Advertisement

Pathology of Juvenile Animals

  • Catherine A. PicutEmail author
  • Amera K. Remick
Chapter
  • 132 Downloads

Abstract

To cover the broad topic of juvenile pathology, an overview of the regulatory landscape and explanation regarding when and why pathologists examine juvenile tissues in preclinical safety studies are provided. There are unique challenges and opportunities associated with examining juvenile tissues, and these collectively help determine the safety of test articles and shed light on mechanism of action. Delving into selected organ systems, salient or unique features of normal development are discussed, with emphasis on those features that provide opportunity to help design targeted studies as well as those morphologic features that can complicate evaluation. In addition, for each organ, special pathology procedures utilized on juvenile tissues, toxic lesions that have been published in the relevant literature, and spontaneous diseases that may be encountered are highlighted.

Key words

Anatomy & Histology Biological Availability Biotransformation Drug Therapy Growth & Development Juvenile Laboratory Animals Pathology Regulations Toxicology 

References

  1. Acciani M, Kopp C, Palmer JL, Davis T, Picut C (2016) Effects of immersion fixation on post-mortem rat brain. 55th Annual meeting of Society of Toxicology, New OrleansGoogle Scholar
  2. Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM (2013) Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect 121(9):1040–1046.  https://doi.org/10.1289/ehp.1306734CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adikwu E, Bokolo B (2017) Possible hepatotoxic consequence of nevirapine use in juvenile albino rats. J Pharm Pharmacog Res 5(4):217–226Google Scholar
  4. Agrawal AK, Shapiro BH (2005) Neonatal phenobarbital imprints overexpression of cytochromes P450 with associated increase in tumorigenesis and reduced life span. FASEB J 19(3):470–472.  https://doi.org/10.1096/fj.04-2550fjeCrossRefPubMedPubMedCentralGoogle Scholar
  5. Akcali C, Inaloz S, Karakok M, Demirtas OC, Kirtak N, Inaloz S (2007) The effects of anastrozole on neonatal rat skin. Eur J Gynaecol Oncol 28(6):534–536PubMedPubMedCentralGoogle Scholar
  6. Allais L, Condevaux F, Fant P, Barrow PC (2009) Juvenile toxicity of cyclosporin in the rat. Reprod Toxicol 28(2):230–238.  https://doi.org/10.1016/j.reprotox.2009.04.012CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anand KJ, Soriano SG (2004) Anesthetic agents and the immature brain: are these toxic or therapeutic? Anesthesiology 101(2):527–530PubMedCrossRefPubMedCentralGoogle Scholar
  8. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469.  https://doi.org/10.1126/science.1108190CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ashton N, Ward B, Serpell G (1953) Role of oxygen in the genesis of retrolental fibroplasia; a preliminary report. Br J Ophthalmol 37(9):513–520PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bailey GP, Marien D (2011) The value of juvenile animal studies “What have we learned from preclinical juvenile toxicity studies? II”. Birth Defects Res B Dev Reprod Toxicol 92(4):273–291.  https://doi.org/10.1002/bdrb.20328CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baldrick P (2010) Juvenile animal testing in drug development – is it useful? Regul Toxicol Pharmacol 57(2–3):291–299.  https://doi.org/10.1016/j.yrtph.2010.03.009CrossRefPubMedPubMedCentralGoogle Scholar
  12. Baldrick P (2013) The evolution of juvenile animal testing for small and large molecules. Regul Toxicol Pharmacol 67(2):125–135.  https://doi.org/10.1016/j.yrtph.2013.07.009CrossRefPubMedPubMedCentralGoogle Scholar
  13. Banu SK, Govindarajulu P, Aruldhas MM (2002) Developmental profiles of TSH, sex steroids, and their receptors in the thyroid and their relevance to thyroid growth in immature rats. Steroids 67(2):137–144PubMedCrossRefPubMedCentralGoogle Scholar
  14. Barone S Jr, Stanton ME, Mundy WR (1995) Neurotoxic effects of neonatal triethyltin (TET) exposure are exacerbated with aging. Neurobiol Aging 16(5):723–735PubMedCrossRefPubMedCentralGoogle Scholar
  15. Barrow PC (2007) Toxicology testing for products intended for pediatric populations. In: Slikker W, Chang LW (eds) Handbook of developmental neurotoxicology. Academic, San Diego, pp 403–426Google Scholar
  16. Beck MJ, Padgett EL, Parker GA, Maginnis GM, Toot JD, Varsho BJ, Varsho JS (2012) Nonclinical juvenile toxicity testing. In: Hood RD (ed) Developmental and reproductive toxicology: a practical approach, 3rd edn. Informa Healthcare, New York, pp 302–345Google Scholar
  17. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J, Steering Group of the RP (2010) The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 62(3):196–220.  https://doi.org/10.1016/j.vascn.2010.05.009CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bolon B, Garman R, Jensen K, Krinke G, Stuart B (2006) A ‘best practices’ approach to neuropathologic assessment in developmental neurotoxicity testing – for today. Toxicol Pathol 34(3):296–313PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bolton SJ, Perry VH (1998) Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats. Exp Neurol 154(1):231–240.  https://doi.org/10.1006/exnr.1998.6927CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bondy SC, Campbell A (2005) Developmental neurotoxicology. J Neurosci Res 81(5):605–612.  https://doi.org/10.1002/jnr.20589CrossRefPubMedPubMedCentralGoogle Scholar
  21. Boucherat O, Morissette MC, Provencher S, Bonnet S, Maltais F (2016) Bridging lung development with chronic obstructive pulmonary disease. Relevance of developmental pathways in chronic obstructive pulmonary disease pathogenesis. Am J Respir Crit Care Med 193(4):362–375.  https://doi.org/10.1164/rccm.201508-1518PPCrossRefPubMedPubMedCentralGoogle Scholar
  22. Boyce RW, Varela A, Chouinard L, Bussiere JL, Chellman GJ, Ominsky MS, Pyrah IT (2014) Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period. Bone 64:314–325.  https://doi.org/10.1016/j.bone.2014.04.002CrossRefPubMedPubMedCentralGoogle Scholar
  23. Branes D, Altman J (1973) Effects of different schedules of early undernutrition on the preweaning growth of the rat cerebellum. Exp Neurol 38(3):406–419PubMedCrossRefPubMedCentralGoogle Scholar
  24. Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, Kelly PA, Ormandy CJ (1999) Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 210(1):96–106.  https://doi.org/10.1006/dbio.1999.9271CrossRefPubMedPubMedCentralGoogle Scholar
  25. Brown DL, Walling BE, Mattix ME (2016) Urinary system. In: Parker GA, Picut CA (eds) Atlas of histology of the juvenile rat. Elseveir, San Diego, pp 395–398CrossRefGoogle Scholar
  26. Bulger WH, Kupfer D (1983) Estrogenic action of DDT analogs. Am J Ind Med 4(1–2):163–173PubMedCrossRefPubMedCentralGoogle Scholar
  27. Burri PH (1997) Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald JA (ed) Lung growth and development. M. Decker, New York, pp 1–35Google Scholar
  28. Bussiere JL, Pyrah I, Boyce R, Branstetter D, Loomis M, Andrews-Cleavenger D, Farman C, Elliott G, Chellman G (2013) Reproductive toxicity of denosumab in cynomolgus monkeys. Reprod Toxicol 42:27–40.  https://doi.org/10.1016/j.reprotox.2013.07.018CrossRefPubMedPubMedCentralGoogle Scholar
  29. Capen CC (1997) Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol 25(1):39–48PubMedCrossRefPubMedCentralGoogle Scholar
  30. Carney EW, Zablotny CL, Marty MS, Crissman JW, Anderson P, Woolhiser M, Holsapple M (2004) The effects of feed restriction during in utero and postnatal development in rats. Toxicol Sci 82(1):237–249PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chakraborty PP, Biswas SN, Patra S, Santra G (2017) “Zebra stripe” sign and “bone in bone” sign in cyclical bisphosphonate therapy. J Clin Diagn Res 11(2):RJ01–RJ02.  https://doi.org/10.7860/JCDR/2017/24349.9177CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chamanza R, Marxfeld HA, Blanco AI, Naylor SW, Bradley AE (2010) Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. Toxicol Pathol 38(4):642–657PubMedCrossRefGoogle Scholar
  33. Chapman K, Chivers S, Gliddon D, Mitchell D, Robinson S, Sangster T, Sparrow S, Spooner N, Wilson A (2014) Overcoming the barriers to the uptake of nonclinical microsampling in regulatory safety studies. Drug Discov Today 19(5):528–532.  https://doi.org/10.1016/j.drudis.2014.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  34. Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65(1):56–79.  https://doi.org/10.1016/j.brainresrev.2010.06.002CrossRefPubMedPubMedCentralGoogle Scholar
  35. Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF, Shi W (2005) Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 288(4):L683–L691.  https://doi.org/10.1152/ajplung.00298.2004CrossRefPubMedPubMedCentralGoogle Scholar
  36. Choi K, Chang J, Lee MJ, Wang S, In K, Galano-Tan WC, Jun S, Cho K, Hwang YH, Kim SJ, Park W (2016) Reference values of hematology, biochemistry, and blood type in cynomolgus monkeys from cambodia origin. Lab Anim Res 32(1):46–55.  https://doi.org/10.5625/lar.2016.32.1.46CrossRefPubMedPubMedCentralGoogle Scholar
  37. Coder P, Groeber EA (2018) Quantitative methods for monitoring thyroid hormones in late-fetal and early-neonatal rat specimens. 37th Annual meeting of the Society of Toxicologic Pathology, Indianapolis, 16–21 June 2018Google Scholar
  38. Coe S, Vidal J, Nelson K (2017) Incidence and age association of increased stromal collagen of testes in cynomolgus monkeys. 37th Annual meeting of Society of Toxicologic Pathologists, MontrealGoogle Scholar
  39. Cohen JA, Stommel EW (2015) Demyelinating diseases of the peripheral nerves. In: Tubbs RS, Rizk E, Shoja M, Loukas M, Spinner RJ, Barabaro N (eds) Nerves and nerve injuries, vol 2. Elsevier, San Diego, pp 895–934CrossRefGoogle Scholar
  40. Comereski CR, Bregman CL, Buroker RA (1987) Testicular toxicity of N-methyltetrazolethiol cephalosporin analogs in the juvenile rat. Fundam Appl Toxicol 8(2):280–289PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cook CS (2013) Ocular embryology and congenital malformations. In: Gelatt KN, Gilger BC, Kern TJ (eds) Veterinary ophthalmology. Wiley, AmesGoogle Scholar
  42. Crabbs TA, Frame SR, Laast VA, Patrick DJ, Thomas J, Zimmerman B, Hardisty JF (2013) Occurrence of spontaneous amphophilic-vacuolar renal tubule tumors in sprague-dawley rats from subchronic toxicity studies. Toxicol Pathol 41(6):866–871.  https://doi.org/10.1177/0192623312467523CrossRefPubMedPubMedCentralGoogle Scholar
  43. Creasy D (2012) Reproduction of the rat, mouse, dog, non-human primate, and minipig. In: McInnes EF (ed) Background lesions in laboratory animals. A color atlas. Elseveir, New York, pp 109–111Google Scholar
  44. CVemireddi V, Creasy D (2017) Exacerbation of seminiferous tubule dilatation by fibrous hypoplasia in cynomolgus monkey testes. 37th Annual meeting of Society of Toxicologic Pathologists, MontrealGoogle Scholar
  45. Davis B, Fenton S (2013) Mammary gland. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Haschek and Rousseaux’s handbook of toxicologic pathology. Elsevier Inc./Academic, New YorkGoogle Scholar
  46. de Groot DM, Hartgring S, van de Horst L, Moerkens M, Otto M, Bos-Kuijpers MH, Kaufmann WS, Lammers JH, O’Callaghan JP, Waalkens-Berendsen ID, Pakkenberg B, Gundersen HG (2005) 2D and 3D assessment of neuropathology in rat brain after prenatal exposure to methylazoxymethanol, a model for developmental neurotoxicity. Reprod Toxicol 20(3):417–432PubMedCrossRefPubMedCentralGoogle Scholar
  47. De Schaepdrijver L, Rouan MC, Raoof A, Bailey GP, De Zwart L, Monbaliu J, Coogan TP, Lammens L, Coussement W (2008) Real life juvenile toxicity case studies: the good, the bad and the ugly. Reprod Toxicol 26(1):54–55.  https://doi.org/10.1016/j.reprotox.2008.04.002CrossRefPubMedPubMedCentralGoogle Scholar
  48. DeLahunta A, Glass E (2009) Visual system. In: DeLahunta A, Glass E (eds) Veterinary neuroanatomy and clinical neurology, 3rd edn. Saunders Elsevier, St. Louis, pp 389–432CrossRefGoogle Scholar
  49. Deveci E, Inaloz HS, Inaloz SS, Unal B (2000) Effects of clomiphene citrate on neonatal rat skin. Clin Exp Obstet Gynecol 27(3–4):238–240PubMedPubMedCentralGoogle Scholar
  50. Dietert RR (2006) Developmental immunotoxicity testing and protection of children’s health. PLoS Med 3(8):e296PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dietert RR, Etzel RA, Chen D, Halonen M, Holladay SD, Jarabek AM, Landreth K, Peden DB, Pinkerton K, Smialowicz RJ, Zoetis T (2000) Workshop to identify critical windows of exposure for children’s health: immune and respiratory systems work group summary. Environ Health Perspect 108(Suppl 3):483–490PubMedPubMedCentralCrossRefGoogle Scholar
  52. Downes N (2012) Juvenile toxicity: are we asking the right questions? Toxicol Pathol 40(5):830–837PubMedCrossRefPubMedCentralGoogle Scholar
  53. Downes N, Mullins P (2014) The development of myelin in the brain of the juvenile rat. Toxicol Pathol 42(5):913–922PubMedCrossRefPubMedCentralGoogle Scholar
  54. EDSP test guidelines OPPTS 890.1450 Pubertal development and thyroid function in intact juvenile/peripubertal female rats (2009) U. S. Environmental Protection Agency. http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPPT-2009-0576-0009.
  55. EMA (2008) Guideline on the need for non-clinical testing in juvenile animals of pharmaceuticals for paediatric indications. European Medicines Agency, London, UKGoogle Scholar
  56. EPA (1998) Health Effects Test guidelines: OPPTS 870.6300. Developmental Neurotoxicity Study Washington, D.C.Google Scholar
  57. EPA (2005) Guidance for thyroid assays in pregnant animals, fetuses and postnatal animals, and adult animals. Office of Pesticide Programs, Heath Effects Division Washington, D.C.Google Scholar
  58. EPA (2011) Toxicological review of trichloroethylene (CASRN 79-01-6) in support of summary information on the integrated risk information system. Washington, D.C.Google Scholar
  59. Fabian RJ, Bond JM, Drobeck HP (1967) Induced corneal opacities in the rat. Br J Ophthalmol 51(2):124–129PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fan C, Georgiou KR, King TJ, Xian CJ (2011) Methotrexate toxicity in growing long bones of young rats: a model for studying cancer chemotherapy-induced bone growth defects in children. J Biomed Biotechnol 2011:903097.  https://doi.org/10.1155/2011/903097CrossRefPubMedPubMedCentralGoogle Scholar
  61. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, Boyle WJ, Khokha R, Penninger JM (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103(1):41–50PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fattah S, Augustijns P, Annaert P (2015) Age-dependent activity of the uptake transporters Ntcp and Oatp1b2 in male rat hepatocytes: from birth till adulthood. Drug Metab Dispos 43(1):1–8.  https://doi.org/10.1124/dmd.114.059212CrossRefPubMedPubMedCentralGoogle Scholar
  63. FDA (2006) Guidance for industry: nonclinical safety evaluation of pediatric drug products. U.S. Food and Drug Administration, RockvilleGoogle Scholar
  64. Fenton SE (2006) Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology 147(6 Suppl):S18–S24.  https://doi.org/10.1210/en.2005-1131CrossRefPubMedPubMedCentralGoogle Scholar
  65. Fenton SE (2009) The mammary gland: a tissue sensitive to environmental exposures. Rev Environ Health 24(4):319–325PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT (2011) Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 3(1):53–72.  https://doi.org/10.3390/pharmaceutics3010053CrossRefPubMedPubMedCentralGoogle Scholar
  67. Filgo AJ, Foley JF, Puvanesarajah S, Borde AR, Midkiff BR, Reed CE, Chappell VA, Alexander LB, Borde PR, Troester MA, Bouknight SA, Fenton SE (2016) Mammary gland evaluation in juvenile toxicity studies: temporal developmental patterns in the male and female Harlan Sprague-Dawley rat. Toxicol Pathol 44(7):1034–1058.  https://doi.org/10.1177/0192623316663864CrossRefPubMedPubMedCentralGoogle Scholar
  68. Follett PL, Rosenberg PA, Volpe JJ, Jensen FE (2000) NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 20(24):9235–9241PubMedPubMedCentralCrossRefGoogle Scholar
  69. Forster C, Kociok K, Shakibaei M, Merker HJ, Vormann J, Gunther T, Stahlmann R (1996) Integrins on joint cartilage chondrocytes and alterations by ofloxacin or magnesium deficiency in immature rats. Arch Toxicol 70(5):261–270PubMedCrossRefPubMedCentralGoogle Scholar
  70. Fossey S, Vahle J, Long P, Schelling S, Ernst H, Boyce RW, Jolette J, Bolon B, Bendele A, Rinke M, Healy L, High W, Roth DR, Boyle M, Leininger J (2016) Nonproliferative and proliferative lesions of the rat and mouse skeletal tissues (bones, joints, and teeth). J Toxicol Pathol 29(3 Suppl):49S–103S.  https://doi.org/10.1293/tox.29.3S-2CrossRefPubMedPubMedCentralGoogle Scholar
  71. Fouser L, Avner ED (1993) Normal and abnormal nephrogenesis. Am J Kidney Dis 21(1):64–70PubMedCrossRefPubMedCentralGoogle Scholar
  72. Frazier KS (2017) Species differences in renal development and associated developmental nephrotoxicity. Birth Defects Res 109(16):1243–1256.  https://doi.org/10.1002/bdr2.1088CrossRefPubMedPubMedCentralGoogle Scholar
  73. Frazier KS, Seely JC, Hard GC, Betton G, Burnett R, Nakatsuji S, Nishikawa A, Durchfeld-Meyer B, Bube A (2012) Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol 40(4 Suppl):14S–86SPubMedCrossRefPubMedCentralGoogle Scholar
  74. Gao B, St Pierre MV, Stieger B, Meier PJ (2004) Differential expression of bile salt and organic anion transporters in developing rat liver. J Hepatol 41(2):201–208.  https://doi.org/10.1016/j.jhep.2004.04.029CrossRefPubMedPubMedCentralGoogle Scholar
  75. Garman RH, Li AA, Kaufmann W, Auer RN, Bolon B (2016) Recommended methods for brain processing and quantitative analysis in rodent developmental neurotoxicity studies. Toxicol Pathol 44(1):14–42.  https://doi.org/10.1177/0192623315596858CrossRefPubMedPubMedCentralGoogle Scholar
  76. Gaytan F, Lucena MC, Munoz E, Paniagua R (1986) Morphometric aspects of rat testis development. J Anat 145:155–159PubMedPubMedCentralGoogle Scholar
  77. Goedken MJ, Kerlin RL, Morton D (2008) Spontaneous and age-related testicular findings in beagle dogs. Toxicol Pathol 36(3):465–471PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gold E, Gordis L, Tonascia J, Szklo M (1978) Increased risk of brain tumors in children exposed to barbiturates. J Natl Cancer Inst 61(4):1031–1034PubMedPubMedCentralGoogle Scholar
  79. Gomez RA, Sequeira Lopez ML, Fernandez L, Chernavvsky DR, Norwood VF (1999) The maturing kidney: development and susceptibility. Ren Fail 21(3–4):283–291PubMedCrossRefPubMedCentralGoogle Scholar
  80. Gough A, Barsoum NJ, Mitchell L, McGuire EJ, de la Iglesia FA (1979) Juvenile canine drug-induced arthropathy: clinicopathological studies on articular lesions caused by oxolinic and pipemidic acids. Toxicol Appl Pharmacol 51(1):177–187PubMedCrossRefPubMedCentralGoogle Scholar
  81. Gough A, Johnson R, Campbell E, Hall L, Tylor J, Carpenter A, Black W, Basrur PK, Baragi VM, Sigler R, Metz A (1996) Quinolone arthropathy in immature rabbits treated with the fluoroquinolone, PD 117596. Exp Toxicol Pathol 48(4):225–232.  https://doi.org/10.1016/S0940-2993(96)80003-0CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gray LE Jr, Furr J, Tatum-Gibbs KR, Lambright C, Sampson H, Hannas BR, Wilson VS, Hotchkiss A, Foster PM (2016) Establishing the “biological relevance” of dipentyl phthalate reductions in fetal rat testosterone production and plasma and testis testosterone levels. Toxicol Sci 149(1):178–191.  https://doi.org/10.1093/toxsci/kfv224CrossRefPubMedPubMedCentralGoogle Scholar
  83. Greeley GH Jr, Kizer JS (1980) The effects of chronic methylphenidate treatment on growth and endocrine function in the developing rat. J Pharmacol Exp Ther 215(3):545–551PubMedPubMedCentralGoogle Scholar
  84. Grier RL, Wise GE (1998) Inhibition of tooth eruption in the rat by a bisphosphonate. J Dent Res 77(1):8–15.  https://doi.org/10.1177/00220345980770011201CrossRefPubMedPubMedCentralGoogle Scholar
  85. Groeber EA, Bell SR, Lucarell J, Quang C, Moran L, Badamy M, Coder P (2018) Development of a sensitive LC/MS assay for measuring thyroid hormones T3 and T4 in late-fetal and neonatal rat samples. 37th Annual meeting of Society of Toxicologic Pathology, Indianapolis, 16–21 June 2018Google Scholar
  86. Groseclose MR, Laffan SB, Frazier KS, Hughes-Earle A, Castellino S (2015) Imaging MS in toxicology: an investigation of juvenile rat nephrotoxicity associated with dabrafenib administration. J Am Soc Mass Spectrom 26(6):887–898.  https://doi.org/10.1007/s13361-015-1103-4CrossRefPubMedPubMedCentralGoogle Scholar
  87. Guillet R, Wyatt J, Baggs RB, Kellogg CK (1988) Anesthetic-induced corneal lesions in developmentally sensitive rats. Invest Ophthalmol Vis Sci 29(6):949–954PubMedPubMedCentralGoogle Scholar
  88. Hahnel H, Modis L, Levai G (1978) Histological and histochemical investigations of the epiphyseal cartilage in rats after administration of heparin, coumarin as well as coumarin and diphosphonate (EHDP). Exp Pathol (Jena) 15(4):196–207Google Scholar
  89. Heinrichs C, Colli M, Yanovski JA, Laue L, Gerstl NA, Kramer AD, Uyeda JA, Baron J (1997) Effects of fasting on the growth plate: systemic and local mechanisms. Endocrinology 138(12):5359–5365.  https://doi.org/10.1210/endo.138.12.5603CrossRefPubMedPubMedCentralGoogle Scholar
  90. Henning SJ (1981) Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol 241(3):G199–G214PubMedPubMedCentralGoogle Scholar
  91. Holladay SD, Smialowicz RJ (2000) Development of the murine and human immune system: differential effects of immunotoxicants depend on time of exposure. Environ Health Perspect 108(Suppl 3):463–473PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hoover DM, Buening MK, Tamura RN, Steinberger E (1989) Effects of cefamandole on spermatogenic development of young CD rats. Fundam Appl Toxicol 13(4):737–746PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hurtt ME, Daston G, Davis-Bruno K, Feuston M, Silva Lima B, Makris S, McNerney ME, Sandler JD, Whitby K, Wier P, Cappon GD (2004) Juvenile animal studies: testing strategies and design. Birth Defects Res B Dev Reprod Toxicol 71(4):281–288.  https://doi.org/10.1002/bdrb.20017CrossRefPubMedPubMedCentralGoogle Scholar
  94. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283(5398):70–74PubMedCrossRefPubMedCentralGoogle Scholar
  95. Inaloz HS, Deveci E, Inaloz SS, Unal B, Eralp A, Can I (2002) The effects of tamoxifen on rat skin. Eur J Gynaecol Oncol 23(1):50–52PubMedPubMedCentralGoogle Scholar
  96. Ingulli EG, Mak RH (2014) Growth in children with chronic kidney disease: role of nutrition, growth hormone, dialysis, and steroids. Curr Opin Pediatr 26(2):187–192.  https://doi.org/10.1097/MOP.0000000000000070CrossRefPubMedPubMedCentralGoogle Scholar
  97. James RW, Crook D, Heywood R (1979) Canine pituitary-testicular function in relation to toxicity testing. Toxicology 13(3):237–247PubMedCrossRefPubMedCentralGoogle Scholar
  98. Johri A, Dhawan A, Singh RL, Parmar D (2008) Persistence in alterations in the ontogeny of cerebral and hepatic cytochrome P450s following prenatal exposure to low doses of lindane. Toxicol Sci 101(2):331–340.  https://doi.org/10.1093/toxsci/kfm269CrossRefPubMedPubMedCentralGoogle Scholar
  99. Jonsson O, Palma Villar R, Nilsson LB, Norsten-Hoog C, Brogren J, Eriksson M, Konigsson K, Samuelsson A (2012) Capillary microsampling of 25 microl blood for the determination of toxicokinetic parameters in regulatory studies in animals. Bioanalysis 4(6):661–674.  https://doi.org/10.4155/bio.12.25CrossRefPubMedPubMedCentralGoogle Scholar
  100. Karen T, Schlager GW, Bendix I, Sifringer M, Herrmann R, Pantazis C, Enot D, Keller M, Kerner T, Felderhoff-Mueser U (2013) Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome. PLoS One 8(5):e64480.  https://doi.org/10.1371/journal.pone.0064480CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kato M, Onodera T (1988) Morphological investigation of osteochondrosis induced by ofloxacin in rats. Fundam Appl Toxicol 11(1):120–131PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kato M, Takada S, Kashida Y, Nomura M (1995) Histological examination on Achilles tendon lesions induced by quinolone antibacterial agents in juvenile rats. Toxicol Pathol 23(3):385–392PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Groters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, Sills R (2012) Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 40(4 Suppl):87S–157SPubMedCrossRefPubMedCentralGoogle Scholar
  104. Keane KA, Parker GA, Regan KS, Picut C, Dixon D, Creasy D, Giri D, Hukkanen RR (2015) Scientific and Regulatory Policy Committee (SRPC) Points to Consider: histopathology evaluation of the pubertal development and thyroid function assay (OPPTS 890.1450, OPPTS 890.1500) in rats to screen for endocrine disruptors. Toxicol Pathol 43(8):1047–1063.  https://doi.org/10.1177/0192623315579943CrossRefPubMedPubMedCentralGoogle Scholar
  105. Kerlin R, Bolon B, Burkhardt J, Francke S, Greaves P, Meador V, Popp J (2016) Scientific and Regulatory Policy Committee: recommended (“best”) practices for determining, communicating, and using adverse effect data from nonclinical studies. Toxicol Pathol 44(2):147–162.  https://doi.org/10.1177/0192623315623265CrossRefPubMedPubMedCentralGoogle Scholar
  106. Kim IS, Ariyaratne HB, Chamindrani Mendis-Handagama SM (2001) Effects of continuous and intermittent exposure of lactating mothers to aroclor 1242 on testicular steroidogenic function in the adult male offspring. Tissue Cell 33(2):169–177PubMedCrossRefPubMedCentralGoogle Scholar
  107. Kortenkamp A, Evans R, Martin O, McKinlay R, Orton F, Frosivatz E (2012) State of the art assessment of endocrine disrupters. Final report. Project contract number 070307/2009/550687/SER/D3Google Scholar
  108. Kumar A, Beazley S (2017) Common spontaneous histopathologic findings in juvenile domestic pigs used in nonclinical research studies. 26th Annual meeting of the Society of Toxicologic Pathologist, MontrealGoogle Scholar
  109. Landreth KS (2002) Critical windows in development of the rodent immune system. Hum Exp Toxicol 21(9–10):493–498PubMedCrossRefPubMedCentralGoogle Scholar
  110. Landrigan PJ, Kimmel CA, Correa A, Eskenazi B (2004) Children’s health and the environment: public health issues and challenges for risk assessment. Environ Health Perspect 112(2):257–265PubMedPubMedCentralCrossRefGoogle Scholar
  111. Liu Y, Silverstein FS, Skoff R, Barks JD (2002) Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res 51(1):25–33.  https://doi.org/10.1203/00006450-200,201,000-00007CrossRefPubMedPubMedCentralGoogle Scholar
  112. Lucas JN, Rudmann DG, Credille KM, Irizarry AR, Peter A, Snyder PW (2007) The rat mammary gland: morphologic changes as an indicator of systemic hormonal perturbations induced by xenobiotics. Toxicol Pathol 35(2):199–207PubMedCrossRefPubMedCentralGoogle Scholar
  113. Macon MB, Fenton SE (2013) Endocrine disruptors and the breast: early life effects and later life disease. J Mammary Gland Biol Neoplasia 18(1):43–61.  https://doi.org/10.1007/s10911-013-9275-7CrossRefPubMedPubMedCentralGoogle Scholar
  114. Mandrup KR, Hass U, Christiansen S, Boberg J (2012) Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats. Int J Androl 35(3):385–396.  https://doi.org/10.1111/j.1365-2605.2012.01258.xCrossRefPubMedPubMedCentralGoogle Scholar
  115. Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65(4):1215–1223PubMedCrossRefPubMedCentralGoogle Scholar
  116. Masso-Welch PA, Darcy KM, Stangle-Castor NC, Ip MM (2000) A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia 5(2):165–185PubMedCrossRefPubMedCentralGoogle Scholar
  117. McCausland JE, Ryan GB, Alcorn D (1996) Angiotensin converting enzyme inhibition in the postnatal rat results in decreased cell proliferation in the renal outer medulla. Clin Exp Pharmacol Physiol 23(6–7):552–554PubMedCrossRefPubMedCentralGoogle Scholar
  118. McHugh NA, Vercesi HM, Egan RW, Hey JA (2003) In vivo rat assay: bone remodeling and steroid effects on juvenile bone by pQCT quantification in 7 days. Am J Physiol Endocrinol Metab 284(1):E70–E75.  https://doi.org/10.1152/ajpendo.00102.2002CrossRefPubMedPubMedCentralGoogle Scholar
  119. McLeod F, Marzo A, Podpolny M, Galli S, Salinas P (2017) Evaluation of synapse density in hippocampal rodent brain slices. J Vis Exp 128.  https://doi.org/10.3791/56153
  120. Mendis-Handagama SM, Ariyaratne HB (2004) Effects of thyroid hormones on Leydig cells in the postnatal testis. Histol Histopathol 19(3):985–997PubMedPubMedCentralGoogle Scholar
  121. Miyawaki T, Moriya N, Nagaoki T, Taniguchi N (1981) Maturation of B-cell differentiation ability and T-cell regulatory function in infancy and childhood. Immunol Rev 57:61–87PubMedCrossRefPubMedCentralGoogle Scholar
  122. Muller-Rover S, Handjiski B, van der Veen C, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1):3–15.  https://doi.org/10.1046/j.0022-202x.2001.01377.xCrossRefPubMedPubMedCentralGoogle Scholar
  123. Murphy RL, Sommadossi JP, Lamson M, Hall DB, Myers M, Dusek A (1999) Antiviral effect and pharmacokinetic interaction between nevirapine and indinavir in persons infected with human immunodeficiency virus type 1. J Infect Dis 179(5):1116–1123.  https://doi.org/10.1086/314703CrossRefPubMedPubMedCentralGoogle Scholar
  124. Niu X, Beekhuijzen M, Schoonen W, Emmen H, Wenker M (2016) Effects of capillary microsampling on toxicological endpoints in juvenile rats. Toxicol Sci 154(1):69–77.  https://doi.org/10.1093/toxsci/kfw146CrossRefPubMedPubMedCentralGoogle Scholar
  125. NTP (2011) Specifications for the conduct of studies to evaluate the reproductive and developmental toxicity of chemical, biological and physical agents in laboratory animals for the National Toxicology Program (NTP). National Institute of Environmental Health Sciences, RTP, N.C.Google Scholar
  126. Nurmio M, Toppari J, Zaman F, Andersson AM, Paranko J, Soder O, Jahnukainen K (2007) Inhibition of tyrosine kinases PDGFR and C-Kit by imatinib mesylate interferes with postnatal testicular development in the rat. Int J Androl 30(4):366–376.; ; discussion 376.  https://doi.org/10.1111/j.1365-2605.2007.00755.xCrossRefPubMedPubMedCentralGoogle Scholar
  127. OECD (2007) Test No. 426: Developmental Neurotoxicity Study. OECD Publishing, ParisGoogle Scholar
  128. OECD (2011) Test No. 443: Extended One-Generation Reproductive Toxicity Study. OECD Publishing, ParisGoogle Scholar
  129. OECD (2013) Guidance Document supporting Test Guideline 443 on the Extended-One-Generation Reproductive Toxicity Test, vol GD 151. OECD Publishing, ParisGoogle Scholar
  130. OECD (2016) Test No. 421: Reproduction/Developmental Toxicity Screening Test. OECD Publishers, ParisGoogle Scholar
  131. OECD (2018) Test No. 443: Extended One-Generation Reproductive Toxicity Study. OECD Publishing, ParisGoogle Scholar
  132. Okayama Y, Wakui S, Wempe MF, Sugiyama M, Motohashi M, Mutou T, Takahashi H, Kume E, Ikegami H (2017) In utero exposure to di(n-butyl)phthalate induces morphological and biochemical changes in rats postpuberty. Toxicol Pathol 45(4):526–535.  https://doi.org/10.1177/0192623317709091CrossRefPubMedPubMedCentralGoogle Scholar
  133. Olney JW, Farber NB, Wozniak DF, Jevtovic-Todorovic V, Ikonomidou C (2000) Environmental agents that have the potential to trigger massive apoptotic neurodegeneration in the developing brain. Environ Health Perspect 108(Suppl 3):383–388PubMedPubMedCentralCrossRefGoogle Scholar
  134. Osborne G, Rudel R, Schwarzman M (2015) Evaluating chemical effects on mammary gland development: a critical need in disease prevention. Reprod Toxicol 54:148–155.  https://doi.org/10.1016/j.reprotox.2014.07.077CrossRefPubMedPubMedCentralGoogle Scholar
  135. Oxenhandler RW, Adelstein EH, Haigh JP, Hook RR Jr, Clark WH Jr (1979) Malignant melanoma in the Sinclair miniature swine: an autopsy study of 60 cases. Am J Pathol 96(3):707–720PubMedPubMedCentralGoogle Scholar
  136. Parker GA (2016a) Introduction. In: Parker GAaP CA (ed) Atlas of histology of the juvenile rat. Academic, San Diego, pp xi–xiiiGoogle Scholar
  137. Parker GA (2016b) Development of immune system organs. In: Parker GA (ed) Immunopathology in toxicology and drug development. Springer, New York, NYGoogle Scholar
  138. Parker GA, Gibson WB (1995) Liver lesions in rats associated with wrapping of the torso. Toxicol Pathol 23(4):507–512PubMedCrossRefPubMedCentralGoogle Scholar
  139. Parker GA, Papenfuss T (2016) Immune system. In: Parker GA, Picut C (eds) Atlas of histology of the juvenile rat. Elsevier, San Diego, CaliforniaGoogle Scholar
  140. Pathak S, Multani AS, McConkey DJ, Imam AS, Amoss MS Jr (2000) Spontaneous regression of cutaneous melanoma in sinclair swine is associated with defective telomerase activity and extensive telomere erosion. Int J Oncol 17(6):1219–1224PubMedPubMedCentralGoogle Scholar
  141. Patyna S, Arrigoni C, Terron A, Kim TW, Heward JK, Vonderfecht SL, Denlinger R, Turnquist SE, Evering W (2008) Nonclinical safety evaluation of sunitinib: a potent inhibitor of VEGF, PDGF, KIT, FLT3, and RET receptors. Toxicol Pathol 36(7):905–916PubMedCrossRefPubMedCentralGoogle Scholar
  142. Paxinos G, Watson C (1986) The Rat Brain in stereotaxic coordinates, 2nd edn. Academic, OrlandoGoogle Scholar
  143. Penna A, Buchanan N (1991) Paracetamol poisoning in children and hepatotoxicity. Br J Clin Pharmacol 32(2):143–149PubMedPubMedCentralCrossRefGoogle Scholar
  144. Petersen M, Thorikay M, Deckers M, van Dinther M, Grygielko ET, Gellibert F, de Gouville AC, Huet S, ten Dijke P, Laping NJ (2008) Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int 73(6):705–715.  https://doi.org/10.1038/sj.ki.5002717CrossRefPubMedPubMedCentralGoogle Scholar
  145. Pfister K, Mazur D, Vormann J, Stahlmann R (2007) Diminished ciprofloxacin-induced chondrotoxicity by supplementation with magnesium and vitamin E in immature rats. Antimicrob Agents Chemother 51(3):1022–1027.  https://doi.org/10.1128/AAC.01175-06CrossRefPubMedPubMedCentralGoogle Scholar
  146. Picut CA, Coleman GD (2016) Gastrointestinal tract. In: Parker GA, Picut CA (eds) Atlas of histology of the juvenile rat. Elseveir, San Diego, pp 127–131CrossRefGoogle Scholar
  147. Picut CA, Remick AK (2017) Impact of age on the male reproductive system from the pathologist’s perspective. Toxicol Pathol 45(1):195–205.  https://doi.org/10.1177/0192623316672744CrossRefPubMedPubMedCentralGoogle Scholar
  148. Picut CA, Remick AK, de Rijk EP, Simons ML, Stump DG, Parker GA (2015a) Postnatal development of the testis in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol Pathol 43(3):326–342.  https://doi.org/10.1177/0192623314547279CrossRefPubMedPubMedCentralGoogle Scholar
  149. Picut CA, Dixon D, Simons ML, Stump DG, Parker GA, Remick AK (2015b) Postnatal ovary development in the rat: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicol Pathol 43(3):343–353.  https://doi.org/10.1177/0192623314544380CrossRefPubMedPubMedCentralGoogle Scholar
  150. Picut CA, Brown DL, Remick AK (2016a) Nervous system. In: Parker GA, Picut CA (eds) Atlas of histology of the juvenile rat. Elsevier, San Diego, pp 45–48CrossRefGoogle Scholar
  151. Picut CA, Parker EF, Swanson C (2016b) Prenatal and early postnatal development of the thyroid gland in the rat: histologic and morphometric endpoints. 37th Annual meeting of the American College of Toxicology, BaltimoreGoogle Scholar
  152. Picut CA, Ziejewski MK, Stanislaus D (2017a) Comparative aspects of pre- and postnatal development of the male reproductive system. Birth Defects Res.  https://doi.org/10.1002/bdr2.1133
  153. Picut CA, Brown D, CSwanson C, Greeley M, Kirpkpatrick D, Palmer JL, Nussbaum J (2017b) Animal model of bronchopulmonary dysplasia in juvenile rats. Annual meeting of Society of Toxicologic Pathology, MontrealGoogle Scholar
  154. Picut CA, Parker EF, White-Hunt S, Szabo K, Keen J, Coder P, McElroy P (2018) Renal lesions associated with soy-deficient diet in rats. Paper presented at the 37th annual meeting of Society of Toxicologic Pathologists, Indianapolis, June 16–21, 2018Google Scholar
  155. Porter RM (2003) Mouse models for human hair loss disorders. J Anat 202(1):125–131PubMedPubMedCentralCrossRefGoogle Scholar
  156. Poulton AS, Bui Q, Melzer E, Evans R (2016) Stimulant medication effects on growth and bone age in children with attention-deficit/hyperactivity disorder: a prospective cohort study. Int Clin Psychopharmacol 31(2):93–99.  https://doi.org/10.1097/YIC.0000000000000109CrossRefPubMedPubMedCentralGoogle Scholar
  157. Price PA, Williamson MK, Haba T, Dell RB, Jee WS (1982) Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. Proc Natl Acad Sci U S A 79(24):7734–7738PubMedPubMedCentralCrossRefGoogle Scholar
  158. Radde IC (1985) Mechanisms of drug absorption and their development. In: Macleod SMaR IC (ed) Textbook of pediatric clinical pharmacology. PSG Publishing Co., Littleton, pp 17–43Google Scholar
  159. Raghavan S, Bauer C, Mundschau G, Li Q, Fuchs E (2000) Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol 150(5):1149–1160PubMedPubMedCentralCrossRefGoogle Scholar
  160. Rasmussen AD, Richmond E, Wegener KM, Downes N, Mullins P (2015) Vigabatrin-induced CNS changes in juvenile rats: Induction, progression and recovery of myelin-related changes. Neurotoxicology 46:137–144.  https://doi.org/10.1016/j.neuro.2014.12.008CrossRefPubMedGoogle Scholar
  161. Reeves PG, Rossow KL, Lindlauf J (1993) Development and testing of the AIN-93 purified diets for rodents: results on growth, kidney calcification and bone mineralization in rats and mice. J Nutr 123(11):1923–1931.  https://doi.org/10.1093/jn/123.11.1923CrossRefPubMedPubMedCentralGoogle Scholar
  162. Rehm S (2000) Spontaneous testicular lesions in purpose-bred beagle dogs. Toxicol Pathol 28(6):782–787PubMedCrossRefPubMedCentralGoogle Scholar
  163. Rehm S, White TE, Zahalka EA, Stanislaus DJ, Boyce RW, Wier PJ (2008) Effects of food restriction on testis and accessory sex glands in maturing rats. Toxicol Pathol 36(5):687–694PubMedCrossRefPubMedCentralGoogle Scholar
  164. Reich B, Hoeber D, Bendix I, Felderhoff-Mueser U (2016) Hyperoxia and the immature brain. Dev Neurosci 38(5):311–330.  https://doi.org/10.1159/000454917CrossRefPubMedPubMedCentralGoogle Scholar
  165. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533PubMedPubMedCentralCrossRefGoogle Scholar
  166. Richter-Reichhelm HB, Althoff J, Schulte A, Ewe S, Gundert-Remy U (2002) Workshop report. Children as a special subpopulation: focus on immunotoxicity. Federal Institute for Health Protection of Consumers and Veterinary Medicine (BgVV), 15–16 November 2001, Berlin, Germany. Arch Toxicol 76(7):377–382PubMedCrossRefPubMedCentralGoogle Scholar
  167. Robinson PB, Harvey W, Belal MS (1988) Inhibition of cartilage growth by the anticonvulsant drugs diphenylhydantoin and sodium valproate. Br J Exp Pathol 69(1):17–22PubMedPubMedCentralGoogle Scholar
  168. Rodier PM (1995) Developing brain as a target of toxicity. Environ Health Perspect 103(Suppl 6):73–76PubMedPubMedCentralCrossRefGoogle Scholar
  169. Roerig DL, Hasegawa AT, Harris GJ, Lynch KL, Wang RI (1980) Occurrence of corneal opacities in rats after acute administration of l-alpha-acetylmethadol. Toxicol Appl Pharmacol 56(2):155–163PubMedCrossRefPubMedCentralGoogle Scholar
  170. Rudel RA, Fenton SE, Ackerman JM, Euling SY, Makris SL (2011) Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations. Environ Health Perspect 119(8):1053–1061.  https://doi.org/10.1289/ehp.1002864CrossRefPubMedPubMedCentralGoogle Scholar
  171. Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104(9):938–967PubMedPubMedCentralCrossRefGoogle Scholar
  172. Sampson HW, Spears H (1999) Osteopenia due to chronic alcohol consumption by young actively growing rats is not completely reversible. Alcohol Clin Exp Res 23(2):324–327PubMedCrossRefPubMedCentralGoogle Scholar
  173. Sampson HW, Gallager S, Lange J, Chondra W, Hogan HA (1999) Binge drinking and bone metabolism in a young actively growing rat model. Alcohol Clin Exp Res 23(7):1228–1231PubMedCrossRefPubMedCentralGoogle Scholar
  174. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106-107:1–16.  https://doi.org/10.1016/j.pneurobio.2013.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  175. Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, Hatfield DL (2010) Selenoproteins are essential for proper keratinocyte function and skin development. PLoS One 5(8):e12249.  https://doi.org/10.1371/journal.pone.0012249CrossRefPubMedPubMedCentralGoogle Scholar
  176. Sharma AK, Morrison JP, Rao DB, Pardo ID, Garman RH, Bolon B (2016) Toxicologic pathology analysis for translational neuroscience: improving human risk assessment using optimized animal data. Int J Toxicol 35(4):410–419.  https://doi.org/10.1177/1091581816636372CrossRefPubMedPubMedCentralGoogle Scholar
  177. Sharpe RM, Rivas A, Walker M, McKinnell C, Fisher JS (2003) Effect of neonatal treatment of rats with potent or weak (environmental) oestrogens, or with a GnRH antagonist, on Leydig cell development and function through puberty into adulthood. Int J Androl 26(1):26–36PubMedCrossRefPubMedCentralGoogle Scholar
  178. Shigami N, Ishimouchi K, Hashimoto A, Katagi J (2016) Focal chondrocyte dysplasia in the femoral metaphysis in young sprague-dawley rats.. 36th Annual meeting of the Society of Toxicologic Pathologists, San DiegoGoogle Scholar
  179. Shimizu T, Fujita S, Izumi K, Koja T, Ohba N, Fukuda T (1984) Corneal lesions induced by the systemic administration of capsaicin in neonatal mice and rats. Naunyn Schmiedebergs Arch Pharmacol 326(4):347–351PubMedCrossRefPubMedCentralGoogle Scholar
  180. Sidhu RS, Del Bigio MR, Tuor UI, Seshia SS (1997) Low-dose vigabatrin (gamma-vinyl GABA)-induced damage in the immature rat brain. Exp Neurol 144(2):400–405.  https://doi.org/10.1006/exnr.1997.6412CrossRefPubMedPubMedCentralGoogle Scholar
  181. Sizonenko SV, Sirimanne E, Mayall Y, Gluckman PD, Inder T, Williams C (2003) Selective cortical alteration after hypoxic-ischemic injury in the very immature rat brain. Pediatr Res 54(2):263–269.  https://doi.org/10.1203/01.PDR.0000072517.01207.87CrossRefPubMedPubMedCentralGoogle Scholar
  182. Skoff RP, Bessert DA, Barks JD, Song D, Cerghet M, Silverstein FS (2001) Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Int J Dev Neurosci 19(2):197–208PubMedCrossRefPubMedCentralGoogle Scholar
  183. Smith EJ, Little DG, Briody JN, McEvoy A, Smith NC, Eisman JA, Gardiner EM (2005) Transient disturbance in physeal morphology is associated with long-term effects of nitrogen-containing bisphosphonates in growing rabbits. J Bone Miner Res 20(10):1731–1741.  https://doi.org/10.1359/JBMR.050604CrossRefPubMedPubMedCentralGoogle Scholar
  184. Snodgrass WR (1992) Physiological and biochemical differences between children and adults as determinant of toxic response to environmental pollutants. In: Guzelian PS, Henry CJ, Olin SS (eds) Similarities and differences between children and adults: implications for risk assessment. ILSI Press, Washington, D.C., pp 35–42Google Scholar
  185. Stahlmann R, Chahoud I, Thiel R, Klug S, Forster C (1997) The developmental toxicity of three antimicrobial agents observed only in nonroutine animal studies. Reprod Toxicol 11(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  186. Stanko JP, Kissling GE, Chappell VA, Fenton SE (2016) Differences in the rate of in situ mammary gland development and other developmental endpoints in three strains of female rat commonly used in mammary carcinogenesis studies: implications for timing of carcinogen exposure. Toxicol Pathol 44(7):1021–1033.  https://doi.org/10.1177/0192623316655222CrossRefPubMedPubMedCentralGoogle Scholar
  187. Staska LMaP JT (2016) Skin and mammary gland. In: Parker GAaP CA (ed) Atlas of histology of the juvenile rat. Elsevier, San Diego, pp 1–5Google Scholar
  188. Stump DG, Nemec MD, Parker GA, Coder PS, Sloter ED, Varsho BJ (2012) Significance, reliability, and interpretation of developmental and reproductive toxicity study findings. In: Hood RD (ed) Developmental and reproductive toxicology: a practical approach, 3rd edn. Informa Healthcare, New York, pp 229–301Google Scholar
  189. Sundberg JP, Peters EM, Paus R (2005) Analysis of hair follicles in mutant laboratory mice. J Investig Dermatol Symp Proc 10(3):264–270.  https://doi.org/10.1111/j.1087-0024.2005.10126.xCrossRefPubMedPubMedCentralGoogle Scholar
  190. Sundberg JP, Silva KA, King LE Jr, Pratt CH (2016) Skin diseases in laboratory mice: approaches to drug target identification and efficacy screening. Methods Mol Biol 1438:199–224.  https://doi.org/10.1007/978-1-4939-3661-8_12CrossRefPubMedPubMedCentralGoogle Scholar
  191. Svensson O, Hjerpe A, Reinholt FP, Engfeldt B (1985) The effect of manganese ingestion, phosphate depletion, and starvation on the morphology of the epiphyseal growth plate. A stereologic study. Clin Orthop Relat Res 197:286–294Google Scholar
  192. Swierkot J, Gruszecka K, Matuszewska A, Wiland P (2015) Assessment of the effect of methotrexate therapy on bone metabolism in patients with rheumatoid arthritis. Arch Immunol Ther Exp (Warsz) 63(5):397–404.  https://doi.org/10.1007/s00005-015-0338-xCrossRefGoogle Scholar
  193. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638–649.  https://doi.org/10.1038/nrg1122CrossRefPubMedPubMedCentralGoogle Scholar
  194. Teitelbaum SL, Belpoggi F, Reinlib L (2015) Advancing research on endocrine disrupting chemicals in breast cancer: expert panel recommendations. Reprod Toxicol 54:141–147.  https://doi.org/10.1016/j.reprotox.2014.12.015CrossRefPubMedPubMedCentralGoogle Scholar
  195. Tendron-Franzin A, Gouyon JB, Guignard JP, Decramer S, Justrabo E, Gilbert T, Semama DS (2004) Long-term effects of in utero exposure to cyclosporin A on renal function in the rabbit. J Am Soc Nephrol 15(10):2687–2693.  https://doi.org/10.1097/01.ASN.0000139069.59466.D8CrossRefPubMedPubMedCentralGoogle Scholar
  196. Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA Guidelines and animal models for osteoporosis. Bone 17(4 Suppl):125S–133SPubMedPubMedCentralGoogle Scholar
  197. Thuilliez C, Tortereau A, Perron-Lepage MF, Howroyd P, Gauthier B (2014) Spontaneous testicular tubular hypoplasia/atrophy in the Gottingen minipig: a retrospective study. Toxicol Pathol 42(6):1024–1031.  https://doi.org/10.1177/0192623313512430CrossRefPubMedPubMedCentralGoogle Scholar
  198. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100(2):149–160PubMedCrossRefPubMedCentralGoogle Scholar
  199. Traebert M, Lotscher M, Aschwanden R, Ritthaler T, Biber J, Murer H, Kaissling B (1999) Distribution of the sodium/phosphate transporter during postnatal ontogeny of the rat kidney. J Am Soc Nephrol 10(7):1407–1415PubMedPubMedCentralGoogle Scholar
  200. Trinh VA, Davis JE, Anderson JE, Kim KB (2014) Dabrafenib therapy for advanced melanoma. Ann Pharmacother 48(4):519–529.  https://doi.org/10.1177/1060028013513009CrossRefPubMedPubMedCentralGoogle Scholar
  201. Tripier MF, Berard M, Toga M, Martin-Bouyer G, Le Breton R, Garat J (1981) Hexachlorophene and the central nervous system. Toxic effects in mice and baboons. Acta Neuropathol 53(1):65–74PubMedCrossRefPubMedCentralGoogle Scholar
  202. Tucker DK, Foley JF, Hayes-Bouknight SA, Fenton SE (2016) Preparation of high-quality hematoxylin and eosin-stained sections from rodent mammary gland whole mounts for histopathologic review. Toxicol Pathol 44(7):1059–1064.  https://doi.org/10.1177/0192623316660769CrossRefPubMedPubMedCentralGoogle Scholar
  203. van der Brugge-Gamelkoorn GJ, Sminia T (1985) T-cells and T-cells subsets in rat bronchus associated lymphoid tissue (BALT) in situ and in suspension. Adv Exp Med Biol 186:323–329PubMedPubMedCentralGoogle Scholar
  204. van Leeuwen BL, Hartel RM, Jansen HW, Kamps WA, Hoekstra HJ (2003) The effect of chemotherapy on the morphology of the growth plate and metaphysis of the growing skeleton. Eur J Surg Oncol 29(1):49–58PubMedCrossRefPubMedCentralGoogle Scholar
  205. Vettorazzi A, Wait R, Nagy J, Monreal JI, Mantle P (2013) Changes in male rat urinary protein profile during puberty: a pilot study. BMC Res Notes 6:232.  https://doi.org/10.1186/1756-0500-6-232CrossRefPubMedPubMedCentralGoogle Scholar
  206. Vonvoigtlander PF, Kolaja GJ, Block EM (1982) Corneal lesions induced by antidepressants: a selective effect upon young Fischer 344 rats. J Pharmacol Exp Ther 222(1):282–286PubMedPubMedCentralGoogle Scholar
  207. Walling BE, Picut CA, Remick AK (2016) The endocrine system. In: Parker GA, Picut CA (eds) Atlas of histology of the juvenile rat. Elsevier, San Diego, pp 257–263CrossRefGoogle Scholar
  208. Walthall K, Cappon GD, Hurtt ME, Zoetis T (2005) Postnatal development of the gastrointestinal system: a species comparison. Birth Defects Res B Dev Reprod Toxicol 74(2):132–156.  https://doi.org/10.1002/bdrb.20040CrossRefPubMedPubMedCentralGoogle Scholar
  209. Walzer M, Bekersky I, Wanaski S, Collins S, Jortner B, Patterson R, Garman R, Sagar S, Tolbert D (2011) Oral toxicity of vigabatrin in immature rats: characterization of intramyelinic edema. Neurotoxicology 32(6):963–974.  https://doi.org/10.1016/j.neuro.2011.03.014CrossRefPubMedPubMedCentralGoogle Scholar
  210. Weinstock D, Lewis DB, Parker GA, Beyer J, Collinge M, Brown TP, Dybdal N (2010) Toxicopathology of the developing immune system: investigative and development strategies. Toxicol Pathol 38(7):1111–1117PubMedCrossRefPubMedCentralGoogle Scholar
  211. Whitney KM (2012) Testicular histopathology in juvenile rat toxicity studies. Syst Biol Reprod Med 58(1):51–56PubMedCrossRefPubMedCentralGoogle Scholar
  212. Yamasaki K (1995) Histologic study of the femoral growth plate in beagle dogs. Toxicol Pathol 23(5):612–616PubMedCrossRefPubMedCentralGoogle Scholar
  213. You L, Sar M, Bartolucci EJ, McIntyre BS, Sriperumbudur R (2002) Modulation of mammary gland development in prepubertal male rats exposed to genistein and methoxychlor. Toxicol Sci 66(2):216–225PubMedCrossRefPubMedCentralGoogle Scholar
  214. Ytrehus B, Carlson CS, Ekman S (2007) Etiology and pathogenesis of osteochondrosis. Vet Pathol 44(4):429–448PubMedCrossRefPubMedCentralGoogle Scholar
  215. Zoetis T, Hurtt ME (2003) Species comparison of anatomical and functional renal development. Birth Defects Res B Dev Reprod Toxicol 68(2):111–120.  https://doi.org/10.1002/bdrb.10013CrossRefPubMedPubMedCentralGoogle Scholar
  216. Zoetis TaW I (2003) Principles and practices for direct dosing of pre-weaning mammals in toxicity testing and research. ILSI Press, Washington, D.C.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Charles River Laboratories, Inc.DurhamUSA

Personalised recommendations