Advertisement

Investigating Muscle Protein Turnover on a Protein-by-Protein Basis Using Dynamic Proteome Profiling

  • Jatin G. BurnistonEmail author
Chapter
Part of the Methods in Physiology book series (METHPHYS)

Abstract

Proteomic investigations aim to achieve broad-scale characterisation of the protein complement of muscle and also perform non-targeted differential analysis of the muscle proteome under different conditions (e.g. health versus disease). In the majority, proteomic studies have generated new insight by linking patterns of protein abundance or post-translational modification with different functional states. Such information is regarded as being static because the measurements of abundance or post-translational state represent a ‘snapshot’ of the muscle proteome under certain conditions at a particular point in time. As such, these data do not include kinetic information and cannot be used to study dynamic aspects of the muscle proteome, including protein turnover or the relative contributions that synthesis and degradation make to changes in protein abundance. For instance, a series of samples collected over time can be used to build a picture of temporal changes in muscle protein abundance, but the question of how the time-dependent changes in the abundance of proteins occurred cannot be answered without also knowing whether (1) the change in a protein’s abundance was matched by a greater or lesser rate of synthesis of that protein, and/or (2) whether a change in degradation rate might also have contributed to the difference in protein abundance. Dynamic Proteome Profiling is a new technique that aims to address these questions by offering insight to the synthesis, abundance and degradation of individual proteins in the muscle of humans [1], as well as non-human laboratory animals and cell cultures. Dynamic Proteome Profiling is built on the culmination of a long history of research and methodological development in the fields of stable isotopic labelling, proteomics and computational biology. This chapter aims to highlight the contributions from these separate pillars of research and explain how they are brought together in order to perform Dynamic Proteome Profiling in humans.

References

  1. 1.
    Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., & Hawley, J. A. (2017). Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. The FASEB Journal, 31, 5478–5494.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Schoenheimer, R., & Clarke, H. T. (1942). The dynamic state of body constituents. Cambridge, MA: Harvard University Press.Google Scholar
  3. 3.
    Schoenheimer, R., & Ratner, S. (1939). Studies in protein metabolism: III. Synthesis of amino acids containing isotopic nitrogen. Journal of Biological Chemistry, 127, 301–313.Google Scholar
  4. 4.
    Schoenheimer, R., Ratner, S., & Rittenberg, D. (1939). The process of continuous deamination and reamination of amino acids in the proteins of normal animals. Science, 89, 272–273.PubMedCrossRefGoogle Scholar
  5. 5.
    Urey, H., Brickwedde, F., & Murphy, G. (1932). A hydrogen isotope of mass 2. Physical Review, 39, 164–165.CrossRefGoogle Scholar
  6. 6.
    Krogh, A., & Ussing, H. H. (1936). The exchange of hydrogen between the free water and the organic substances in the living organism. Acta Physiologica, 75, 90–104.Google Scholar
  7. 7.
    Ussing, H. H. (1937). The exchange of H and D atoms between water and protein in vivo and in vitro. Acta Physiologica, 77, 107–122.Google Scholar
  8. 8.
    Ussing, H. H. (1941). The rate of protein renewal in mice and rats studied by means of heavy water. Acta Physiologica Scandinavica, 2, 209–221.CrossRefGoogle Scholar
  9. 9.
    Halliday, D., & McKeran, R. O. (1975). Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of l-(alpha-15N)lysine. Clinical Science and Molecular Medicine, 49, 581–590.PubMedGoogle Scholar
  10. 10.
    Wagenmakers, A. J. (1999). Tracers to investigate protein and amino acid metabolism in human subjects. The Proceedings of the Nutrition Society, 58, 987–1000.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim, I. Y., Suh, S. H., Lee, I. K., & Wolfe, R. R. (2016). Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Experimental & Molecular Medicine, 48, e203.CrossRefGoogle Scholar
  12. 12.
    Burniston, J. G. (2008). Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochimica et Biophysica Acta, 1784, 1077–1086.PubMedCrossRefGoogle Scholar
  13. 13.
    Burniston, J. G., & Hoffman, E. P. (2011). Proteomic responses of skeletal and cardiac muscle to exercise. Expert Review of Proteomics, 8, 361–377.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Doran, P., Donoghue, P., O’Connell, K., Gannon, J., & Ohlendieck, K. (2009). Proteomics of skeletal muscle aging. Proteomics, 9, 989–1003.PubMedCrossRefGoogle Scholar
  15. 15.
    Gelfi, C., Vigano, A., Ripamonti, M., Pontoglio, A., Begum, S., Pellegrino, M. A., Grassi, B., Bottinelli, R., Wait, R., & Cerretelli, P. (2006). The human muscle proteome in aging. Journal of Proteome Research, 5, 1344–1353.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaleel, A., Short, K. R., Asmann, Y. W., Klaus, K. A., Morse, D. M., Ford, G. C., & Nair, K. S. (2008). In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. American Journal of Physiology Endocrinology and Metabolism, 295, E1255–E1268.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hellerstein, M. K., & Neese, R. A. (1999). Mass isotopomer distribution analysis at eight years: Theoretical, analytic, and experimental considerations. The American Journal of Physiology, 276, E1146–E1170.PubMedGoogle Scholar
  18. 18.
    Hellerstein, M. K., & Neese, R. A. (1992). Mass isotopomer distribution analysis: A technique for measuring biosynthesis and turnover of polymers. The American Journal of Physiology, 263, E988–E1001.PubMedGoogle Scholar
  19. 19.
    Papageorgopoulos, C., Caldwell, K., Shackleton, C., Schweingrubber, H., & Hellerstein, M. K. (1999). Measuring protein synthesis by mass isotopomer distribution analysis (MIDA). Analytical Biochemistry, 267, 1–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Previs, S. F., Fatica, R., Chandramouli, V., Alexander, J. C., Brunengraber, H., & Landau, B. R. (2004). Quantifying rates of protein synthesis in humans by use of 2H2O: Application to patients with end-stage renal disease. American Journal of Physiology Endocrinology and Metabolism, 286, E665–E672.PubMedCrossRefGoogle Scholar
  21. 21.
    Thomson, J. F. (1960). Physiological effects of D20 in mammals. Annals of the New York Academy of Sciences, 84, 736–744.PubMedCrossRefGoogle Scholar
  22. 22.
    Barbour, H. G. (1937). The basis of the pharmacological action of heavy water in mammals. The Yale Journal of Biology and Medicine, 9, 551–565.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Busch, R., Kim, Y. K., Neese, R. A., Schade-Serin, V., Collins, M., Awada, M., Gardner, J. L., Beysen, C., Marino, M. E., Misell, L. M., & Hellerstein, M. K. (2006). Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochimica et Biophysica Acta, 1760, 730–744.PubMedCrossRefGoogle Scholar
  24. 24.
    Jones, P. J., & Leatherdale, S. T. (1991). Stable isotopes in clinical research: Safety reaffirmed. Clinical Science (London, England), 80, 277–280.CrossRefGoogle Scholar
  25. 25.
    Holm, L., O’Rourke, B., Ebenstein, D., Toth, M. J., Bechshoeft, R., Holstein-Rathlou, N. H., Kjaer, M., & Matthews, D. E. (2013). Determination of steady-state protein breakdown rate in vivo by the disappearance of protein-bound tracer-labeled amino acids: A method applicable in humans. American Journal of Physiology Endocrinology and Metabolism, 304, E895–E907.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McCabe, B. J., Bederman, I. R., Croniger, C., Millward, C., Norment, C., & Previs, S. F. (2006). Reproducibility of gas chromatography-mass spectrometry measurements of 2H labeling of water: Application for measuring body composition in mice. Analytical Biochemistry, 350, 171–176.PubMedCrossRefGoogle Scholar
  27. 27.
    Gasier, H. G., Riechman, S. E., Wiggs, M. P., Previs, S. F., & Fluckey, J. D. (2009). A comparison of 2H2O and phenylalanine flooding dose to investigate muscle protein synthesis with acute exercise in rats. American Journal of Physiology Endocrinology and Metabolism, 297, E252–E259.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Murphy, C. H., Shankaran, M., Churchward-Venne, T. A., Mitchell, C. J., Kolar, N. M., Burke, L. M., Hawley, J. A., Kassis, A., Karagounis, L. G., Li, K., King, C., Hellerstein, M., & Phillips, S. M. (2018). Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction. The Journal of Physiology, 596, 2091–2120.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wilkinson, D. J., Cegielski, J., Phillips, B. E., Boereboom, C., Lund, J. N., Atherton, P. J., & Smith, K. (2015). Internal comparison between deuterium oxide (D2O) and l-[ring-13C6] phenylalanine for acute measurement of muscle protein synthesis in humans. Physiological Reports, 3, e12433.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Commerford, S. L., Carsten, A. L., & Cronkite, E. P. (1983). The distribution of tritium among the amino acids of proteins obtained from mice exposed to tritiated water. Radiation Research, 94, 151–155.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Price, J. C., Holmes, W. E., Li, K. W., Floreani, N. A., Neese, R. A., Turner, S. M., & Hellerstein, M. K. (2012). Measurement of human plasma proteome dynamics with (2)H(2)O and liquid chromatography tandem mass spectrometry. Analytical Biochemistry, 420, 73–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Burniston, J. G., Connolly, J., Kainulainen, H., Britton, S. L., & Koch, L. G. (2014). Label-free profiling of skeletal muscle using high-definition mass spectrometry. Proteomics, 14, 2339–2344.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Malik, Z. A., Cobley, J. N., Morton, J. P., Close, G. L., Edwards, B. J., Koch, L. G., Britton, S. L., & Burniston, J. G. (2013). Label-free LC-MS profiling of skeletal muscle reveals heart-type fatty acid binding protein as a candidate biomarker of aerobic capacity. Proteomes, 1, 290–308.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hesketh, S., Srisawat, K., Sutherland, H., Jarvis, J., & Burniston, J. (2016). On the rate of synthesis of individual proteins within and between different striated muscles of the rat. Proteomes, 4, 12.PubMedCentralCrossRefGoogle Scholar
  35. 35.
    Xiao, G. G., Garg, M., Lim, S., Wong, D., Go, V. L., & Lee, W. N. (2008). Determination of protein synthesis in vivo using labeling from deuterated water and analysis of MALDI-TOF spectrum. Journal of Applied Physiology (Bethesda, MD: 1985), 104, 828–836.CrossRefGoogle Scholar
  36. 36.
    Holmes, W. E., Angel, T. E., Li, K. W., & Hellerstein, M. K. (2015). Dynamic proteomics: In vivo proteome-wide measurement of protein kinetics using metabolic labeling. Methods in Enzymology, 561, 219–276.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kasumov, T., Willard, B., Li, L., Sadygov, R. G., & Previs, S. (2015). Proteome dynamics with heavy water: Instruments, data analysis and biological applications. In S. Magdeldin (Ed.), Recent Advances in Proteomics Research. Rijeka: InTech.Google Scholar
  38. 38.
    Garlick, P. J., Millward, D. J., & James, W. P. (1973). The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. The Biochemical Journal, 136, 935–945.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lam, M. P., Wang, D., Lau, E., Liem, D. A., Kim, A. K., Ng, D. C., Liang, X., Bleakley, B. J., Liu, C., Tabaraki, J. D., Cadeiras, M., Wang, Y., Deng, M. C., & Ping, P. (2014). Protein kinetic signatures of the remodeling heart following isoproterenol stimulation. The Journal of Clinical Investigation, 124, 1734–1744.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., & Ghaemmaghami, S. (2010). Analysis of proteome dynamics in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 14508–14513.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Price, J. C., Khambatta, C. F., Li, K. W., Bruss, M. D., Shankaran, M., Dalidd, M., Floreani, N. A., Roberts, L. S., Turner, S. M., Holmes, W. E., & Hellerstein, M. K. (2012). The effect of long term calorie restriction on in vivo hepatic proteostatis: A novel combination of dynamic and quantitative proteomics. Molecular and Cellular Proteomics, 11, 1801–1814.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim, T. Y., Wang, D., Kim, A. K., Lau, E., Lin, A. J., Liem, D. A., Zhang, J., Zong, N. C., Lam, M. P., & Ping, P. (2012). Metabolic labeling reveals proteome dynamics of mouse mitochondria. Molecular and Cellular Proteomics, 11, 1586–1594.PubMedCrossRefGoogle Scholar
  43. 43.
    Palmer, J. W., Tandler, B., & Hoppel, C. L. (1977). Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. The Journal of Biological Chemistry, 252, 8731–8739.PubMedGoogle Scholar
  44. 44.
    Kavazis, A. N., Alvarez, S., Talbert, E., Lee, Y., & Powers, S. K. (2009). Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. American Journal of Physiology Heart and Circulatory Physiology, 297, H144–H152.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kasumov, T., Dabkowski, E. R., Shekar, K. C., Li, L., Ribeiro, R. F., Jr., Walsh, K., Previs, S. F., Sadygov, R. G., Willard, B., & Stanley, W. C. (2013). Assessment of cardiac proteome dynamics with heavy water: Slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. American Journal of Physiology Heart and Circulatory Physiology, 304, H1201–H1214.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shankaran, M., King, C. L., Angel, T. E., Holmes, W. E., Li, K. W., Colangelo, M., Price, J. C., Turner, S. M., Bell, C., Hamilton, K. L., Miller, B. F., & Hellerstein, M. K. (2016). Circulating protein synthesis rates reveal skeletal muscle proteome dynamics. The Journal of Clinical Investigation, 126, 288–302.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Holloway, K. V., O’Gorman, M., Woods, P., Morton, J. P., Evans, L., Cable, N. T., Goldspink, D. F., & Burniston, J. G. (2009). Proteomic investigation of changes in human vastus lateralis muscle in response to interval-exercise training. Proteomics, 9, 5155–5174.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Srisawat, K., Shepherd, S. O., Lisboa, P. J., & Burniston, J. G. (2017). A systematic review and meta-analysis of proteomics literature on the response of human skeletal muscle to obesity/type 2 diabetes mellitus (T2DM) versus exercise training. Proteomes, 5, 30.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Rennie, M. J., Smith, K., & Watt, P. W. (1994). Measurement of human tissue protein synthesis: An optimal approach. The American Journal of Physiology, 266, E298–E307.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Mitchell, C. J., Churchward-Venne, T. A., Parise, G., Bellamy, L., Baker, S. K., Smith, K., Atherton, P. J., & Phillips, S. M. (2014). Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One, 9, e89431.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Murphy, C. H., Churchward-Venne, T. A., Mitchell, C. J., Kolar, N. M., Kassis, A., Karagounis, L. G., Burke, L. M., Hawley, J. A., & Phillips, S. M. (2015). Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. American Journal of Physiology Endocrinology and Metabolism, 308, E734–E743.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Geiger, T., Velic, A., Macek, B., Lundberg, E., Kampf, C., Nagaraj, N., Uhlen, M., Cox, J., & Mann, M. (2013). Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Molecular and Cellular Proteomics, 12, 1709–1722.PubMedCrossRefGoogle Scholar
  53. 53.
    Srisawat, K., Hesketh, K., Cocks, M., Strauss, J., Edwards, B. J., Lisboa, P. J., Shepherd, S., & Burniston, J. G. (2019). Reliability of protein abundance and synthesis measurements in human skeletal muscle. Proteomics, e1900194. https://www.ncbi.nlm.nih.gov/pubmed/31622029; https://onlinelibrary.wiley.com/doi/abs/10.1002/pmic.201900194
  54. 54.
    Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153, 1194–1217.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Physiological Society 2019

Authors and Affiliations

  1. 1.Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations