Advertisement

Pathology of the Nervous System

  • Juliana S. LeeEmail author
  • Sarah D. Cramer
  • Mark T. Butt
Chapter
  • 130 Downloads

Abstract

The nervous system is the most challenging organ system to thoroughly assess in toxicity studies. It is anatomically complex, changes may occur within limited time frames, it may require special processing and special staining/immunohistochemistry, and it is prone to artifacts and spontaneous, background changes. Although there are regulatory guidelines for general examination of the nervous system, they typically do not offer sufficient guidance for detailed neurotoxicity studies. This chapter provides recommendations for general and detailed neurotoxicity studies including recommendations for sampling, special processing, embedding and staining, study design, and fixation methods to limit artifact formation. In addition, it explains potential changes that commonly occur in both the central and peripheral portions of the nervous system of laboratory animal species and introduces the terms that are commonly used to diagnose these changes in neurotoxicity pathology reports.

Key words

Nervous system Neurotoxicity Toxicology Neuropathology Artifact Tissue sampling Neuroanatomy 

References

  1. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13.  https://doi.org/10.1016/j.nbd.2003.12.016CrossRefPubMedGoogle Scholar
  2. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927.  https://doi.org/10.1152/physrev.2001.81.2.871CrossRefPubMedGoogle Scholar
  3. Bolon B, Butt MT (2011) Fundamental neuropathology for pathologists and toxicologists: principles and techniques, 1st edn. John Wiley & Sons, Inc., HobokenCrossRefGoogle Scholar
  4. Bolon B, O’Brien D (2001) Localizing neuropathological lesions using neurological findings. In: Bolon B, Butt MT (eds) Fundamental neuropathology for pathologists and toxicologists: principles and techniques, 1st edn. John Wiley & Sons, Inc., Hoboken, pp 89–103Google Scholar
  5. Bolon B, Garman RH, Pardo ID, Jensen K, Sills RC, Roulois A, Radovsky A, Bradley A, Andrews-Jones L, Butt M, Gumprecht L (2013) STP position paper: recommended practices for sampling and processing the nervous system (brain, spinal cord, nerve, and eye) during nonclinical general toxicity studies. Toxicol Pathol 41(7):1028–1048.  https://doi.org/10.1177/0192623312474865CrossRefPubMedGoogle Scholar
  6. Brown DL (2017a) Bias in image analysis and its solution: unbiased stereology. J Toxicol Pathol 30(3):183–191.  https://doi.org/10.1293/tox.2017-0013CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown DL (2017b) Practical stereology applications for the pathologist. Vet Pathol 54(3):358–368.  https://doi.org/10.1177/0300985817695781CrossRefPubMedGoogle Scholar
  8. Butt MT (2011a) Evaluation of the adult nervous system in preclinical studies. In: Bolon B, Butt MT (eds) Fundamental neuropathology for pathologists and toxicologists: principles and techniques, 1st edn. John Wliey & Sons, Inc., Hoboken, pp 321–338Google Scholar
  9. Butt MT (2011b) Morphologic changes associated with intrathecal catheters for direct delivery to the central nervous system in preclinical studies. Toxicol Pathol 39(1):213–219.  https://doi.org/10.1177/0192623310391679CrossRefPubMedGoogle Scholar
  10. Butt MT, Sills R, Bradley A (2013) Nervous system. In: Sahota PS, Popp JA, Hardisty JF, Gopinath C (eds) Toxicologic pathology. CRC Press, Boca RatonGoogle Scholar
  11. Butt MT, Whitney KM, Davis W, Akella S, Parker S, Foley GL (2015) Microscopic background changes in brains of cynomolgus monkeys. Toxicol Pathol 43(4):513–518.  https://doi.org/10.1177/0192623314537723CrossRefPubMedGoogle Scholar
  12. Cantile C, Youssef F (2016) Nervous System. Jubb, Kennedy and Palmer’s Pathology of Domestic Animals, vol 1. Elsevier, St. Louis, Missouri.Google Scholar
  13. Chamanza R, Marxfeld HA, Blanco AI, Naylor SW, Bradley AE (2010) Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. Toxicol Pathol 38(4):642–657.  https://doi.org/10.1177/0192623310368981CrossRefPubMedGoogle Scholar
  14. DeLahunta A, Glass E, Kent M (2015) Veterinary neuroanatomy and clinical neurology, 4th edn. Elsevier, St. LouisGoogle Scholar
  15. EPA (1998) Guidelines for neurotoxicity risk assessment. Risk Assessment Forum, U.S. Environmental Protection Agency, Washignton, DCGoogle Scholar
  16. FDA (2014) Overview of medical classification and reclassification. https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhtransparency/ucm378714.htm. Accessed 19 Feb 2018
  17. FDA (2016) Use of international standard ISO 10993-1, “biological evaluation of medical devices – Part 1: evaluation and testing within a risk management process”Google Scholar
  18. FDA (2017) Code of federal regulations. Title 21, food and drugs. FDA, Silver SpringGoogle Scholar
  19. Fitzgerald J, Fawcett J (2007) Repair in the central nervous system. J Bone Joint Surg Br 89(11):1413–1420.  https://doi.org/10.1302/0301-620X.89B11.19651CrossRefPubMedGoogle Scholar
  20. Garman RH (2011) Common histological artifacts in nervous system tissues. In: Bolon B, Butt MT (eds) Fundamental neuropathology for pathologists and toxicologists: principles and techniques. Wiley, Hoboken, pp 191–201CrossRefGoogle Scholar
  21. Hale SL, Andrews-Jones L, Jordan WH, Jortner BS, Boyce RW, Boyce JT, Switzer RC III, Butt MT, Garman RH, Jensen K, Krinke G, Little PB (2011) Modern pathology methods for neural investigations. Toxicol Pathol 39(1):52–57.  https://doi.org/10.1177/0192623310394213CrossRefPubMedGoogle Scholar
  22. Hays AP (2010) Utility of skin biopsy to evaluate peripheral neuropathy. Curr Neurol Neurosci Rep 10(2):101–107.  https://doi.org/10.1007/s11910-010-0094-6CrossRefPubMedGoogle Scholar
  23. ISO (2016) ISO guidelines 10993–6: 2016 biological evaluation of medical devices. In: Part 6: Tests for local effects after implantation. ISO, Geneva, pp 1–10, 18–23Google Scholar
  24. Jimenez-Andrade JM, Herrera MB, Ghilardi JR, Vardanyan M, Melemedjian OK, Mantyh PW (2008) Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: implications for chemical-induced peripheral sensory neuropathies. Mol Pain 4:10.  https://doi.org/10.1186/1744-8069-4-10CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jordan WH, Hall DG, Hyten MJ, Young JK (2011) Practical neuropathology of the rat and other species. In: Bolon B, Butt MT (eds) Fundamental neuropathology for pathologists and toxicologists: principles and techniques. Wiley, HobokenGoogle Scholar
  26. Jortner BS (2006) The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 27(4):628–634.  https://doi.org/10.1016/j.neuro.2006.03.002CrossRefPubMedGoogle Scholar
  27. Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Groters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, Sills R (2012) Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 40(4 Suppl):87S–157S.  https://doi.org/10.1177/0192623312439125CrossRefPubMedGoogle Scholar
  28. Kennedy WR, Wendelschafer-Crabb G, Polydefkis M, McArthur JC (2005) Pathology and quantitation of cutaneous innervation. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, vol 1. Elsevier Saunders, Philadephia, pp 869–895CrossRefGoogle Scholar
  29. Knox CA, Yates RD, Chen I, Klara PM (1980) Effects of aging on the structural and permeability characteristics of cerebrovasculature in normotensive and hypertensive strains of rats. Acta Neuropathol 51(1):1–13CrossRefGoogle Scholar
  30. Kofler J, Wiley CA (2011) Microglia: key innate immune cells of the brain. Toxicol Pathol 39(1):103–114.  https://doi.org/10.1177/0192623310387619CrossRefPubMedGoogle Scholar
  31. Laterra J, Keep R, Betz LA, Goldstein GW (1999) Blood-brain-cerebrospinal fluid barriers. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry. Lippincott-Raven, PhiladephiaGoogle Scholar
  32. McInnes EF (2012) Wistar and Sprague-Dawley rats. In: McInnes EF (ed) Background lesions in laboratory animals: a color atlas, 1st edn. Sauders/Elsevier, Edinburgh/New YorkGoogle Scholar
  33. Moser V (2011) Behavioral model systems for evaluationg neuropathology. In: Bolon B, Butt MT (eds) Fundamental neuropathology for pathologists and toxicologists: principles and techniques. Wiley, Hoboken, pp 105–113CrossRefGoogle Scholar
  34. Schaumburg HH, Zotova E, Raine CS, Tar M, Arezzo J (2010) The rat caudal nerves: a model for experimental neuropathies. J Peripher Nerv Syst 15(2):128–139.  https://doi.org/10.1111/j.1529-8027.2010.00262.xCrossRefPubMedGoogle Scholar
  35. Schmued LC, Stowers CC, Scallet AC, Xu L (2005) Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 1035(1):24–31.  https://doi.org/10.1016/j.brainres.2004.11.054CrossRefPubMedGoogle Scholar
  36. Schuh JC (2008) Medical device regulations and testing for toxicologic pathologists. Toxicol Pathol 36(1):63–69.  https://doi.org/10.1177/0192623307309926CrossRefPubMedGoogle Scholar
  37. Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M (2011) Role of astrocytes in brain function and disease. Toxicol Pathol 39(1):115–123.  https://doi.org/10.1177/0192623310385254CrossRefPubMedGoogle Scholar
  38. Slayter MV, Summers BA, Meade RP, Anderson CA (1998) Axonal spheroids in the cochlear nucleus of normal beagle dogs. Vet Pathol 35(2):150–153.  https://doi.org/10.1177/030098589803500211CrossRefPubMedGoogle Scholar
  39. Switzer RC (2000) Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol 28(1):70–83.  https://doi.org/10.1177/019262330002800109CrossRefPubMedGoogle Scholar
  40. Switzer RC (2011) Fundamentals of neurotoxicity detection. In: Bolon B, Butt MT (eds) Fundamental neuropathology for pathologists and toxicologists: principles and techniques, 1st edn. John Wliey & Sons, Inc., Hoboken, pp 139–156CrossRefGoogle Scholar
  41. Switzer RC, Butt MT (2011) Histological markers of neurotoxicity (nonfluorescent). In: Bolon B, Butt MT (eds) Fundamental neuropathology for pathologists and toxicologists: principles and techniques. John Wiley & Sons, Inc., HobokenGoogle Scholar
  42. Wadsworth PF, Jones HB, Cavanagh JB (1995) The topography, structure and incidence of mineralized bodies in the basal ganglia of the brain of cynomolgus monkeys (Macaca fascicularis). Lab Anim 29(3):276–281.  https://doi.org/10.1258/002367795781088360CrossRefPubMedGoogle Scholar
  43. Wohlsein P, Deschl U, Baumgartner W (2013) Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol 50(1):122–143.  https://doi.org/10.1177/0300985812450719CrossRefPubMedGoogle Scholar
  44. Yanai T, Masegi T, Ueda K, Manabe J, Teranishi M, Takaoka M, Matsunuma N, Fukuda K, Goto N, Fujiwara K (1994) Vascular mineralization in the monkey brain. Vet Pathol 31(5):546–552.  https://doi.org/10.1177/030098589403100506CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Juliana S. Lee
    • 1
    Email author
  • Sarah D. Cramer
    • 2
  • Mark T. Butt
    • 2
  1. 1.Alizée Pathology, Inc.ThurmontUSA
  2. 2.Tox Path Specialists, LLCFrederickUSA

Personalised recommendations