Garsow, and C. Castillo-Chavez (2003) SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism, J. Theor. Biol. 224: 1–8, 2003.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Chowell, G., J. M. Hyman, L. M. Bettencourt, and C. Castillo-Chavez (2009) Mathematical and Statistical Estimation Approaches in Epidemiology, Springer.Google Scholar
  42. 42.
    Chowell, G., J. M. Hyman, S. Eubank, and C. Castillo-Chavez (2003) Scaling laws for the movement of people between locations in a large city, Phys. Rev. E 68: 066102, 2003.Google Scholar
  43. 43.
    Chowell, G., H. Nishiura, and L. M. Bettencourt (2007) Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. Roy. Soc. Interface 4: 155–166.CrossRefGoogle Scholar
  44. 44.
    Chowell, G., C. Viboud, X. Wang, S. M. Bertozzi, and M. A. Miller (2009) Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study, PLoS One 4: e8164.CrossRefGoogle Scholar
  45. 45.
    Clark, C.W. (1973) Profit maximization and the extinction of animal species, J. Political Economy 81: 950–961.CrossRefGoogle Scholar
  46. 46.
    Clark, C.W. (1976) A delayed-recruitment model of population dynamics, with an application to baleen whale populations, J. Math. Biol. 3: 381–391.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Clark, C.W. (1979) Mathematical models in the economics of renewable resources, SIAM Review 21: 81–99.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Cosner, C., J. C. Beier, R. Cantrell, D. Impoinvil, L. Kapitanski, M. Potts, A. Troyo, and S. Ruan (2009) The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol. 258: 550–560.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Cristiani, E., B. Piccoli, and A. Tosin (2014) Multiscale Modeling of Pedestrian Dynamics, volume 12. Springer.Google Scholar
  50. 50.
    Daszak, P., R. Plowright, J. Epstein, J. Pulliam, S. Abdul Rahman, H. Field, C. Smith, K. Olival, S. Luby, K. Halpin, et al (2006) The emergence of Nipah and Hendra virus: pathogen dynamics across a wildlife-livestock-human continuum, Oxford University Press: Oxford, UK.CrossRefGoogle Scholar
  51. 51.
    Daszak, P., G. M. Tabor, A. Kilpatrick, J. Epstein, and R. Plowright (2004) Conservation medicine and a new agenda for emerging diseases. Ann. New York Academy of Sciences 1026: 1–11.CrossRefGoogle Scholar
  52. 52.
    Del Valle,S., H. Hethcote, J. M. Hyman, and C. Castillo-Chavez (2005) Effects of behavioral changes in a smallpox attack model. Math. Biosc. 195: 228–251.Google Scholar
  53. 53.
    Diekmann, O., H. Heesterbeek, and T. Britton (2012) Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press.Google Scholar
  54. 54.
    Diekmann, O. and J. A. P. Heesterbeek (2000) Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Volume 5. John Wiley & Sons.Google Scholar
  55. 55.
    Domingo, E. and J. Holland (1997) RNA virus mutations and fitness for survival, Annual Reviews in Microbiology 51: 151–178.CrossRefGoogle Scholar
  56. 56.
    Epstein, J.M., J. Parker, D. Cummings, and R. A. Hammond (2008) Coupled contagion dynamics of fear and disease: mathematical and computational explorations, PLoS One 3: e3955.CrossRefGoogle Scholar
  57. 57.
    Erdem, M., M. Safan, and C. Castillo-Chavez (2017) Mathematical analysis of an SIQR influenza model with imperfect quarantine, Bull. Math. Biol. 79: 1612–1636.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Espinoza, B., V. Moreno, D. Bichara, and C. Castillo-Chavez (2016) Assessing the efficiency of movement restriction as a control strategy of Ebola, In Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, pages 123–145. Springer.Google Scholar
  59. 59.
    Feng, Z. (2014) Applications of Epidemiological Models to Public Health Policymaking: the Role of Heterogeneity in Model Predictions. World Scientific.Google Scholar
  60. 60.
    Feng, Z., C. Castillo-Chavez, and A. F. Capurro (2000) A model for tuberculosis with exogenous reinfection, Theor. Pop. Biol. 57: 235–247.zbMATHCrossRefGoogle Scholar
  61. 61.
    Fenichel, E.P., C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. G. Parra, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, et al. (2011) Adaptive human behavior in epidemiological models, Proc. Nat. Acad. Sci. 108: 6306–6311.CrossRefGoogle Scholar
  62. 62.
    Fenichel, E.P., N. V. Kuminoff, and G. Chowell(2013) Skip the trip: Air travelers’ behavioral responses to pandemic influenza, PloS One 8: e58249.CrossRefGoogle Scholar
  63. 63.
    Fenichel, E.P. and X. Wang (2013) The mechanism and phenomena of adaptive human behavior during an epidemic and the role of information, In Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, pages 153–168. Springer, 2013.Google Scholar
  64. 64.
    Ferguson, N. (2007) Capturing human behaviour. Nature 446:733.CrossRefGoogle Scholar
  65. 65.
    Fraser, C., S. Riley, R.M. Anderson, & N.M. Ferguson (2004) Factors that make an infectious disease outbreak controllable, Proc. Nat. Acad Sci. 101: 6146–6151.Google Scholar
  66. 66.
    Funk, S., E. Gilad, and V. Jansen (2010) Endemic disease, awareness, and local behavioural response, J. Theor. Biol. 264: 501–509.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Funk, S., E. Gilad, C. Watkins, and V. A. Jansen (2009) The spread of awareness and its impact on epidemic outbreaks, Proc. Nat. Acad. Sci. 106: 6872–6877.zbMATHCrossRefGoogle Scholar
  68. 68.
    Funk, S., M. Salathé, and V. A. Jansen (2010) Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. Roy. Soc. Interface page rsif20100142.Google Scholar
  69. 69.
    Geoffard, P.Y. and T. Philipson (1996) Rational epidemics and their public control, International economic review: 603–624.Google Scholar
  70. 70.
    Gersovitz, M. (2011) The economics of infection control, Ann. Rev. Resour. Econ. 3: 277–296.CrossRefGoogle Scholar
  71. 71.
    Gladwell, M. (1996) The Tipping Point. New Yorker, June 3, 1996.Google Scholar
  72. 72.
    Gladwell, M. (2002) The Tipping Point: How Little Things Can Make a Big Difference. Back Bay Books/LittleLittle, Brown and Company, Time Warner Book Group.Google Scholar
  73. 73.
    Grünbaum, D. (1994) Translating stochastic density-dependent individual behavior with sensory constraints to an Eulerian model of animal swarming, J. Math. Biol. 33: 139–161.Google Scholar
  74. 74.
    Gumel, A.B., C. Castillo-Chávez, R. E. Mickens, and D. P. Clemence (2006) Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges: AMS-IMS-SIAM Joint Summer Research Conference on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges, July 17–21, 2005, Snowbird, Utah, volume 410. American Mathematical Soc., 2006.Google Scholar
  75. 75.
    Hadeler, K.P. and C. Castillo-Chávez (1995) A core group model for disease transmission, Math. Biosc. 128: 41–55.zbMATHCrossRefGoogle Scholar
  76. 76.
    Hadeler, K.P. and J. Müller (2017) Cellular Automata: Analysis and Applications. Springer, 2017.Google Scholar
  77. 77.
    Hansen, E. and T. Day (2011) Optimal antiviral treatment strategies and the effects of resistance, Proc. Roy. Soc. London B: Biological Sciences 278: 1082–1089.CrossRefGoogle Scholar
  78. 78.
    Helbing, D., I. Farkas, and T. Vicsek (2000) Simulating dynamical features of escape panic, Nature 407: 487.CrossRefGoogle Scholar
  79. 79.
    Helbing, D., J. Keltsch, and P. Molnar (1997) Modelling the evolution of human trail systems, Nature 388: 47.CrossRefGoogle Scholar
  80. 80.
    Herrera-Valdez, M.A., M. Cruz-Aponte, and C. Castillo-Chavez (2011) Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different “waves” of A-H1N1pdm cases observed in méxico during 2009, Math. Biosc. Eng. 8: 21–48.Google Scholar
  81. 81.
    Hethcote, H.W. (2000) The mathematics of infectious diseases, SIAM Review 42: 599–653.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Hethcote, H.W. and J. W. Van Ark (2013) Modeling HIV Transmission and AIDS in the United States, volume 95. Springer Science & Business Media.Google Scholar
  83. 83.
    Hethcote, H.W., L. Yi, and J. Zhujun (1999) Hopf bifurcation in models for pertussis epidemiology, Mathematical and Computer Modelling 30: 29–45.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Honório, N.W.,W. d. C. Silva, P. J. Leite, J. M. Gonçalves, L. P. Lounibos, and R. Lourenço-de Oliveira (2003) Dispersal of Aedes aegypti and Aedes albopictus (diptera: Culicidae) in an urban endemic dengue area in the state of Rio de Janeiro, Brazil, Memórias do Instituto Oswaldo Cruz 98: 191–198.CrossRefGoogle Scholar
  85. 85.
    Hsieh, Y.-H., J. Liu, Y.-H. Tzeng, and J. Wu (2014) Impact of visitors and hospital staff on nosocomial transmission and spread to community, J. Theor.Biol. 356: 20–29.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Hutson, V. (1984) A theorem on average Liapunov functions, Monatshefte für Mathematik, 98: 267–275.Google Scholar
  87. 87.
    Iggidr, A., G. Sallet, and M. O. Souza (2016) On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl. 441: 723–743.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Kareiva, P. (1990) Population dynamics in spatially complex environments: theory and data, Phil. Trans. Roy. Soc. Lond. B 330: 175–190.Google Scholar
  89. 89.
    Karesh, W.B.,R. A. Cook, E. L. Bennett, and J. Newcomb (2005) Wildlife trade and global disease emergence. Emerging Inf. Diseases 11: 1000.CrossRefGoogle Scholar
  90. 90.
    Kermack, W.O. & A.G. McKendrick (1927) A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London, 115:700–721.Google Scholar
  91. 91.
    Kermack, W.O. & A.G. McKendrick (1932) Contributions to the mathematical theory of epidemics, part. II, Proc. Roy. Soc. London, 138:55–83.Google Scholar
  92. 92.
    Kermack, W.O. & A.G. McKendrick (1933) Contributions to the mathematical theory of epidemics, part. III, Proc. Roy. Soc. London, 141:94–112.Google Scholar
  93. 93.
    Khan, K., J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Macdonald, J. Liauw, A. Chan, et al. (2009) Spread of a novel influenza A (H1N1) virus via global airline transportation, New England J. Medicine 361: 212–214.CrossRefGoogle Scholar
  94. 94.
    Kilpatrick, A.M., A. A. Chmura, D. W. Gibbons, R. C. Fleischer, P. P. Marra, and P. Daszak (2006) Predicting the global spread of H5N1 avian influenza, Proc. Nat. Acad. Sci 103: 19368–19373.CrossRefGoogle Scholar
  95. 95.
    Kimball A.N. (2016) Risky Trade: Infectious Disease in the Era of Global Trade, Routledge.Google Scholar
  96. 96.
    Kirschner, D. (1999) Dynamics of co-infection with tuberculosis and HIV-1, Theor. Pop. Biol. 55: 94–109.Google Scholar
  97. 97.
    Klein, E., R. Laxminarayan, D. L. Smith, and C. A. Gilligan (2007) Economic incentives and mathematical models of disease, Environment and Development Economics 12: 707–732.CrossRefGoogle Scholar
  98. 98.
    Koram, K., S. Bennett, J. Adiamah, and B. Greenwood (1995) Socio-economic risk factors for malaria in a peri-urban area of the Gambia, Trans. Roy. Soc. Tropical Medicine and Hygiene 89: 146–150.CrossRefGoogle Scholar
  99. 99.
    Laxminarayan, R. (2001) Bacterial resistance and optimal use of antibiotics, Discussion Papers dp-01-23 Resources for the Future.Google Scholar
  100. 100.
    Legrand, J., R. F. Grais, P.-Y. Boelle, A.-J. Valleron, and A. Flahault (2007) Understanding the dynamics of Ebola epidemics, Epidemiology & Infection 135: 610–621.Google Scholar
  101. 101.
    Levin, S.A. (1992) The problem of pattern and scale in ecology: the Robert H. Macarthur award lecture, Ecology 7: 1943–1967.MathSciNetCrossRefGoogle Scholar
  102. 102.
    Levin, S.A. (2001) Fragile Dominion: Complexity and the Commons, volume 18. Springer.Google Scholar
  103. 103.
    Levin, S.A. and R. T. Paine (1974) Disturbance, patch formation, and community structure, Proc. Nat. Acad. Sci. 71: 2744–2747.zbMATHCrossRefGoogle Scholar
  104. 104.
    Levins, R. (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control, Am. Entomologist 15: 237–240.CrossRefGoogle Scholar
  105. 105.
    Levinthal, D.A. and J. G. March (1993) The myopia of learning, Strategic Management J. 14(S2): 95–112.CrossRefGoogle Scholar
  106. 106.
    Lipsitch, M., C. T. Bergstrom, and B. R. Levin (2000) The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions, Proc. Nat. Acad. Sci. 97: 1938–1943.CrossRefGoogle Scholar
  107. 107.
    Lipsitch, M., T. Cohen, M. Murray, and B. R. Levin (2007) Antiviral resistance and the control of pandemic influenza, PLoS Medicine 4: e15.CrossRefGoogle Scholar
  108. 108.
    Macdonald, G. (1956) Epidemiological basis of malaria control, Bull. 15: 613.Google Scholar
  109. 109.
    Macdonald, G. (1956) Theory of the eradication of malaria, Bull. WHO 15: 369.Google Scholar
  110. 110.
    Meloni, S., N. Perra, A. Arenas, S. Gómez, Y. Moreno, and A. Vespignani (2011) Modeling human mobility responses to the large-scale spreading of infectious diseases, Scientific reports 1: 62.Google Scholar
  111. 111.
    Moghadas, S.M. (2008) Management of drug resistance in the population: influenza as a case study, Proc. Roy. Soc. London B: Biological Sciences 275: 1163–1169.CrossRefGoogle Scholar
  112. 112.
    Moghadas, S.M. (2011) Emergence of resistance in influenza with compensatory mutations, Math. Pop. Studies 18: 106–121.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Moghadas, S.M., C. S. Bowman, G. Röst, D. N. Fisman, and J. Wu (2008) Post-exposure prophylaxis during pandemic outbreaks, BMC Medicine 7: 73.Google Scholar
  114. 114.
    Moghadas, S.M., C. S. Bowman, G. Röst, and J. Wu (2008) Population-wide emergence of antiviral resistance during pandemic influenza, PLoS One 3: e1839.CrossRefGoogle Scholar
  115. 115.
    Morin, B.R., A. Kinzig, S. Levin, and C. Perrings (2017) Economic incentives in the socially optimal management of infectious disease: When r_{0} is not enough, EcoHealth, pages 1–16, 2017.Google Scholar
  116. 116.
    Morin, B.R., E. P. Fenichel, and C. Castillo-Chavez (2013) SIR dynamics with economically driven contact rates, Nat. Res. Modeling 26: 505–525.MathSciNetCrossRefGoogle Scholar
  117. 117.
    Morin, B.R., C. Perrings, A. Kinzig, and S. Levin (2015) The social benefits of private infectious disease-risk mitigation, Theor. Ecology 8: 467–479.CrossRefGoogle Scholar
  118. 118.
    Morin, B.R., C. Perrings, S. Levin, and A. Kinzig (2014) Disease risk mitigation: The equivalence of two selective mixing strategies on aggregate contact patterns and resulting epidemic spread, J. Theor. Biol. 363: 262–270.MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Naresh, R. and A. Tripathi (2005) Modelling and analysis of HIV-TB co-infection in a variable size population, Math. Modelling and Analysis 10: 275–286.MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Newman, M.E. (2002) Spread of epidemic disease on networks, Phys. Rev. 66: 016128.Google Scholar
  121. 121.
    Newman, M.E. (2003) The structure and function of complex networks, SIAM Review 45: 167–256.MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Nowak, M. and R. M. May (2000) Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology, Oxford University Press, UK.Google Scholar
  123. 123.
    Nuno, M., C. Castillo-Chavez, Z. Feng, and M. Martcheva (2008) Mathematical models of influenza: the role of cross-immunity, quarantine and age-structure, In Mathematical Epidemiology, pages 349–364. Springer, 2008.Google Scholar
  124. 124.
    Nuño, M., T. A. Reichert, G. Chowell, and A. B. Gumel (2008) Protecting residential care facilities from pandemic influenza, Proc. Nat. Acad. Sci. 105: 10625–10630.CrossRefGoogle Scholar
  125. 125.
    Okubo, A. (1980) Diffusion and ecological problems:(mathematical models), Biomathematics.Google Scholar
  126. 126.
    Okubo, A. and S. A. Levin (2013) Diffusion and ecological problems: modern perspectives, volume 14. Springer Science & Business Media.Google Scholar
  127. 127.
    Paine, R.T. and S. A. Levin (1981) Intertidal landscapes: disturbance and the dynamics of pattern, Ecological Monographs 51: 145–178.CrossRefGoogle Scholar
  128. 128.
    Pastor-Satorras, R. and A. Vespignani (2001) Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63: 066117.Google Scholar
  129. 129.
    Pavlin, B.I., L. M. Schloegel, and P. Daszak (2009) Risk of importing zoonotic diseases through wildlife trade, united states, Emerging Infectious Diseases 15: 1721.CrossRefGoogle Scholar
  130. 130.
    Pennings, J.M., B. Wansink, and M. T. Meulenberg (2002) A note on modeling consumer reactions to a crisis: The case of the mad cow disease, Int. J. Research in Marketing 19: 91–100.CrossRefGoogle Scholar
  131. 131.
    Perra, N., D. Balcan, B. Gonçalves, and A. Vespignani (2011) Towards a characterization of behavior-disease models, PloS One 6: e23084.CrossRefGoogle Scholar
  132. 132.
    Perrings, C., C. Castillo-Chavez, G. Chowell, P. Daszak, E. P. Fenichel, D. Finnoff, R. D. Horan, A. M. Kilpatrick, A. P. Kinzig, N. V. Kuminoff, et al (2014) Merging economics and epidemiology to improve the prediction and management of infectious disease, EcoHealth 11: 464–475.CrossRefGoogle Scholar
  133. 133.
    Porco, T.C., P. M. Small, S. M. Blower, et al. (2001) Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks, J. AIDS-Hagerstown Md. 28: 437–444.CrossRefGoogle Scholar
  134. 134.
    Preisser, E.L. and D. I. Bolnick (2008) The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations, PloS One 3: e2465.CrossRefGoogle Scholar
  135. 135.
    Raimundo, S.M., A. B. Engel, H. M. Yang, and R. C. Bassanezi (2003) An approach to estimating the transmission coefficients for AIDS and for tuberculosis using mathematical models, Systems Analysis Modelling Simulation 43: 423–442.MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Rass, L. and J. Radcliffe (2003) Spatial Deterministic Epidemics, volume 102. Am. Math. Soc.Google Scholar
  137. 137.
    Reluga T,C. (2010) Game theory of social distancing in response to an epidemic, PLoS Computational Biology 6: e1000793.MathSciNetCrossRefGoogle Scholar
  138. 138.
    Rimmelzwaan, G., E. Berkhoff, N. Nieuwkoop, D. J. Smith, R. Fouchier, and A. Osterhaus (2005) Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza a virus cytotoxic t-lymphocyte escape mutants, J. General Virology 86: 1801–1805.CrossRefGoogle Scholar
  139. 139.
    Rodríguez, D.J. and L. Torres-Sorando (2001) Models of infectious diseases in spatially heterogeneous environments, Bull. Math. Biol. 63: 547–571.zbMATHCrossRefGoogle Scholar
  140. 140.
    Roeger, L.I.W., Z. Feng, C. Castillo-Chavez, et al. (2009) Modeling TB and HIV co-infections, Math. Biosc. Eng. 6: 815–837.Google Scholar
  141. 141.
    Ross, R. (1911) The Prevention of Malaria, John Murray, London.Google Scholar
  142. 142.
    Ruktanonchai, N.W., D. L. Smith, and P. De Leenheer (2016) Parasite sources and sinks in a patched Ross–MacDonald malaria model with human and mosquito movement: Implications for control, Math. Biosc. 279: 90–101.MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    Rvachev, L.A. and I. M. Longini Jr. (1985) A mathematical model for the global spread of influenza, Math. Biosc. 75: 3–22.Google Scholar
  144. 144.
    Schulzer, M., M. Radhamani, S. Grzybowski, E. Mak, and J. M. Fitzgerald (1994) A mathematical model for the prediction of the impact of HIV infection on tuberculosis, Int. J. Epidemiology 23: 400–407.CrossRefGoogle Scholar
  145. 145.
    Smith, D.L., J. Dushoff, and F. E. McKenzie (2004) The risk of a mosquito-borne infection in a heterogeneous environment: Supplementary material, PLoS Biology Scholar
  146. 146.
    Smith, H. (1986) Cooperative systems of differential equations with concave nonlinearities, Nonlinear Analysis: Theory, Methods & Applications 10: 1037–1052.Google Scholar
  147. 147.
    Tatem, A.J. (2009) The worldwide airline network and the dispersal of exotic species: 2007–2010, Ecography 32: 94–102.CrossRefGoogle Scholar
  148. 148.
    Tatem, A.J., S. I. Hay, and D. J. Rogers (2006) Global traffic and disease vector dispersal, Proc. Nat. Acad. Sci. 103: 6242–6247.CrossRefGoogle Scholar
  149. 149.
    Tatem, A.J., D. J. Rogers, and S. Hay (2006) Global transport networks and infectious disease spread, Advances in Parasitology 62: 293–343.Google Scholar
  150. 150.
    Towers, S., S. Afzal, G. Bernal, N. Bliss, S. Brown, B. Espinoza, J. Jackson, J. Judson-Garcia, M. Khan, M. Lin, et al. (2015) Mass media and the contagion of fear: the case of Ebola in America. PloS One 10: e0129179.CrossRefGoogle Scholar
  151. 151.
    Vivas-Barber, A.L., C. Castillo-Chavez, and E. Barany (2014) Dynamics of an SAIQR influenza model. Biomath 3: 1–13.Google Scholar
  152. 152.
    Webb, G.F., M. J. Blaser, H. Zhu, S. Ardal, and J. Wu (2004) Critical role of nosocomial transmission in the Toronto SARS outbreak, Math. Biosc. Eng 1: 1–13.MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Wesolowski, A., N. Eagle, A. J. Tatem, D. L. Smith, A. M. Noor, R. W. Snow, and C. O. Buckee (2012) Quantifying the impact of human mobility on malaria, Science 338: 267–270.CrossRefGoogle Scholar
  154. 154.
    West, R.W. and J. R. Thompson (1997) Modeling the impact of HIV on the spread of tuberculosis in the United States, Math. Biosc. 143: 35–60.Google Scholar
  155. 155.
    Wilson, E.O. (1973) Group selection and its significance for ecology, Bioscience 23: 631–638.CrossRefGoogle Scholar
  156. 156.
    Y. Xiao, Y., F. Brauer, and S. M. Moghadas (2016) Can treatment increase the epidemic size?, J. Math. Biol. 72: 343–361.MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Yorke, J.A., H. W. Hethcote, and A. Nold (1978) Dynamics and control of the transmission of gonorrhea, Sexually Transmitted Diseases 5: 51–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chavez
    • 2
  • Zhilan Feng
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Mathematical and Computational Modeling Center (MCMSC), Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations