Advertisement

Febrile Neutropenia in Transplant Recipients

  • Lior Nesher
  • Kenneth V. I. RolstonEmail author
Chapter

Abstract

Febrile neutropenic patients are at increased risk of developing infections. During the initial stages of neutropenia, most of these infections are bacterial. The spectrum of bacterial infections depends to some extent on whether or not patients receive antimicrobial prophylaxis when neutropenic. Since most transplant recipients do, Gram-positive organisms predominate, due to the fact prophylaxis is directed primarily against Gram-negative organisms. Staphylococcus species (often methicillin-resistant), Streptococcus species (viridans group streptococci, beta-hemolytic streptococci), and Enterococcus species (including vancomycin-resistant strains) are isolated most often. Therefore, potent empiric Gram-positive coverage is recommended by many in this setting. Escherichia coli, Pseudomonas aeruginosa, and Klebsiella species are the most common Gram-negative pathogens isolated. Non-fermentative Gram-negative bacilli (Stenotrophomonas maltophilia, Acinetobacter species) are emerging as important pathogens. Many of these organisms acquire multiple mechanisms of resistance that render them multidrug resistant. The administration of prompt, broad-spectrum, empiric, antimicrobial therapy is essential and is generally based on local epidemiology and susceptibility/resistance patterns. Response rate to the initial regimen is generally in the range of 75–85%. Fungal infections develop in patients with prolonged neutropenia (greater than 7–10 days). Candida species and Aspergillus species are the predominant fungal pathogens, although many other fungi are opportunistic pathogens in this setting. Fungal infections are seldom documented microbiologically or on histopathology, and the administration of empiric antifungal therapy, when such infections are suspected, is the norm. Therapy is often prolonged, and outcomes are still suboptimal. The importance of infection control and antimicrobial stewardship cannot be overemphasized.

Keywords

Febrile neutropenia Stem cell transplantation Spectrum of infection Polymicrobial infections Drug resistance Multiple Empirical therapy Antimicrobial stewardship 

References

  1. 1.
    Jones R, Shpall E, Champlin R. In Holland-Frei editor. Hematopoietic cell transplantation. 9th ed. Hoboken: John Wiley and sons. 2017, p 831–41.Google Scholar
  2. 2.
    Almyroudis NG, Fuller A, Jakubowski A, et al. Pre- and post-engraftment bloodstream infection rates and associated mortality in allogeneic hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2005;7(1):11–7.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sorror ML, Storer BE, Maloney DG, Sandmaier BM, Martin PJ, Storb R. Outcomes after allogeneic hematopoietic cell transplantation with nonmyeloablative or myeloablative conditioning regimens for treatment of lymphoma and chronic lymphocytic leukemia. Blood. 2008;111(1):446–52.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Celebi H, Akan H, Akçağlayan E, Ustün C, Arat M. Febrile neutropenia in allogeneic and autologous peripheral blood stem cell transplantation and conventional chemotherapy for malignancies. Bone Marrow Transplant. 2000;26(2):211–4.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gil L, Styczynski J, Komarnicki M. Infectious complication in 314 patients after high-dose therapy and autologous hematopoietic stem cell transplantation: risk factors analysis and outcome. Infection. 2007;35(6):421–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang WX, Zhao QY, Huang HQ. Febrile neutropenic infection occurred in cancer patients undergoing autologous peripheral blood stem cell transplantation. Transplant Proc. 2015;47(2):523–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    van der Velden WJ, Herbers AH, Netea MG, Blijlevens NM. Mucosal barrier injury, fever and infection in neutropenic patients with cancer: introducing the paradigm febrile mucositis. Br J Haematol. 2014;167(4):441–52.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vera-Llonch M, Oster G, Ford CM, Lu J, Sonis S. Oral mucositis and outcomes of allogeneic hematopoietic stem-cell transplantation in patients with hematologic malignancies. Support Care Cancer. 2007;15(5):491–6.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Safdar A, Armstrong D. Infections in patients with hematologic neoplasms and hematopoietic stem cell transplantation: neutropenia, humoral, and splenic defects. Clin Infect Dis. 2011;53(8):798–806.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011;52(4):e56–93.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Baden LR, Bensinger W, Angarone M, et al. Prevention and treatment of cancer-related infections. J Natl Compr Cancer Netw. 2012;10(11):1412–45.CrossRefGoogle Scholar
  12. 12.
    Lehrnbecher T, Phillips R, Alexander S, et al. Guideline for the management of fever and neutropenia in children with cancer and/or undergoing hematopoietic stem-cell transplantation. J Clin Oncol. 2012;30(35):4427–38.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    de Naurois J, Novitzky-Basso I, Gill MJ, et al. Management of febrile neutropenia: ESMO clinical practice guidelines. Ann Oncol. 2010;21(Suppl 5):v252–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nesher L, Rolston KVI. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection. 2014;42(1):5–13.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Nesher L, Rolston KVI, Shah DP, et al. Fecal colonization and infection with Pseudomonas aeruginosa in recipients of allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis. 2015;17(1):33–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rolston KV, Bodey GP, Safdar A. Polymicrobial infection in patients with cancer: an underappreciated and underreported entity. Clin Infect Dis. 2007;45(2):228–33.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Klastersky J, Ameye L, Maertens J, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30(Suppl 1):S51–9.CrossRefGoogle Scholar
  18. 18.
    Elting LS, Bodey GP, Fainstein V. Polymicrobial septicemia in the cancer patient. Medicine (Baltimore). 1986;65(4):218–25.CrossRefGoogle Scholar
  19. 19.
    Gudiol C, Garcia-Vidal C, Arnan M, et al. Etiology, clinical features and outcomes of pre-engraftment and post-engraftment bloodstream infection in hematopoietic SCT recipients. Bone Marrow Transplant. 2014;49(6):824–30.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Piñana JL, Montesinos P, Martino R, et al. Incidence, risk factors, and outcome of bacteremia following autologous hematopoietic stem cell transplantation in 720 adult patients. Ann Hematol. 2014;93(2):299–307.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Blennow O, Ljungman P, Sparrelid E, Mattsson J, Remberger M. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl Infect Dis. 2014;16(1):106–14.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Maschmeyer G, Carratalà J, Buchheidt D, et al. Diagnosis and antimicrobial therapy of lung infiltrates in febrile neutropenic patients (allogeneic SCT excluded): updated guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Oncol. 2015;26(1):21–33.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rolston KV, Nesher L, Tarrand JT. Current microbiology of surgical site infections in patients with cancer: a retrospective review. Infect Dis Ther. 2014;3(2):245–56.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Raber-Durlacher JE, Laheij AM, Epstein JB, et al. Periodontal status and bacteremia with oral viridans streptococci and coagulase negative staphylococci in allogeneic hematopoietic stem cell transplantation recipients: a prospective observational study. Support Care Cancer. 2013;21(6):1621–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Blijlevens NM, Donnelly JP, de Pauw BE. Empirical therapy of febrile neutropenic patients with mucositis: challenge of risk-based therapy. Clin Microbiol Infect. 2001;7(Suppl 4):47–52.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Fanourgiakis P, Georgala A, Vekemans M, Daneau D, Heymans C, Aoun M. Bacteremia due to Stomatococcus mucilaginosus in neutropenic patients in the setting of a cancer institute. Clin Microbiol Infect. 2003;9(10):1068–72.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010;65(9):1955–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kanathezhath B, Shah A, Secola R, Hudes M, Feusner JH. The utility of routine surveillance blood cultures in asymptomatic hematopoietic stem cell transplant patients. J Pediatr Hematol Oncol. 2010;32(4):327–31.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rigby H, Fernandez CV, Langley J, Mailman T, Crooks B, Higgins A. Routine surveillance for bloodstream infections in a pediatric hematopoietic stem cell transplant cohort: do patients benefit? Can J Infect Dis Med Microbiol. 2007;18(4):253–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nesher L, Chemaly RF, Shah DP, Mulanovich VE, Hosing C, Rolston KVI. Utility of routine surveillance blood cultures in asymptomatic allogeneic hematopoietic stem cell transplant recipients with indwelling central venous catheters at a comprehensive cancer center. Am J Infect Control. 2014;42(10):1084–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Cecinati V, Brescia L, Tagliaferri L, Giordano P, Esposito S. Catheter-related infections in pediatric patients with cancer. Eur J Clin Microbiol Infect Dis. 2012;31(11):2869–77.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Montassier E, Batard E, Gastinne T, Potel G, de La Cochetière MF. Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance. Eur J Clin Microbiol Infect Dis. 2013;32(7):841–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Macesic N, Morrissey CO, Cheng AC, Spencer A, Peleg AY. Changing microbial epidemiology in hematopoietic stem cell transplant recipients: increasing resistance over a 9-year period. Transpl Infect Dis. 2014;16(6):887–96.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Miedema KG, Winter RH, Ammann RA, et al. Bacteria causing bacteremia in pediatric cancer patients presenting with febrile neutropenia – species distribution and susceptibility patterns. Support Care Cancer. 2013;21(9):2417–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Razonable RR, Litzow MR, Khaliq Y, Piper KE, Rouse MS, Patel R. Bacteremia due to viridans group Streptococci with diminished susceptibility to Levofloxacin among neutropenic patients receiving levofloxacin prophylaxis. Clin Infect Dis. 2002;34(11):1469–74.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis. 2003;36(9):1103–10. Epub 2003 Apr 14.PubMedCrossRefGoogle Scholar
  37. 37.
    Yadegarynia D, Tarrand J, Raad I, Rolston K. Current spectrum of bacterial infections in patients with cancer. Clin Infect Dis. 2003;37(8):1144–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Raad I, Chaftari AM. Advances in prevention and management of central line-associated bloodstream infections in patients with cancer. Clin Infect Dis. 2014;59(Suppl 5):S340–3.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Giormezis N, Kolonitsiou F, Makri A, et al. Virulence factors among Staphylococcus lugdunensis are associated with infection sites and clonal spread. Eur J Clin Microbiol Infect Dis. 2015;34(4):773–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Kleiner E, Monk AB, Archer GL, Forbes BA. Clinical significance of Staphylococcus lugdunensis isolated from routine cultures. Clin Infect Dis. 2010;51(7):801–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Fadel HJ, Patel R, Vetter EA, Baddour LM. Clinical significance of a single Staphylococcus lugdunensis-positive blood culture. J Clin Microbiol. 2011;49(4):1697–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mihu CN, Schaub J, Kesh S, et al. Risk factors for late Staphylococcus aureus bacteremia after allogeneic hematopoietic stem cell transplantation: a single-institution, nested case-controlled study. Biol Blood Marrow Transplant. 2008;14(12):1429–33.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e162–93.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC, Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398–402.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Safdar A, Rolston KV. Vancomycin tolerance, a potential mechanism for refractory gram-positive bacteremia observational study in patients with cancer. Cancer. 2006;106(8):1815–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Seo SK, Xiao K, Huang YT, et al. Impact of peri-transplant vancomycin and fluoroquinolone administration on rates of bacteremia in allogeneic hematopoietic stem cell transplant (HSCT) recipients: a 12-year single institution study. J Infect. 2014;69(4):341–51.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Graber CJ, de Almeida KN, Atkinson JC, et al. Dental health and viridans streptococcal bacteremia in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2001;27(5):537–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Elting LS, Bodey GP, Keefe BH. Septicemia and shock syndrome due to viridans streptococci: a case-control study of predisposing factors. Clin Infect Dis. 1992;14(6):1201–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Han XY, Kamana M, Rolston KV. Viridans streptococci isolated by culture from blood of cancer patients: clinical and microbiologic analysis of 50 cases. J Clin Microbiol. 2006;44(1):160–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rolston KV, Besece D, Lamp KC, Yoon M, McConnell SA, White P. Daptomycin use in neutropenic patients with documented gram-positive infections. Support Care Cancer. 2014;22(1):7–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Rolston KVI, Wang W, Nesher L, Coyle E, Shelburne S, Prince RA. In vitro activity of telavancin compared with vancomycin and linezolid against gram-positive organisms isolated from cancer patients. J Antibiot. 2014;67(7):505–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Rolston KV, Frisbee-Hume S, LeBlanc B, Streeter H, Ho DH. In vitro antimicrobial activity of moxifloxacin compared to other quinolones against recent clinical bacterial isolates from hospitalized and community-based cancer patients. Diagn Microbiol Infect Dis. 2003;47(2):441–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Matar MJ, Tarrand J, Raad I, Rolston KV. Colonization and infection with vancomycin-resistant enterococcus among patients with cancer. Am J Infect Control. 2006;34(8):534–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Liss BJ, Vehreschild JJ, Cornely OA, et al. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 2012;40(6):613–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Bossaer JB, Hall PD, Garrett-Mayer E. Incidence of vancomycin-resistant enterococci (VRE) infection in high-risk febrile neutropenic patients colonized with VRE. Support Care Cancer. 2010;19(2):231–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Kang M, Xie Y, He C, et al. Molecular characteristics of vancomycin-resistant Enterococcus faecium from a tertiary care hospital in Chengdu, China: molecular characteristics of VRE in China. Eur J Clin Microbiol Infect Dis. 2014;33(6):933–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Kang Y, Vicente M, Parsad S, et al. Evaluation of risk factors for vancomycin-resistant enterococcus bacteremia among previously colonized hematopoietic stem cell transplant patients. Transpl Infect Dis. 2013;15(5):466–73.PubMedGoogle Scholar
  59. 59.
    Mihu CN, Rhomberg PR, Jones RN, Coyle E, Prince RA, Rolston KV. Escherichia coli resistance to quinolones at a comprehensive cancer center. Diagn Microbiol Infect Dis. 2010;67(3):266–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Bhusal Y, Mihu CN, Tarrand JJ, Rolston KV. Incidence of fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli at a comprehensive cancer center in the United States. Chemotherapy. 2011;57(4):335–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Kern WV, Klose K, Jellen-Ritter AS, et al. Fluoroquinolone resistance of Escherichia coli at a cancer center: epidemiologic evolution and effects of discontinuing prophylactic fluoroquinolone use in neutropenic patients with leukemia. Eur J Clin Microbiol Infect Dis. 2005;24(2):111–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Rolston KV, Nesher L, Mulanovich V, Chemaly R. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 2013;41(5):1039–40.PubMedCrossRefGoogle Scholar
  63. 63.
    Biehl LM, Schmidt-Hieber M, Liss B, Cornely OA, Vehreschild MJ. Colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients – review of the literature from a clinical perspective. Crit Rev Microbiol. 2016;42(1):1–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Kim SH, Kwon JC, Choi SM, et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum β-lactamase production and its impact on outcome. Ann Hematol. 2013;92(4):533–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Patel G, Bonomo RA. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol. 2013;4:48.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pillai DR, McGeer A, Low DE. New Delhi metallo-β-lactamase-1 in Enterobacteriaceae: emerging resistance. CMAJ. 2011;183(1):59–64.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rolston KV, Tarrand JJ. Pseudomonas aeruginosa – still a frequent pathogen in patients with cancer: 11-year experience at a comprehensive cancer center. Clin Infect Dis. 1999;29(2):463–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Safdar A, Rodriguez GH, Balakrishnan M, Tarrand JJ, Rolston KV. Changing trends in etiology of bacteremia in patients with cancer. Eur J Clin Microbiol Infect Dis. 2006;25(8):522–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Chemaly RF, Rathod DB, Sikka MK, et al. Serratia marcescens bacteremia because of contaminated prefilled heparin and saline syringes: a multi-state report. Am J Infect Control. 2011;39(6):521–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Chemaly RF, Rathod DB, Raad II. A tertiary care cancer center experience of the 2007 outbreak of Serratia marcescens bloodstream infection due to prefilled syringes. Infect Control Hosp Epidemiol. 2009;30(12):1237–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Rolston KV, Kontoyiannis DP, Yadegarynia D, Raad II. Nonfermentative gram-negative bacilli in cancer patients: increasing frequency of infection and antimicrobial susceptibility of clinical isolates to fluoroquinolones. Diagn Microbiol Infect Dis. 2005;51(3):215–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hakki M, Limaye AP, Kim HW, Kirby KA, Corey L, Boeckh M. Invasive Pseudomonas aeruginosa infections: high rate of recurrence and mortality after hematopoietic cell transplantation. Bone Marrow Transplant. 2007;39(11):687–93.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ohmagari N, Hanna H, Graviss L, et al. Risk factors for infections with multidrug-resistant Pseudomonas aeruginosa in patients with cancer. Cancer. 2005;104(1):205–12.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Aboufaycal H, Sader HS, Rolston K, et al. blaVIM-2 and blaVIM-7 carbapenemase-producing Pseudomonas aeruginosa isolates detected in a tertiary care medical center in the United States: report from the MYSTIC program. J Clin Microbiol. 2007;45(2):614–5.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Toleman MA, Rolston K, Jones RN, Walsh TR. blaVIM-7, an evolutionarily distinct metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother. 2004;48(1):329–32.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Demiraslan H, Sevim M, Pala Ç, et al. Risk factors influencing mortality related to Stenotrophomonas maltophilia infection in hematology-oncology patients. Int J Hematol. 2013;97(3):414–20.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Safdar A, Rolston KV. Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis. 2007;45(12):1602–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Al-Anazi KA, Al-Jasser AM. Infections caused by Stenotrophomonas maltophilia in recipients of hematopoietic stem cell transplantation. Front Oncol. 2014;4:232.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Brook I, Frazier EH. Aerobic and anaerobic infection associated with malignancy. Support Care Cancer. 1998;6(2):125–31.PubMedCrossRefGoogle Scholar
  80. 80.
    Nesher L, Rolston KV. Neutropenic enterocolitis, a growing concern in the era of widespread use of aggressive chemotherapy. Clin Infect Dis. 2013;56(5):711–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Huang AM, Marini BL, Frame D, Aronoff DM, Nagel JL. Risk factors for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2014;16(5):744–50.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Willems L, Porcher R, Lafaurie M, et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. Biol Blood Marrow Transplant. 2012;18(8):1295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Jain T, Croswell C, Urday-Cornejo V, et al. Clostridium difficile colonization in hematopoietic stem cell transplant recipients: a prospective study of the epidemiology and outcomes involving toxigenic and nontoxigenic strains. Biol Blood Marrow Transplant. 2016;22(1):157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kinnebrew MA, Lee YJ, Jenq RR, et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. PLoS One. 2014;9(3):e90158.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hachem R, Hanna H, Kontoyiannis D, Jiang Y, Raad I. The changing epidemiology of invasive candidiasis: Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer. 2008;112(11):2493–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Maschmeyer G. The changing epidemiology of invasive fungal infections: new threats. Int J Antimicrob Agents. 2006;27(Suppl 1):3–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Steinbach WJ, Marr KA, Anaissie EJ, et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect. 2012;65(5):453–64.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kontoyiannis DP, Wessel VC, Bodey GP, Rolston KV. Zygomycosis in the 1990s in a tertiary-care cancer center. Clin Infect Dis. 2000;30(6):851–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Marty FM, Cosimi LA, Baden LR. Breakthrough zygomycosis after voriconazole treatment in recipients of hematopoietic stem-cell transplants. N Engl J Med. 2004;350(9):950–2.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kontoyiannis DP, Lionakis MS, Lewis RE, et al. Zygomycosis in a tertiary-care cancer center in the era of Aspergillus-active antifungal therapy: a case-control observational study of 27 recent cases. J Infect Dis. 2005;191(8):1350–60.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Pongas GN, Lewis RE, Samonis G, Kontoyiannis DP. Voriconazole-associated zygomycosis: a significant consequence of evolving antifungal prophylaxis and immunosuppression practices? Clin Microbiol Infect. 2009;15(Suppl 5):93–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Lewis RE, Cahyame-Zuniga L, Leventakos K, et al. Epidemiology and sites of involvement of invasive fungal infections in patients with haematological malignancies: a 20-year autopsy study. Mycoses. 2013;56(6):638–45.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Campo M, Lewis RE, Kontoyiannis DP. Invasive fusariosis in patients with hematologic malignancies at a cancer center: 1998–2009. J Infect. 2010;60(5):331–7.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Lamaris GA, Chamilos G, Lewis RE, Safdar A, Raad II, Kontoyiannis DP. Scedosporium infection in a tertiary care cancer center: a review of 25 cases from 1989–2006. Clin Infect Dis. 2006;43(12):1580–4.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Saral R, Ambinder RF, Burns WH, et al. Acyclovir prophylaxis against herpes simplex virus infection in patients with leukemia. A randomized, double-blind, placebo-controlled study. Ann Intern Med. 1983;99(6):773–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Saral R, Burns WH, Laskin OL, Santos GW, Lietman PS. Acyclovir prophylaxis of herpes-simplex-virus infections. N Engl J Med. 1981;305(2):63–7.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yoshikawa T, Asano Y, Ihira M, et al. Human herpesvirus 6 viremia in bone marrow transplant recipients: clinical features and risk factors. J Infect Dis. 2002;185(7):847–53.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Zerr DM, Boeckh M, Delaney C, et al. HHV-6 reactivation and associated sequelae after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18(11):1700–8.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mori T, Kato J. Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int J Hematol. 2010;91(4):588–95.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Cohen L, Yeshurun M, Shpilberg O, Ram R. Risk factors and prognostic scale for cytomegalovirus (CMV) infection in CMV-seropositive patients after allogeneic hematopoietic cell transplantation. Transpl Infect Dis. 2015;17(4):510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Campbell AP, Guthrie KA, Englund JA, et al. Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant. Clin Infect Dis. 2015;61(2):192–202.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: a global perspective. Preface. Bone Marrow Transplant. 2009;44(8):453–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Hirsch HH, Martino R, Ward KN, Boeckh M, Einsele H, Ljungman P. Fourth European conference on infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis. 2013;56(2):258–66.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Hutspardol S, Essa M, Richardson S, et al. Significant transplantation-related mortality from respiratory virus infections within the first one hundred days in children after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(10):1802–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Renaud C, Xie H, Seo S, et al. Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients. Biol Blood Marrow Transplant. 2013;19(8):1220–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Shah DP, Ghantoji SS, Mulanovich VE, Ariza-Heredia EJ, Chemaly RF. Management of respiratory viral infections in hematopoietic cell transplant recipients. Am J Blood Res. 2012;2(4):203–18.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Egli A, Bucher C, Dumoulin A, et al. Human metapneumovirus infection after allogeneic hematopoietic stem cell transplantation. Infection. 2012;40(6):677–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Hughes WT, Armstrong D, Bodey GP, et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis. 2002;34(6):730–51.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hughes WT, Armstrong D, Bodey GP, et al. 1997 guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. Infectious Diseases Society of America. Clin Infect Dis. 1997;25(3):551–73.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Hughes WT, Armstrong D, Bodey GP, et al. From the Infectious Diseases Society of America. Guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. J Infect Dis. 1990;161(3):381–96.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Flowers CR, Seidenfeld J, Bow EJ, et al. Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(6):794–810.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Weissinger F, Auner HW, Bertz H, et al. Antimicrobial therapy of febrile complications after high-dose chemotherapy and autologous hematopoietic stem cell transplantation – guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol. 2012;91(8):1161–74.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Krause R, Valentin T, Salzer H, et al. Which lumen is the source of catheter-related bloodstream infection in patients with multi-lumen central venous catheters? Infection. 2013;41(1):49–52.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Yolin-Raley DS, Dagogo-Jack I, Niell HB, et al. The utility of routine chest radiography in the initial evaluation of adult patients with febrile neutropenia patients undergoing HSCT. J Natl Compr Cancer Netw. 2015;13(2):184–9.CrossRefGoogle Scholar
  115. 115.
    Klastersky J, Paesmans M, Rubenstein EB, et al. The multinational association for supportive care in cancer risk index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol. 2000;18(16):3038–51.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Phillips B, Wade R, Stewart LA, Sutton AJ. Systematic review and meta-analysis of the discriminatory performance of risk prediction rules in febrile neutropaenic episodes in children and young people. Eur J Cancer. 2010;46(16):2950–64.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Santolaya ME, Alvarez AM, Avilés CL, et al. Prospective validation of a risk prediction model for severe sepsis in children with cancer and high-risk febrile neutropenia. Pediatr Infect Dis J. 2013;32(12):1318–23.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Kern WV, Marchetti O, Drgona L, et al. Oral antibiotics for fever in low-risk neutropenic patients with cancer: a double-blind, randomized, multicenter trial comparing single daily moxifloxacin with twice daily ciprofloxacin plus amoxicillin/clavulanic acid combination therapy – EORTC infectious diseases group trial XV. J Clin Oncol. 2013;31(9):1149–56.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rolston KV, Frisbee-Hume SE, Patel S, Manzullo EF, Benjamin RS. Oral moxifloxacin for outpatient treatment of low-risk, febrile neutropenic patients. Support Care Cancer. 2010;18(1):89–94.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Jaksic B, Martinelli G, Perez-Oteyza J, Hartman CS, Leonard LB, Tack KJ. Efficacy and safety of linezolid compared with vancomycin in a randomized, double-blind study of febrile neutropenic patients with cancer. Clin Infect Dis. 2006;42(5):597–607.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Lisboa LF, Miranda BG, Vieira MB, et al. Empiric use of linezolid in febrile hematology and hematopoietic stem cell transplantation patients colonized with vancomycin-resistant Enterococcus spp. Int J Infect Dis. 2015;33:171–6.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Scheetz MH, Knechtel SA, Malczynski M, Postelnick MJ, Qi C. Increasing incidence of linezolid-intermediate or -resistant, vancomycin-resistant Enterococcus faecium strains parallels increasing linezolid consumption. Antimicrob Agents Chemother. 2008;52(6):2256–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Dellit TH, Owens RC, McGowan JE, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159–77.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Nesher L, Tverdek FP, Mahajan SN, Chemaly RF, Rolston KV. Ertapenem usage in cancer patients with and without neutropenia: a report on 97 cases from a comprehensive cancer center. Infection. 2015;43(5):545–50.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Tverdek FP, Rolston KV, Chemaly RF. Antimicrobial stewardship in patients with cancer. Pharmacotherapy. 2012;32(8):722–34.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Cosgrove SE, Seo SK, Bolon MK, et al. Evaluation of postprescription review and feedback as a method of promoting rational antimicrobial use: a multicenter intervention. Infect Control Hosp Epidemiol. 2012;33(4):374–80.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Paskovaty A, Pflomm JM, Myke N, Seo SK. A multidisciplinary approach to antimicrobial stewardship: evolution into the 21st century. Int J Antimicrob Agents. 2005;25(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Infectious Disease Institute, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShebaIsrael
  2. 2.Soroka University Medical Center affiliated with Faculty of Health Sciences Ben-Gurion University of the Negev, Infectious Disease InstituteBeer ShebaIsrael
  3. 3.Department of Infectious Diseases, Infection Control & Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations