Chromatin Epigenomics in Muscle Development and Disease

  • Jelena PerovanovicEmail author
Part of the Methods in Physiology book series (METHPHYS)


Epigenomic approaches use genome-wide tools to characterize the reversible modifications of DNA or DNA-associated proteins (chromatin) and identify regulatory factors that shape epigenomic landscape. The status of the epigenomic landscape is a major regulator of gene expression, and it is central for specification of muscle fate. The epigenomic landscape is influenced by both genetic and environmental factors, and these changes exhibit a high degree of plasticity. Some modifications are long lasting and are needed to convey cell identity over time, while others can be more transient in order to provide rapid adaptation to environmental cues. Here we review relevant epigenomic tools commonly used to study chromatin biology in the context of muscle development and pathology.


  1. 1.
    Kornberg, R. D. (1974). Chromatin structure: A repeating unit of histones and DNA. Science, 184, 868–871.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389, 251–260.CrossRefGoogle Scholar
  3. 3.
    Richmond, T. J., & Davey, C. A. (2003). The structure of DNA in the nucleosome core. Nature, 423, 145–150.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Woodcock, C. L., & Dimitrov, S. (2001). Higher-order structure of chromatin and chromosomes. Current Opinion Genetics and Development, 11, 130–135. Scholar
  5. 5.
    Radman-Livaja, M., & Rando, O. J. (2010). Nucleosome positioning: How is it established, and why does it matter? Developmental Biology, 339, 258–266.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21, 381–395.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lawrence, M., Daujat, S., & Schneider, R. (2016). Lateral thinking: How histone modifications regulate gene expression. Trends in Genetics, 32(1), 42–56. Scholar
  9. 9.
    Rossetto, D., Avvakumov, N., & Côté, J. (2012). Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics, 7, 1098–1108.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., & Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502.CrossRefGoogle Scholar
  12. 12.
    Zhou, V. W., Goren, A., & Bernstein, B. E. (2011). Charting histone modifications and the functional organization of mammalian genomes. Nature Reviews Genetics, 12, 7–18.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., & Lander, E. S. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hawkins, R. D., Hon, G. C., Lee, L. K., Ngo, Q., Lister, R., Pelizzola, M., Edsall, L. E., Kuan, S., Luu, Y., Klugman, S., Antosiewicz-Bourget, J., Ye, Z., Espinoza, C., Agarwahl, S., Shen, L., Ruotti, V., Wang, W., Stewart, R., Thomson, J. A., Ecker, J. R., & Ren, B. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6, 479–491.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Liu, L., Cheung, T. H., Charville, G. W., Hurgo, B. M. C., Leavitt, T., Shih, J., Brunet, A., & Rando, T. A. (2013). Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Reports, 4, 189–204.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ernst, J., Kheradpour, P., Mikkelsen, T. S., Shoresh, N., Ward, L. D., Epstein, C. B., Zhang, X., Wang, L., Issner, R., Coyne, M., Ku, M., Durham, T., Kellis, M., & Bernstein, B. E. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473, 43–49.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cao, Y., Yao, Z., Sarkar, D., Lawrence, M., Sanchez, G. J., Parker, M. H., MacQuarrie, K. L., Davison, J., Morgan, M. T., Ruzzo, W. L., Gentleman, R. C., & Tapscott, S. J. (2010). Genome-wide MyoD binding in skeletal muscle cells: A potential for broad cellular reprogramming. Developmental Cell, 18, 662–674.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mullen, A. C., Orlando, D. A., Newman, J. J., Lovén, J., Kumar, R. M., Bilodeau, S., Reddy, J., Guenther, M. G., DeKoter, R. P., & Young, R. A. (2011). Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell, 147, 565–576.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lund, E., Oldenburg, A. R., Delbarre, E., Freberg, C. T., Duband-Goulet, I., Eskeland, R., Buendia, B., & Collas, P. (2013). Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Research, 23, 1580–1589.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., & Rando, T. A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 317, 807–810.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433, 760–764.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mousavi, K., Zare, H., Wang, A. H., & Sartorelli, V. (2012). Polycomb protein Ezh1 promotes RNA polymerase II elongation. Molecular Cell, 45, 255–262.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.-K., Koche, R. P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., & Bernstein, B. E. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553–560.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ernst, J., & Kellis, M. (2012). ChromHMM: Automating chromatin-state discovery and characterization. Nature Methods, 9, 215–216.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Scott, L. J., Erdos, M. R., Huyghe, J. R., Welch, R. P., Beck, A. T., Wolford, B. N., Chines, P. S., Didion, J. P., Narisu, N., Stringham, H. M., Taylor, D. L., Jackson, A. U., Vadlamudi, S., Bonnycastle, L. L., Kinnunen, L., Saramies, J., Sundvall, J., Albanus, R. D., Kiseleva, A., Hensley, J., Crawford, G. E., Jiang, H., Wen, X., Watanabe, R. M., Lakka, T. A., Mohlke, K. L., Laakso, M., Tuomilehto, J., Koistinen, H. A., Boehnke, M., Collins, F. S., & Parker, S. C. J. (2016). The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nature Communications, 7, 11764.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Braunschweig, U., Hogan, G. J., Pagie, L., & van Steensel, B. (2009). Histone H1 binding is inhibited by histone variant H3.3. The EMBO Journal, 28, 3635–3645.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Perovanovic, J., DellOrso, S., Gnochi, V. F., Jaiswal, J. K., Sartorelli, V., Vigouroux, C., Mamchaoui, K., Mouly, V., Bonne, G., & Hoffman, E. P. (2016). Laminopathies disrupt epigenomic developmental programs and cell fate. Science Translational Medicine, 8, 335ra58.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., & van Steensel, B. (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genetics, 38, 1005–1014.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    van Steensel, B., & Henikoff, S. (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nature Biotechnology, 18, 424–428.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Vogel, M. J., Peric-Hupkes, D., & van Steensel, B. (2007). Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nature Protocols, 2, 1467–1478.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhou, V. (2012). Methods for global characterization of chromatin regulators in human cells. Cambridge, MA: Harvard University Press. Retrieved November 21, 2014, from
  32. 32.
    van Bemmel, J. G., Filion, G. J., Rosado, A., Talhout, W., de Haas, M., van Welsem, T., van Leeuwen, F., & van Steensel, B. (2013). A network model of the molecular organization of chromatin in Drosophila. Molecular Cell, 49, 759–771.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Greil, F., Moorman, C., & van Steensel, B. (2006). DamID: Mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods in Enzymology, 410, 342–359.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Robson, M. I., de las Heras, J. I., Czapiewski, R., Lê Thành, P., Booth, D. G., Kelly, D. A., Webb, S., ARW, K., & Schirmer, E. C. (2016). Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Molecular Cell, 62, 834–847.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., Eussen, B. H., de Klein, A., Wessels, L., de Laat, W., & van Steensel, B. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453, 948–951.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Perovanovic, J. (2015). Nuclear envelope laminopathies: Evidence for developmentally inappropriate nuclear envelope-chromatin associations. ProQuest Diss Theses.
  37. 37.
    Perovanovic, J., & Hoffman, E. P. (2018). Mechanisms of allelic and clinical heterogeneity of lamin A/C phenotypes. Physiological Genomics, 50, 694–704.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Boyle, A. P., Song, L., Lee, B.-K., London, D., Keefe, D., Birney, E., Iyer, V. R., Crawford, G. E., & Furey, T. S. (2011). High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Research, 21, 456–464.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10, 1213–1218.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R., & Lieb, J. D. (2007). FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Research, 17, 877–885.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Schep, A. N., Buenrostro, J. D., Denny, S. K., Schwartz, K., Sherlock, G., & Greenleaf, W. J. (2015). Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Research, 25, 1757–1770.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Loh, K. M., Chen, A., Koh, P. W., Deng, T. Z., Sinha, R., Tsai, J. M., Barkal, A. A., Shen, K. Y., Jain, R., Morganti, R. M., Shyh-Chang, N., Fernhoff, N. B., George, B. M., Wernig, G., Salomon, R. E. A., Chen, Z., Vogel, H., Epstein, J. A., Kundaje, A., Talbot, W. S., Beachy, P. A., Ang, L. T., & Weissman, I. L. (2016). Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell, 166, 451–467.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., Li, W., Li, Y., Ma, J., Peng, X., Zheng, H., Ming, J., Zhang, W., Zhang, J., Tian, G., Xu, F., Chang, Z., Na, J., Yang, X., & Xie, W. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature, 534, 652–657.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Daugherty, A. C., Yeo, R. W., Buenrostro, J. D., Greenleaf, W. J., Kundaje, A., & Brunet, A. (2017). Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans. Genome Research, 27, 2096–2107.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sung, M.-H., Guertin, M. J., Baek, S., & Hager, G. L. (2014). DNase footprint signatures are dictated by factor dynamics and DNA sequence. Molecular Cell, 56, 275–285.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sung, M.-H., Baek, S., & Hager, G. L. (2016). Genome-wide footprinting: Ready for prime time? Nature Methods, 13, 222–228.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liu, L., Cheung, T. H., Charville, G. W., & Rando, T. A. (2015). Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nature Protocols, 10, 1612–1624.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pasut, A., Oleynik, P., & Rudnicki, M. A. (2012). Isolation of muscle stem cells by fluorescence activated cell sorting cytometry. Methods in Molecular Biology, 798, 53–64.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Schmidl, C., Rendeiro, A. F., Sheffield, N. C., & Bock, C. (2015). ChIPmentation: Fast, robust, low-input ChIP-seq for histones and transcription factors. Nature Methods, 12, 963–965.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sherwood, R. I., Hashimoto, T., O’Donnell, C. W., Lewis, S., Barkal, A. A., van Hoff, J. P., Karun, V., Jaakkola, T., & Gifford, D. K. (2014). Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature Biotechnology, 32, 171–178.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Meyer, C. A., & Liu, X. S. (2014). Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nature Reviews Genetics, 15, 709–721.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Askjaer, P., Ercan, S., & Meister, P. (2014). Modern techniques for the analysis of chromatin and nuclear organization in C. elegans. WormBook.
  53. 53.
    Nègre, N., Hennetin, J., Sun, L. V., Lavrov, S., Bellis, M., White, K. P., & Cavalli, G. (2006). Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biology, 4, e170.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Clark, S. J., Lee, H. J., Smallwood, S. A., Kelsey, G., & Reik, W. (2016). Single-cell epigenomics: Powerful new methods for understanding gene regulation and cell identity. Genome Biology, 17, 72.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson, K. L., Steemers, F. J., Trapnell, C., & Shendure, J. (2015). Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science, 348, 910–914.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Pliner, H., Packer, J., McFaline-Figueroa, J., Cusanovich, D., Daza, R., Srivatsan, S., Qiu, X., Jackson, D., Minkina, A., Adey, A., Steemers, F., Shendure, J., & Trapnell, C. (2017). Chromatin accessibility dynamics of myogenesis at single cell resolution. bioRxiv.
  57. 57.
    Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., Chang, H. Y., & Greenleaf, W. J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523, 486–490.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Davie, K., Janssens, J., Koldere, D., Pech, U., Aibar, S., De Waegeneer, M., Makhzami, S., Christiaens, V., Gonzalez-Blas, C. B., Hulselmans, G., Spanier, K., Moerman, T., Vanspauwen, B., Lammertyn, J., Thienpont, B., Liu, S., Verstreken, P., & Aerts, S. (2017). A single-cell catalogue of regulatory states in the ageing Drosophila brain. bioRxiv.
  59. 59.
    Rotem, A., Ram, O., Shoresh, N., Sperling, R. A., Goren, A., Weitz, D. A., & Bernstein, B. E. (2015). Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature Biotechnology, 33, 1165–1172.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S. S., Janssen, H., Amendola, M., Nolen, L. D., Bickmore, W. A., & van Steensel, B. (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153, 178–192.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Roadmap Epigenomics Project – Home [Online]. (n.d.). Retrieved from January 1, 2018, from
  62. 62.
    Wang, J., & Song, Y. (2017). Single cell sequencing: A distinct new field. Clinical and Translational Medicine, 6, 10.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Physiological Society 2019

Authors and Affiliations

  1. 1.Huntsman Cancer InstituteUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations