Advertisement

Adaptive Immunotherapy for Opportunistic Infections

  • Aspasia Katragkou
  • Thomas J. Walsh
  • Emmanuel RoilidesEmail author
Chapter

Abstract

Infectious complications are a major cause of morbidity and mortality in patients undergoing solid organ or stem cell transplantation. Over the past years, advances in immunology and molecular biology have greatly contributed to a better understanding of the pathogenesis of opportunistic infections in the immunocompromised host. The lifelong immunosuppression required by the transplant recipients together with the limitations of the current anti-infective agents makes strategies able to stimulate immune response attractive aids to conventional treatment options. Among the immunotherapeutic strategies studied in transplant recipients aiming to enhance the adaptive immune response are the adoptive transfer of T lymphocytes and the use of cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), or interferon-gamma (IFN-γ). While some encouraging results in in vitro and in vivo studies exist, currently available clinical evidence on the use of these approaches is limited to allow firm recommendations.

Keywords

Cytokines T-Cells GM-CSF G-CSF M-CSF IFN-γ Infection Transplantation 

References

  1. 1.
    Patel R, Paya CV. Infections in solid-organ transplant recipients. Clin Microbiol Rev. 1997;10:86–124.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention; Infectious Disease Society of America; American Society of Blood and Marrow Transplantation. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. MMWR Recomm Rep. 2000;49:1–125, CE1-7.Google Scholar
  3. 3.
    Munoz P, Fernandez NS, Farinas MC. Epidemiology and risk factors of infections after solid organ transplantation. Enferm Infecc Microbiol Clin. 2012;30(Suppl 2):10–8.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007;357:2601–14.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    San Juan R, Aguado JM, Lumbreras C, et al. Incidence, clinical characteristics and risk factors of late infection in solid organ transplant recipients: data from the RESITRA study group. Am J Transplant. 2007;7:964–71.CrossRefGoogle Scholar
  6. 6.
    Yu X, Carpenter P, Anasetti C. Advances in transplantation tolerance. Lancet. 2001;357:1959–63.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Moss P, Rickinson A. Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol. 2005;5:9–20.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257:238–41.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99:3916–22.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Peggs KS, Thomson K, Samuel E, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kotton CN, Kumar D, Caliendo AM, et al. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation. 2010;89:779–95.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–55.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Rooney CM, Smith CA, Ng CY, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345:9–13.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330:1185–91.CrossRefGoogle Scholar
  16. 16.
    Gustafsson A, Levitsky V, Zou JZ, et al. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood. 2000;95:807–14.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–56.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Haque T, Wilkie GM, Taylor C, et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet. 2002;360:436–42.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Savoldo B, Goss J, Liu Z, et al. Generation of autologous Epstein-Barr virus-specific cytotoxic T cells for adoptive immunotherapy in solid organ transplant recipients. Transplantation. 2001;72:1078–86.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Khanna R, Bell S, Sherritt M, et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci U S A. 1999;96:10391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Comoli P, Labirio M, Basso S, et al. Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood. 2002;99:2592–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Haque T, Taylor C, Wilkie GM, et al. Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells. Transplantation. 2001;72:1399–402.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134:64–76.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Blyth E, Gaundar SS, Clancy L, et al. Clinical-grade varicella zoster virus-specific T cells produced for adoptive immunotherapy in hemopoietic stem cell transplant recipients. Cytotherapy. 2012;14:724–32.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Blyth E, Clancy L, Simms R, et al. BK virus-specific T cells for use in cellular therapy show specificity to multiple antigens and polyfunctional cytokine responses. Transplantation. 2011;92:1077–84.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Perruccio K, Tosti A, Burchielli E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106:4397–406.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Beck O, Topp MS, Koehl U, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood. 2006;107:2562–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tramsen L, Beck O, Schuster FR, et al. Generation and characterization of anti-Candida T cells as potential immunotherapy in patients with Candida infection after allogeneic hematopoietic stem-cell transplant. J Infect Dis. 2007;196:485–92.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Schmidt S, Tramsen L, Perkhofer S, et al. Characterization of the cellular immune responses to Rhizopus oryzae with potential impact on immunotherapeutic strategies in hematopoietic stem cell transplantation. J Infect Dis. 2012;206:135–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lehrnbecher T, Schmidt S, Koehl U, et al. Adoptive antifungal T cell immunotherapy--into the clinic? Med Mycol. 2011;49(Suppl 1):S164–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tramsen L, Schmidt S, Roeger F, Koehl U, Lehrnbecher T. Challenges and prospects of adoptive immunotherapy in prevention and treatment of opportunistic mycoses in hematologic transplant recipients. Curr Infect Dis Rep. 2010;12:444–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Anderlini P, Champlin RE. Biologic and molecular effects of granulocyte colony-stimulating factor in healthy individuals: recent findings and current challenges. Blood. 2008;111:1767–72.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Dale DC, Liles WC, Summer WR, Nelson S. Review: granulocyte colony-stimulating factor--role and relationships in infectious diseases. J Infect Dis. 1995;172:1061–75.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hubel K, Dale DC, Liles WC. Therapeutic use of cytokines to modulate phagocyte function for the treatment of infectious diseases: current status of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and interferon-gamma. J Infect Dis. 2002;185:1490–501.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Roilides E, Walsh T. Recombinant cytokines in augmentation and immunomodulation of host defenses against Candida spp. Med Mycol. 2004;42:1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Roilides E, Uhlig K, Venzon D, Pizzo PA, Walsh TJ. Enhancement of oxidative response and damage caused by human neutrophils to Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and gamma interferon. Infect Immun. 1993;61:1185–93.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Pursell K, Verral S, Daraiesh F, et al. Impaired phagocyte respiratory burst responses to opportunistic fungal pathogens in transplant recipients: in vitro effect of r-metHuG-CSF (Filgrastim). Transpl Infect Dis. 2003;5:29–37.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Boneberg EM, Hareng L, Gantner F, Wendel A, Hartung T. Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood. 2000;95:270–6.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hartung T, Docke WD, Gantner F, et al. Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood. 1995;85:2482–9.PubMedPubMedCentralGoogle Scholar
  40. 40.
    von Aulock S, Boneberg EM, Diterich I, Hartung T. Granulocyte colony-stimulating factor (filgrastim) treatment primes for increased ex vivo inducible prostanoid release. J Pharmacol Exp Ther. 2004;308:754–9.CrossRefGoogle Scholar
  41. 41.
    Hayamizu K, Egi H, Ohmori I, Kitayama T, Asahara T. Improvement of heart allograft acceptability by pretreatment of donors with granulocyte colony-stimulating factor. Transplant Proc. 2002;34:2732.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hayamizu K, Yahata H, Shinozaki K, Tanji H, Strober S, Asahara T. Granulocyte colony-stimulating factor-mobilized donor monocytes facilitate heart allograft acceptance. Transplant Proc. 2000;32:2068–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Foster PF, Kociss K, Shen J, et al. Granulocyte colony-stimulating factor immunomodulation in the rat cardiac transplantation model. Transplantation. 1996;61:1122–5.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Egi H, Hayamizu K, Kitayama T, Ohmori I, Okajima M, Asahara T. Downregulation of both interleukin-12 and interleukin-2 in heart allografts by pretransplant host treatment with granulocyte colony-stimulating factor and tacrolimus. Cytokine. 2002;18:164–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ohmori I, Hayamizu K, Kitayama T, Egi H, Aihaiti X, Asahara T. Downregulation of interleukin-12p35 and upregulation of interleukin-12p40 mRNA expression in heart allografts by blood transfusion from granulocyte colony-stimulating factor-treated donors. Cytokine. 2003;21:27–31.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kitayama T, Hayamizu K, Egi H, Ohmori I, Yoshimitsu M, Asahara T. Facilitation of tacrolimus-induced heart-allograft acceptability by pretransplant host treatment with granulocyte colony-stimulating factor: interleukin-12-restricted suppression of intragraft monokine mRNA expression. Transplantation. 2003;75:553–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gil-Lamaignere C, Simitsopoulou M, Roilides E, Maloukou A, Winn RM, Walsh TJ. Interferon- gamma and granulocyte-macrophage colony-stimulating factor augment the activity of polymorphonuclear leukocytes against medically important zygomycetes. J Infect Dis. 2005;191:1180–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Weisbart RH, Golde DW, Clark SC, Wong GG, Gasson JC. Human granulocyte-macrophage colony-stimulating factor is a neutrophil activator. Nature. 1985;314:361–3.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Dale DC, Liles WC, Llewellyn C, Price TH. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers. Am J Hematol. 1998;57:7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Page AV, Liles WC. Granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and other immunomodulatory therapies for the treatment of infectious diseases in solid organ transplant recipients. Curr Opin Organ Transplant. 2008;13:575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Xu J, Lucas R, Schuchmann M, et al. GM-CSF restores innate, but not adaptive, immune responses in glucocorticoid-immunosuppressed human blood in vitro. J Immunol. 2003;171:938–47.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Xu J, Lucas R, Wendel A. The potential of GM-CSF to improve resistance against infections in organ transplantation. Trends Pharmacol Sci. 2004;25:254–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Roilides E, Lyman CA, Sein T, Gonzalez C, Walsh TJ. Antifungal activity of splenic, liver and pulmonary macrophages against Candida albicans and effects of macrophage colony-stimulating factor. Med Mycol. 2000;38:161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sasaki E, Tashiro T, Kuroki M, et al. Effects of macrophage colony-stimulating factor (M-CSF) on anti-fungal activity of mononuclear phagocytes against Trichosporon asahii. Clin Exp Immunol. 2000;119:293–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Roilides E, Sein T, Holmes A, et al. Effects of macrophage colony-stimulating factor on antifungal activity of mononuclear phagocytes against Aspergillus fumigatus. J Infect Dis. 1995;172:1028–34.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Roilides E, Lyman CA, Sein T, Petraitiene R, Walsh TJ. Macrophage colony-stimulating factor enhances phagocytosis and oxidative burst of mononuclear phagocytes against Penicillium marneffei conidia. FEMS Immunol Med Microbiol. 2003;36:19–26.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Roilides E, Lyman CA, Mertins SD, et al. Ex vivo effects of macrophage colony-stimulating factor on human monocyte activity against fungal and bacterial pathogens. Cytokine. 1996;8:42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cenci E, Bartocci A, Puccetti P, Mocci S, Stanley ER, Bistoni F. Macrophage colony-stimulating factor in murine candidiasis: serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun. 1991;59:868–72.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Vitt CR, Fidler JM, Ando D, Zimmerman RJ, Aukerman SL. Antifungal activity of recombinant human macrophage colony-stimulating factor in models of acute and chronic candidiasis in the rat. J Infect Dis. 1994;169:369–74.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kuhara T, Uchida K, Yamaguchi H. Therapeutic efficacy of human macrophage colony-stimulating factor, used alone and in combination with antifungal agents, in mice with systemic Candida albicans infection. Antimicrob Agents Chemother. 2000;44:19–23.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nishina T, Naomoto Y, Gouchi A, et al. Macrophage colony-stimulating factor inhibits tumor necrosis factor production and prolongs skin graft survival. Transplantation. 2004;77:456–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Rowe JM, Andersen JW, Mazza JJ, et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood. 1995;86:457–62.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Antman KS, Griffin JD, Elias A, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. N Engl J Med. 1988;319:593–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Gerhartz HH, Engelhard M, Meusers P, et al. Randomized, double-blind, placebo-controlled, phase III study of recombinant human granulocyte-macrophage colony-stimulating factor as adjunct to induction treatment of high-grade malignant non-Hodgkin’s lymphomas. Blood. 1993;82:2329–39.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lyman GH, Kuderer NM, Djulbegovic B. Prophylactic granulocyte colony-stimulating factor in patients receiving dose-intensive cancer chemotherapy: a meta-analysis. Am J Med. 2002;112:406–11.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Fishman JA, Emery V, Freeman R, et al. Cytomegalovirus in transplantation – challenging the status quo. Clin Transpl. 2007;21:149–58.CrossRefGoogle Scholar
  67. 67.
    Trivedi M, Martinez S, Corringham S, Medley K, Ball ED. Optimal use of G-CSF administration after hematopoietic SCT. Bone Marrow Transplant. 2009;43:895–908.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ozcan M, Ustun C, Akcaglayan E, et al. Recombinant human granulocyte colony-stimulating factor (rh-G-CSF) may accelerate hematopoietic recovery after HLA-identical sibling allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant. 2001;27:499–505.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bishop MR, Tarantolo SR, Geller RB, et al. A randomized, double-blind trial of filgrastim (granulocyte colony-stimulating factor) versus placebo following allogeneic blood stem cell transplantation. Blood. 2000;96:80–5.PubMedPubMedCentralGoogle Scholar
  70. 70.
    McQuaker IG, Hunter AE, Pacey S, Haynes AP, Iqbal A, Russell NH. Low-dose filgrastim significantly enhances neutrophil recovery following autologous peripheral-blood stem-cell transplantation in patients with lymphoproliferative disorders: evidence for clinical and economic benefit. J Clin Oncol. 1997;15:451–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Klumpp TR, Mangan KF, Goldberg SL, Pearlman ES, Macdonald JS. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J Clin Oncol. 1995;13:1323–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Smith TJ, Khatcheressian J, Lyman GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006;24:3187–205.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Stinson TJ, Adams JR, Bishop MR, Kruse S, Tarantolo S, Bennet CL. Economic analysis of a phase III study of G-CSF vs placebo following allogeneic blood stem cell transplantation. Bone Marrow Transplant. 2000;26:663–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ringden O, Labopin M, Gorin NC, et al. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study from the Acute Leukemia Working Party of the European Group for blood and marrow transplantation. J Clin Oncol. 2004;22:416–23.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Faber E, Pytlik R, Slaby J, et al. Individually determined dosing of filgrastim after autologous peripheral stem cell transplantation in patients with malignant lymphoma--results of a prospective multicentre controlled trial. Eur J Haematol. 2006;77:493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Piccirillo N, Sica S, Laurenti L, et al. Optimal timing of G-CSF administration after CD34+ immunoselected peripheral blood progenitor cell transplantation. Bone Marrow Transplant. 1999;3:1245–50.CrossRefGoogle Scholar
  77. 77.
    Bence-Bruckler I, Bredeson C, Atkins H, et al. A randomized trial of granulocyte colony-stimulating factor (Neupogen) starting day 1 vs day 7 post-autologous stem cell transplantation. Bone Marrow Transplant. 1998;22:965–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Zafrani L, Truffaut L, Kreis H, et al. Incidence, risk factors and clinical consequences of neutropenia following kidney transplantation: a retrospective study. Am J Transplant. 2009;9:1816–25.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ishizone S, Makuuchi M, Kawasaki S, et al. Effect of granulocyte colony-stimulating factor on neutropenia in liver transplant recipients with hypersplenism. J Pediatr Surg. 1994;29:510–3.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hartmann EL, Gatesman M, Roskopf-Somerville J, Stratta R, Farney A, Sundberg A. Management of leukopenia in kidney and pancreas transplant recipients. Clin Transpl. 2008;22:822–8.CrossRefGoogle Scholar
  81. 81.
    Hurst FP, Belur P, Nee R, et al. Poor outcomes associated with neutropenia after kidney transplantation: analysis of United States Renal Data System. Transplantation. 2011;92:36–40.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Schmaldienst S, Bekesi G, Deicher R, Franz M, Horl WH, Pohanka E. Recombinant human granulocyte colony-stimulating factor after kidney transplantation: a retrospective analysis to evaluate the benefit or risk of immunostimulation. Transplantation. 2000;69:527–31.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Turgeon N, Hovingh GK, Fishman JA, et al. Safety and efficacy of granulocyte colony-stimulating factor in kidney and liver transplant recipients. Transpl Infect Dis. 2000;2:15–21.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Tajima A, Aso Y, Kawabe K, et al. Colony-stimulating factor for treatment of leukopenia after kidney allografting. Transplant Proc. 1991;23:1369–70.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Peddi VR, Hariharan S, Schroeder TJ, First MR. Role of granulocyte colony stimulating factor (G-CSF) in reversing neutropenia in renal allograft recipients. Clin Transpl. 1996;10:20–3.Google Scholar
  86. 86.
    Colquhoun SD, Shaked A, Jurim O, Colonna JO, Rosove MH, Busuttil RW. Reversal of neutropenia with granulocyte colony-stimulating factor without precipitating liver allograft rejection. Transplantation. 1993;56:1593–5.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Atici AE, Bostanci EB, Ozer I, Ulas M, Akdogan M, Akoglu M. Use of granulocyte colony-stimulating factor for neutropenia after orthotopic liver transplantation: report of two cases. Transplant Proc. 2011;43:909–11.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Birkeland SA, Elbirk A, Rohr N, Jorgensen KA. Severe neutropenia after renal transplantation and its reversal with granulocyte colony-stimulating factor. Transplant Proc. 1994;26:3098–9.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Foster PF, Mital D, Sankary HN, et al. The use of granulocyte colony-stimulating factor after liver transplantation. Transplantation. 1995;59:1557–63.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Winston DJ, Foster PF, Somberg KA, et al. Randomized, placebo-controlled, double-blind, multicenter trial of efficacy and safety of granulocyte colony-stimulating factor in liver transplant recipients. Transplantation. 1999;68:1298–304.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Taylor KM, Jagannath S, Spitzer G, et al. Recombinant human granulocyte colony-stimulating factor hastens granulocyte recovery after high-dose chemotherapy and autologous bone marrow transplantation in Hodgkin's disease. J Clin Oncol. 1989;7:1791–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Devereaux S, Linch DC, Gribben JG, McMillan A, Patterson K, Goldstone AH. GM-CSF accelerates neutrophil recovery after autologous bone marrow transplantation for Hodgkin’s disease. Bone Marrow Transplant. 1989;4:49–54.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Klingemann HG, Eaves AC, Barnett MJ, et al. Recombinant GM-CSF in patients with poor graft function after bone marrow transplantation. Clin Invest Med. 1990;13:77–81.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Greenberg P, Advani R, Keating A, et al. GM-CSF accelerates neutrophil recovery after autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 1996;18:1057–64.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Gorin NC, Coiffier B, Hayat M, et al. Recombinant human granulocyte-macrophage colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation with unpurged and purged marrow in non-Hodgkin’s lymphoma: a double-blind placebo-controlled trial. Blood. 1992;80:1149–57.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Ho AD, Haas R, Korbling M, Dietz M, Hunstein W. Utilization of recombinant human GM-CSF to enhance peripheral progenitor cell yield for autologous transplantation. Bone Marrow Transplant. 1991;7(Suppl 1):13–7.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Advani R, Chao NJ, Horning SJ, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hemopoietic stem cell transplantation for lymphoma. Ann Intern Med. 1992;116:183–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nemunaitis J, Buckner CD, Dorsey KS, Willis D, Meyer W, Appelbaum F. Retrospective analysis of infectious disease in patients who received recombinant human granulocyte-macrophage colony-stimulating factor versus patients not receiving a cytokine who underwent autologous bone marrow transplantation for treatment of lymphoid cancer. Am J Clin Oncol. 1998;21:341–6.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Vales-Albertos LJ, Andrade-Sierra J, Gomez-Navarro B, et al. Nonspecific immunoglobulin and granulocyte-macrophage colony-stimulating factor use in complicated varicella zoster: the first case report in a renal transplant recipient. Transplantation. 2006;81:809–10.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Gregorini M, Castello M, Rampino T, et al. GM-CSF contributes to prompt healing of ecthyma gangrenosum lesions in kidney transplant recipient. J Nephrol. 2012;25:137–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hashmi A, Hussain M, Hussain Z, et al. Use of rHu GM-CSF in renal-transplant patients developing leukopenia. Transplant Proc. 1997;29:3053.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Trindade E, Maton P, Reding R, et al. Use of granulocyte macrophage colony stimulating factor in children after orthotopic liver transplantation. J Hepatol. 1998;28:1054–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Pinsky MR. Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest. 2005;127:2139–50.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Sokal EM, Caragiozoglou T, Lamy M, Reding R, Otte JB. Epstein-Barr virus serology and Epstein-Barr virus-associated lymphoproliferative disorders in pediatric liver transplant recipients. Transplantation. 1993;56:1394–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Nemunaitis J, Shannon-Dorcy K, Appelbaum FR, et al. Long-term follow-up of patients with invasive fungal disease who received adjunctive therapy with recombinant human macrophage colony-stimulating factor. Blood. 1993;82:1422–7.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Antachopoulos C, Roilides E. Cytokines and fungal infections. Br J Haematol. 2005;129:583–96.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Komrokji RS, Lyman GH. The colony-stimulating factors: use to prevent and treat neutropenia and its complications. Expert Opin Biol Ther. 2004;4:1897–910.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Roilides E, Lamaignere CG, Farmaki E. Cytokines in immunodeficient patients with invasive fungal infections: an emerging therapy. Int J Infect Dis. 2002;6:154–63.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-CSF): the first 10 years. Blood. 1996;88:1907–29.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Root RK, Dale DC. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: comparisons and potential for use in the treatment of infections in nonneutropenic patients. J Infect Dis. 1999;179(Suppl 2):S342–52.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Rodriguez-Adrian LJ, Grazziutti ML, Rex JH, Anaissie EJ. The potential role of cytokine therapy for fungal infections in patients with cancer: is recovery from neutropenia all that is needed? Clin Infect Dis. 1998;26:1270–8.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Ohno R, Tomonaga M, Kobayashi T, et al. Effect of granulocyte colony-stimulating factor after intensive induction therapy in relapsed or refractory acute leukemia. N Engl J Med. 1990;323:871–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Pappas PG, Bustamante B, Ticona E, et al. Recombinant interferon- gamma 1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J Infect Dis. 2004;189:2185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Minguez C, Mazuecos A, Ceballos M, Tejuca F, Rivero M. Worsening of renal function in a renal transplant patient treated with granulocyte colony-stimulating factor. Nephrol Dial Transplant. 1995;10:2166–7.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Gallin JI, Farber JM, Holland SM, Nutman TB. Interferon-gamma in the management of infectious diseases. Ann Intern Med. 1995;123:216–24.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Murray HW. Interferon-gamma and host antimicrobial defense: current and future clinical applications. Am J Med. 1994;97:459–67.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Abend JR, Low JA, Imperiale MJ. Inhibitory effect of gamma interferon on BK virus gene expression and replication. J Virol. 2007;81:272–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Wilson JJ, Lin E, Pack CD, et al. Gamma interferon controls mouse polyomavirus infection in vivo. J Virol. 2011;85:10126–34.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Nagai H, Guo J, Choi H, Kurup V. Interferon-gamma and tumor necrosis factor-alpha protect mice from invasive aspergillosis. J Infect Dis. 1995;172:1554–60.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kullberg BJ, van ’t Wout JW, Hoogstraten C, van Furth R. Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis. 1993;168:436–43.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group. N Engl J Med. 1991;324:509–16.Google Scholar
  122. 122.
    Safdar A, Rodriguez G, Ohmagari N, et al. The safety of interferon-gamma-1b therapy for invasive fungal infections after hematopoietic stem cell transplantation. Cancer. 2005;103:731–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aspasia Katragkou
    • 1
    • 2
    • 3
  • Thomas J. Walsh
    • 1
    • 4
    • 5
    • 6
  • Emmanuel Roilides
    • 7
    Email author
  1. 1.Transplantation-Oncology Infectious Diseases Program, New York-Presbyterian/Weill Cornell Medical CenterNew YorkUSA
  2. 2.3rd Department of PediatricsAristotle University, Hippokration HospitalThessalonikiGreece
  3. 3.Nationwide Children’s Hospital, Department of Pediatric Infectious DiseasesColumbusUSA
  4. 4.Department of PediatricsNew York-Presbyterian/Weill Cornell Medical CenterNew YorkUSA
  5. 5.Department of Microbiology and ImmunologyNew York-Presbyterian/Weill Cornell Medical CenterNew YorkUSA
  6. 6.Transplant Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical CenterNew YorkUSA
  7. 7.3rd Department of PediatricsHippokration Hospital, School of Health Sciences, Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations