Advertisement

Routine and Special Techniques in Toxicologic Pathology

  • Pamela BlackshearEmail author
  • Erica Carroll
  • Sasmita Mishra
  • Matthew Renninger
  • Arun Tatiparthi
Chapter
  • 127 Downloads

Abstract

Anatomic and clinical pathology assessments are key components of toxicity studies, often providing the pivotal data to determine whether a test article has the appropriate safety and efficacy profile to become a new drug. Standard anatomic pathology assessments that are part of most toxicity studies consist of evaluation of macroscopic observations, organ weights, and microscopic observations; and standard clinical pathology assessments consist of evaluation of hematology, clinical chemistry, coagulation, and urinalysis data. Routine laboratory techniques for standard anatomic pathology assessments include necropsy, with macroscopic observations, organ weight measurements, and tissue collection, and histology to process tissue samples into hematoxylin and eosin (H&E)-stained slides for microscopic evaluation. These routine techniques are part of most toxicity studies. Several special laboratory techniques may be added to studies for cause, either to better characterize changes first observed in the standard assessment or proactively included in the study design to detect or characterize changes anticipated due to the mechanism of action of the test article or changes observed in previous studies with the test article.

Key words

Computed tomography (CT) Digital pathology Electron microscopy Fixation Histochemical stains Histology Imaging Immunohistochemistry (IHC) In situ hybridization (ISH) Magnetic resonance imaging (MRI) Morphometry Necropsy Organ weights Positron emission tomography (PET) Single photon emission computed tomography (SPECT) Ultrasound 

References

  1. AVMA (2013) AVMA guidelines for the euthanasia of animals: 2013 EditionGoogle Scholar
  2. Bailey SA, Zidell RH, Perry RW (2004) Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint. Toxicol Pathol 32(4):448–466.  https://doi.org/10.1080/01926230490465874CrossRefPubMedGoogle Scholar
  3. Bregman CL, Adler RR, Morton DG, Regan KS, Yano BL (2003) Recommended tissue list for histopathologic examination in repeat-dose toxicity and carcinogenicity studies: a proposal of the Society of Toxicologic Pathology (STP). Toxicol Pathol 31(2):252–253.  https://doi.org/10.1080/01926230390183751CrossRefPubMedGoogle Scholar
  4. Chosewood LC, Wilson DE (eds) (2009) Biosafety in microbiological and biomedical laboratories, 5th edn. Centers for Disease Control. https://www.cdc.gov/labs/pdf/CDC-BiosafetyMicrobiologicalBiomedicalLaboratories-2009-P.PDF. Accessed 20 Dec 2018
  5. Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101(2):485–502CrossRefGoogle Scholar
  6. Economou M, Schoni L, Hammer C, Galvan JA, Mueller DE, Zlobec I (2014) Proper paraffin slide storage is crucial for translational research projects involving immunohistochemistry stains. Clin Transl Med 3(1):4.  https://doi.org/10.1186/2001-1326-3-4CrossRefPubMedPubMedCentralGoogle Scholar
  7. Engel KB, Moore HM (2011) Effects of preanalytical variables on the detection of proteins by immunohistochemistry in formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med 135(5):537–543.  https://doi.org/10.1043/2010-0702-RAIR.1CrossRefPubMedGoogle Scholar
  8. Foster FS, Hossack J, Adamson SL (2011) Micro-ultrasound for preclinical imaging. Interface Focus 1:576–601CrossRefGoogle Scholar
  9. Garba MT, Marie PJ (1986) Alkaline phosphatase inhibition by levamisole prevents 1,25-dihydroxyvitamin D3-stimulated bone mineralization in the mouse. Calcif Tissue Int 38(5):296–302CrossRefGoogle Scholar
  10. Gauthier BE, Gervais F, Hamm G, O’Shea D, Piton A, Schumacher VL (2019) Toxicologic pathology forum: opinion on integrating innovative digital pathology tools in the regulatory framework. Toxicol Pathol 47:436.  https://doi.org/10.1177/0192623319827485CrossRefPubMedGoogle Scholar
  11. Graham KC, Wirtzfeld LA, MacKenzie LT, Postenka CO, Groom AC, MacDonald IC, Chambers AF (2005) Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models. Cancer Res 65(12):5231–5237.  https://doi.org/10.1158/0008-5472.CAN-05-0440CrossRefPubMedGoogle Scholar
  12. Grizzle WE, Fredenburgh JL, Myers RB (2008) Fixation of tissues. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques, 6th edn. Elsevier, PhiladelphiaGoogle Scholar
  13. Gur E, Waner T (1993) The variability of organ weight background data in rats. Lab Anim 27(1):65–72.  https://doi.org/10.1258/002367793781082368CrossRefPubMedGoogle Scholar
  14. Pringle JH (1995) Non-isotopic detection of RNA in situ. IRL Press at Oxford University Press, Oxford; New YorkGoogle Scholar
  15. Hayashi S, Gillam IC, Delaney AD, Tener GM (1978) Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiographs from hybridization with [125I]-labeled RNA. J Histochem Cytochem 26(8):677–679.  https://doi.org/10.1177/26.8.99471CrossRefPubMedGoogle Scholar
  16. Johnson GA, Cofer GP, Fubara B, Gewalt SL, Hedlund LW, Maronpot RR (2002) Magnetic resonance histology for morphologic phenotyping. J Magn Reson Imaging 16(4):423–429.  https://doi.org/10.1002/jmri.10175CrossRefPubMedGoogle Scholar
  17. Kanerva RL, Alden CL, Wyder WE (1982) The effect of uniform exsanguinatin on absolute and relative organ weights, and organ weight variation. Toxicol Pathol 10(1):43–44CrossRefGoogle Scholar
  18. Kanerva RL, Lefever FR, Alden CL (1983) Comparison of fresh and fixed organ weights of rats. Toxicol Pathol 11(2):129–131CrossRefGoogle Scholar
  19. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Sullivan DC (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808.  https://doi.org/10.1158/1078-0432.CCR-04-2626CrossRefPubMedGoogle Scholar
  20. Kim SW, Roh J, Park CS (2016) Immunohistochemistry for pathologists: protocols, pitfalls, and tips. J Pathol Transl Med 50(6):411–418.  https://doi.org/10.4132/jptm.2016.08.08CrossRefPubMedPubMedCentralGoogle Scholar
  21. King JM, Dodd DC, Newson ME, Roth L (1989) The necropsy book. Arnold Printing Corporation, New YorkGoogle Scholar
  22. Lanning LL, Creasy DM, Chapin RE, Mann PC, Barlow NJ, Regan KS, Goodman DG (2002) Recommended approaches for the evaluation of testicular and epididymal toxicity. Toxicol Path 30(4):507–520.  https://doi.org/10.1080/01926230290105695CrossRefGoogle Scholar
  23. Li X, Elwell MR, Ryan AM, Ochoa R (2003) Morphogenesis of postmortem hepaocyte vacuolation and liver weight increases in Sprague-Dawley rats. Toxicol Pathol 31(6):682–688CrossRefGoogle Scholar
  24. Li Y, Garson CD, Xu Y, French BA, Hossack JA (2008) High frequency ultrasound imaging detects cardiac dyssynchrony in noninfarcted regions of the murine left ventricle late after reperfused myocardial infarction. Ultrasound Med Biol 34(7):1063–1075.  https://doi.org/10.1016/j.ultrasmedbio.2007.12.009CrossRefPubMedPubMedCentralGoogle Scholar
  25. Llewellyn B (2009) Dehydrants. In: Stains file –the internet resource for histotechnologists. http://stainsfile.info/StainsFile/prepare/process/dehydrants.htm. Accessed 19 Dec 2018
  26. Maronpot RR, Nyska A, Troth SP, Gabrielson K, Sysa-Shah P, Kalchenko V, Ramot Y (2017) Regulatory forum opinion piece∗: imaging applications in toxicologic pathology-recommendations for use in regulated nonclinical toxicity studies. Toxicol Pathol 45(4):444–471.  https://doi.org/10.1177/0192623317710014CrossRefPubMedGoogle Scholar
  27. Matsuda Y, Fujii T, Suzuki T, Yamahatsu K, Kawahara K, Teduka K, Kawamoto Y, Yamamoto T, Ishiwata T, Naito Z (2011) Comparison of fixation methods for preservation of morphology, RNAs, and proteins from paraffin-embedded human cancer cell-implanted mouse models. J Histochem Cytochem 59(1):68–75.  https://doi.org/10.1369/jhc.2010.957217CrossRefPubMedPubMedCentralGoogle Scholar
  28. McInnes E (2012) Artifact in histopathology. In: McInnes E (ed) Background lesions in laboratory animals- a color atlas. Saunders Elsevier, EdinburghGoogle Scholar
  29. Merriam-Webster Dictionary (2018). https://www.merriam-webster.com/dictionary/histology. Accessed 20 Dec 2018
  30. Mullink H, Vos W, Jiwa NM, Horstman A, Rieger E, Meijer CJLM (1995) Combination of non-radioactive in situ hybridization and immunochemistry. IRL Press at Oxford University Press, Oxford; New YorkGoogle Scholar
  31. Nikula KJ (2016) Regulatory forum opinion piece: an experienced pathologist need not always be present at necropsy for small molecule or biotherapeutic safety studies. Toxicol Pathol 44(1):12–13.  https://doi.org/10.1177/0192623315617034CrossRefPubMedGoogle Scholar
  32. O’Hurley G, Sjostedt E, Rahman A, Li B, Kampf C, Ponten F, Lindskog C (2014) Garbage in, garbage out: a critical evaluation of strategies used for validation of immunohistochemical biomarkers. Mol Oncol 8(4):783–798.  https://doi.org/10.1016/j.molonc.2014.03.008CrossRefPubMedPubMedCentralGoogle Scholar
  33. O’Leary JJ, Browne G, Bashir MS, Landers RJ, Crowley M, Healy I, Lewis FA, Doyle CT (1995) Non-isotopic detection of DNA in tissues. IRL Press at Oxford University Press, Oxford; New YorkGoogle Scholar
  34. Parry N (2015) A beginner’s guide to haematoxylin and eosin staining. In: https://bitesizebio.com/13400/a-beginners-guide-to-haematoxylin-and-eosin-staining/. Accessed 20 Dec 2018
  35. Pekmezci M, Szpaderska A, Osipo C, Ersahin C (2012) The effect of cold ischemia time and/or formalin fixation on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 results in breast carcinoma. Pathol Res Int 2012:947041.  https://doi.org/10.1155/2012/947041CrossRefGoogle Scholar
  36. Pringle JH, Ruprai AK, Primrose L, Keyte J, Potter L, Close P, Lauder I (1990) In situ hybridization of immunoglobulin light chain mRNA in paraffin sections using biotinylated or hapten-labelled oligonucleotide probes. J Pathol 162(3):197–207.  https://doi.org/10.1002/path.1711620305CrossRefPubMedGoogle Scholar
  37. Radulescu RT, Boenisch T (2007) Blocking endogenous peroxidases: a cautionary note for immunohistochemistry. J Cell Mol Med 11(6):1419.  https://doi.org/10.1111/j.1582-4934.2007.00185.xCrossRefPubMedPubMedCentralGoogle Scholar
  38. Ramot Y, Schiffenbauer YS, Maronpot R, Nyska A (2017) Compact magnetic resonance imaging systems-novel cost-effective tools for preclinical drug safety and efficacy evaluation. Toxicol Sci 157(1):3–7.  https://doi.org/10.1093/toxsci/kfx024CrossRefPubMedGoogle Scholar
  39. Rothacker DL, Kanerva RL, Wyder WE, Alden CL, Maurer JK (1988) Effects of variation of necropsy time and fasting on liver weights and liver components in rats. Toxicol Pathol 16(1):22–26.  https://doi.org/10.1177/019262338801600103CrossRefPubMedGoogle Scholar
  40. Scherfler C, Donnemiller E, Schocke M, Dierkes K, Decristoforo C, Oberladstatter M, Wenning G (2002) Evaluation of striatal dopamine transporter function in rats by in vivo beta-[123I]CIT pinhole SPECT. NeuroImage 17(1):128–141CrossRefGoogle Scholar
  41. Schmued LC, Hopkins KJ (2000) Fluoro-Jade: novel fluorochromes for detecting toxicant-induced neuronal degeneration. Toxicol Pathol 28(1):91–99CrossRefGoogle Scholar
  42. Scicchitano MS, Dalmas DA, Boyce RW, Thomas HC, Frazier KS (2009) Protein extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles by mass spectrometry. J Histochem Cytochem 57(9):849–860.  https://doi.org/10.1369/jhc.2009.953497CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sellers RS, Morton D, Michael B, Roome N, Johnson JK, Yano BL, Perry R, Schafer K (2007) Society of toxicologic pathology position paper: organ weight recommendations for toxicology studies. Toxicol Pathol 35(5):751–755.  https://doi.org/10.1080/01926230701595300CrossRefPubMedGoogle Scholar
  44. Shi SR, Liu C, Taylor CR (2007) Standardization of immunohistochemistry for formalin-fixed, paraffin-embedded tissue sections based on the antigen-retrieval technique: from experiments to hypothesis. J Histochem Cytochem 55(2):105–109.  https://doi.org/10.1369/jhc.6P7080.2006CrossRefPubMedGoogle Scholar
  45. Solomon HM, Murzyn S, Rendemonti J, Chapman S, Skedzielewski T, Jucker BM et al (2018) The use of micro-CT imaging to examine and illustrate fetal skeletal abnormalities in Dutch Belted rabbits and to prove concordance with Alizarin Red stained skeletal examination. Birth Defects Res 110(3):276–298.  https://doi.org/10.1002/bdr2.1168CrossRefPubMedGoogle Scholar
  46. Stefanovic D, Stefanovic M, Nikin Z (2013) Romanowsky-Giemsa as a counterstain for immunohistochemistry: optimizing a traditional reagent. Biotech Histochem 88(6):329–335.  https://doi.org/10.3109/10520295.2013.785595CrossRefPubMedGoogle Scholar
  47. Taylor CR, Levenson RM (2006) Quantification of immunohistochemistry--issues concerning methods, utility and semiquantitative assessment II. Histopathology 49(4):411–424.  https://doi.org/10.1111/j.1365-2559.2006.02513.xCrossRefPubMedGoogle Scholar
  48. Tuomari DL, Kemp RK, Sellers R, Yarrington JT, Geoly FJ, Fouillet XLM, Dybdal N, Perry R (2007) Society of toxicologic pathology position paper on pathology image data: compliance with 21 CFR parts 58 and 11. Toxicol Pathol 35(3):450–455.  https://doi.org/10.1080/01926230701284509CrossRefPubMedGoogle Scholar
  49. Vogt RF Jr, Phillips DL, Henderson LO, Whitfield W, Spierto FW (1987) Quantitative differences among various proteins as blocking agents for ELISA microtiter plates. J Immunol Methods 101(1):43–50CrossRefGoogle Scholar
  50. Wise LD, Winkelmann CT, Dogdas B, Bagchi A (2013) Micro-computed tomography imaging and analysis in developmental biology and toxicology. Birth Defects Res C Embryo Today 99(2):71–82.  https://doi.org/10.1002/bdrc.21033CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pamela Blackshear
    • 1
    Email author
  • Erica Carroll
    • 1
  • Sasmita Mishra
    • 1
  • Matthew Renninger
    • 1
  • Arun Tatiparthi
    • 1
  1. 1.Early Development, Covance LaboratoriesGreenfieldUSA

Personalised recommendations