Antibiotic Consideration in Transplant Recipients

  • Jerry AltshulerEmail author
  • Samuel L. Aitken
  • Melanie Maslow
  • John Papadopoulos
  • Amar Safdar


Transplant patients are uniquely predisposed to infections with multidrug-resistant organisms both in the early and late phases after transplantation. Similarly, recipients of stem cell or solid organ allograft show greater susceptibility for often difficult-to-treat infections acquired during the extensive healthcare environmental contact and multidrug-resistant bacteria in patients’ community. Infections are frequently encountered during pretransplant period due to the undergoing neoplastic processes or end-stage organ disease and rarely unwittingly transmitted via an infected donor graft. Major risk factors for infections following transplantation procedures include prolonged hospitalization, prior systemic antibiotic exposure, surgeries, need for critical care unit stay, mechanical ventilation, and presence of indwelling intravascular and other body cavity devices. Antibiotic regimens are often more complex and in a vast number of transplant patients given empirically or preemptively. Drug-drug interactions with immunosuppressive medications and serious, treatment-limiting adverse reactions further complicate management of these high-risk individuals. Use of prophylactic antibiotics also contributes to selection of antibiotic resistance organisms and rarely development of de novo drug-resistant pathogen. Multiple studies have documented increased morbidity and mortality in the transplant population, especially due to bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cepacia, methicillin-resistant S. aureus, and vancomycin-resistant enterococci. This chapter will focus on the major classes of antibiotics including conventional drugs and new antimicrobials in development, mechanisms of resistance, and the indications for use in the transplant population.


Transplantation Bacterial infections Antibiotics Drug interaction Mechanism of action Drug toxicity Therapeutic drug monitoring (TDM) Volume of distribution (Vd) Bioavailability (F) Area under the concentration curve (AUC) Minimum inhibitory concentration (MIC) Aerosolized Immunomodulation Investigational 


  1. 1.
    Shields RK, Kwak EJ, Potoski BA, Doi Y, Adams-Haduch JM, Silviera FP, et al. High mortality rates among solid organ transplant recipients infected with extensively drug-resistant Acinetobacter baumannii: using in vitro antibiotic combination testing to identify the combination of a carbapenem and colistin as an effective treatment regimen. Diagn Microbiol Infect Dis. 2011;70(2):246–52.CrossRefGoogle Scholar
  2. 2.
    Nunley DR, Bauldoff GS, Mangino JE, Pope-Harman AL. Mortality associated with Acinetobacter baumannii infections experienced by lung transplant recipients. Lung. 2010;188(5):381–5.CrossRefGoogle Scholar
  3. 3.
    Dobbin C, Maley M, Harkness J, Benn R, Malouf M, Glanville A, et al. The impact of pan-resistant bacterial pathogens on survival after lung transplantation in cystic fibrosis: results from a single large referral centre. J Hosp Infect. 2004;56(4):277–82.CrossRefGoogle Scholar
  4. 4.
    Linares L, Garcia-Goez JF, Cervera C, Almela M, Sanclemente G, Cofan F, et al. Early bacteremia after solid organ transplantation. Transplant Proc. 2009;41(6):2262–4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hafkin J, Blumberg E. Infections in lung transplantation: new insights. Curr Opin Organ Transplant. 2009;14(5):483–7.CrossRefGoogle Scholar
  6. 6.
    Chambers HF. In: Mandell Gerald L, Bennett JE, Raphael D, editors. Penicillins and Beta-lactam inhibitors. Philadelphia, PA: Churchill Livingstone; 2010.Google Scholar
  7. 7.
    Chambers HF. Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis. 1999;179(Suppl 2):S353–9.CrossRefGoogle Scholar
  8. 8.
    Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32(2):234–58.CrossRefGoogle Scholar
  9. 9.
    Tomasz A, Waks S. Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. Proc Natl Acad Sci U S A. 1975;72(10):4162–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Novak R, Charpentier E, Braun JS, Tuomanen E. Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. Mol Cell. 2000;5(1):49–57.CrossRefGoogle Scholar
  11. 11.
    Wolter DJ, Lister PD. Mechanisms of beta-lactam resistance among Pseudomonas aeruginosa. Curr Pharma Des. 2013;19(2):209–22.CrossRefGoogle Scholar
  12. 12.
    Rice LB. Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc Mayo Clin. 2012;87(2):198–208.CrossRefGoogle Scholar
  13. 13.
    Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.CrossRefGoogle Scholar
  14. 14.
    Hall BG, Barlow M. Revised ambler classification of {beta}-lactamases. J Antimicrob Chemother. 2005;55(6):1050–1.CrossRefGoogle Scholar
  15. 15.
    Tangden T, Adler M, Cars O, Sandegren L, Lowdin E. Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. J Antimicrob Chemother. 2013;68(6):1319–26.CrossRefGoogle Scholar
  16. 16.
    Chopra T, Marchaim D, Veltman J, Johnson P, Zhao JJ, Tansek R, et al. Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 2012;56(7):3936–42.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rossolini GM, D'Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14(Suppl 1):33–41.CrossRefGoogle Scholar
  18. 18.
    Johnson JR, Urban C, Weissman SJ, Jorgensen JH, Lewis JS 2nd, Hansen G, et al. Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-beta-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrob Agents Chemother. 2012;56(5):2364–70.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Heritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(8):3198–202.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Raviv Y, Shitrit D, Amital A, Fox B, Bakal I, Tauber R, et al. Multidrug-resistant Klebsiella pneumoniae acquisition in lung transplant recipients. Clin Transpl. 2012;26(4):E388–94.CrossRefGoogle Scholar
  21. 21.
    Wang L, Archer GL. Roles of CcrA and CcrB in excision and integration of staphylococcal cassette chromosome mec, a Staphylococcus aureus genomic island. J Bacteriol. 2010;192(12):3204–12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother. 2011;55(7):3538–45.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wright AJ. The penicillins. Mayo Clin Proc Mayo Clin. 1999;74(3):290–307.CrossRefGoogle Scholar
  24. 24.
    Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Williams JD. Beta-lactamases and beta-lactamase inhibitors. Int J Antimicrob Agents. 1999;12(Suppl 1):S3–7. discussion S26–7.CrossRefGoogle Scholar
  26. 26.
    Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, et al. Beta-lactams and beta-lactamase-inhibitors in current- or potential-clinical practice: a comprehensive update. Crit Rev Microbiol. 2009;35(2):81–108.CrossRefGoogle Scholar
  27. 27.
    Biondi S, Long S, Panunzio M, Qin WL. Current trends in beta-lactam based beta-lactamases inhibitors. Curr Med Chem. 2011;18(27):4223–36.CrossRefGoogle Scholar
  28. 28.
    Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006;12(9):826–36.CrossRefGoogle Scholar
  29. 29.
    Vila J, Pachon J. Therapeutic options for Acinetobacter baumannii infections: an update. Expert Opin Pharmacother. 2012;13(16):2319–36.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Betrosian AP, Frantzeskaki F, Xanthaki A, Georgiadis G. High-dose ampicillin-sulbactam as an alternative treatment of late-onset VAP from multidrug-resistant Acinetobacter baumannii. Scand J Infect Dis. 2007;39(1):38–43.CrossRefGoogle Scholar
  31. 31.
    Papp-Wallace KM, Senkfor B, Gatta J, Chai W, Taracila MA, Shanmugasundaram V, et al. Early insights into the interactions of different beta-lactam antibiotics and beta-lactamase inhibitors against soluble forms of Acinetobacter baumannii PBP1a and PBP3. Antimicrob Agents Chemother. 2012;56(11):5687–92.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Durante-Mangoni E, Zarrilli R. Global spread of drug-resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance. Future Microbiol. 2011;6(4):407–22.CrossRefGoogle Scholar
  33. 33.
    Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, et al. Avibactam is a covalent, reversible, non-beta-lactam beta-lactamase inhibitor. Proc Natl Acad Sci U S A. 2012;109(29):11663–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kazmierczak KM, Biedenbach DJ, Hackel M, Rabine S, de Jonge BL, Bouchillon SK, et al. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to Ceftazidime-avibactam and Aztreonam-avibactam. Antimicrob Agents Chemother. 2016;60(8):4490–500.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, et al. Can ceftazidime/avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017;61(4). pii: e02243–16.Google Scholar
  36. 36.
    Castanheira M, Rhomberg PR, Flamm RK, Jones RN. Effect of the beta-lactamase inhibitor Vaborbactam combined with Meropenem against serine Carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(9):5454–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lob SH, Hackel MA, Kazmierczak KM, Young K, Motyl MR, Karlowsky JA, et al. In vitro activity of Imipenem-Relebactam against gram-negative ESKAPE pathogens isolated by clinical Laboratories in the United States in 2015 – results from the SMART global surveillance program. Antimicrob Agents Chemother. 2017;61(6):e02209–16.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Marshall WF, Blair JE. The cephalosporins. Mayo Clin Proc Mayo Clin. 1999;74(2):187–95.CrossRefGoogle Scholar
  39. 39.
    Patel KB, Nicolau DP, Nightingale CH, Quintiliani R. Pharmacokinetics of cefotaxime in healthy volunteers and patients. Diagn Microbiol Infect Dis. 1995;22(1–2):49–55.CrossRefGoogle Scholar
  40. 40.
    Sader HS, Castanheira M, Mendes RE, Flamm RK, Antimicrobial JRN. Activity of High-Proportion Cefepime-Tazobactam (WCK 4282) against a Large Number of Gram-Negative Isolates Collected Worldwide in 2014. Antimicrob Agents Chemother. 2017;61(4):e02409–16.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Cha R. In vitro activity of cefepime, imipenem, tigecycline, and gentamicin, alone and in combination, against extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Pharmacotherapy. 2008;28(3):295–300.CrossRefGoogle Scholar
  42. 42.
    Lee NY, Lee CC, Huang WH, Tsui KC, Hsueh PR, Ko WC. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis. 2013;56(4):488–95.CrossRefGoogle Scholar
  43. 43.
    Arizpe A, Reveles KR, Patel SD, Aitken SL. Updates in the management of cephalosporin-resistant gram-negative bacteria. Curr Infect Dis Rep. 2016;18(12):39.CrossRefGoogle Scholar
  44. 44.
    Cabot G, Bruchmann S, Mulet X, Zamorano L, Moyà B, Juan C, et al. Pseudomonas aeruginosa Ceftolozane-Tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58(6):3091–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Munita JM, Aitken SL, Miller WR, Perez F, Rosa R, Shimose LA, et al. Multicenter evaluation of Ceftolozane/Tazobactam for Serious Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa. Clin Infect Dis. 2017;65(1):158–61.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of Ceftolozane-Tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011-2012). Antimicrob Agents Chemother. 2013;57(12):6305–10.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ito A, Nishikawa T, Matsumoto S, Yoshizawa H, Sato T, Nakamura R, et al. Siderophore cephalosporin Cefiderocol utilizes ferric Iron transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(12):7396–401.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Falagas ME, Skalidis T, Vardakas KZ, Legakis NJ. Activity of cefiderocol (S-649266) against carbapenem-resistant gram-negative bacteria collected from inpatients in Greek hospitals. J Antimicrob Chemother. 2017;72(6):1704–8.CrossRefGoogle Scholar
  49. 49.
    Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012;302(2):63–8.CrossRefGoogle Scholar
  50. 50.
    Muller C, Plesiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(3):1211–21.CrossRefGoogle Scholar
  51. 51.
    Zhanel GG, Wiebe R, Dilay L, Thomson K, Rubinstein E, Hoban DJ, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–52.CrossRefGoogle Scholar
  52. 52.
    Norrby SR. Neurotoxicity of carbapenem antibacterials. Drug Safety. 1996;15(2):87–90.CrossRefGoogle Scholar
  53. 53.
    Bazan JA, Martin SI, Kaye KM. Newer beta-lactam antibiotics: doripenem, ceftobiprole, ceftaroline, and cefepime. Med Clin N Am. 2011;95(4):743–60. viiiCrossRefGoogle Scholar
  54. 54.
    Jones RN, Huynh HK, Biedenbach DJ. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob Agents Chemother. 2004;48(8):3136–40.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Fritsche TR, Stilwell MG, Jones RN. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin Microbiol Infect. 2005;11(12):974–84.CrossRefGoogle Scholar
  56. 56.
    Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother. 2004;48(8):3086–92.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Barry AL, Thornsberry C, Jones RN, Gavan TL. Aztreonam: antibacterial activity, beta-lactamase stability, and interpretive standards and quality control guidelines for disk-diffusion susceptibility tests. Rev Infect Dis. 1985;7(Suppl 4):S594–604.CrossRefGoogle Scholar
  58. 58.
    Swabb EA. Review of the clinical pharmacology of the monobactam antibiotic aztreonam. Am J Med. 1985;78(2A):11–8.CrossRefGoogle Scholar
  59. 59.
    Zeitler K, Salvas B, Stevens V, Brown J. Aztreonam lysine for inhalation: new formulation of an old antibiotic. Am J Health-Syst Pharm. 2012;69(2):107–15.CrossRefGoogle Scholar
  60. 60.
    Buonomo A, Nucera E, De Pasquale T, Pecora V, Lombardo C, Sabato V, et al. Tolerability of aztreonam in patients with cell-mediated allergy to beta-lactams. Int Arch Allergy Immunol. 2011;155(2):155–9.CrossRefGoogle Scholar
  61. 61.
    Farrell DJ, Castanheira M, Mendes RE, Sader HS, Jones RN. In vitro activity of Ceftaroline against multidrug-resistant Staphylococcus aureus and Streptococcus pneumoniae: a review of published studies and the AWARE surveillance program (2008-2010). Clin Infect Dis. 2012;55(Suppl 3):S206–14.CrossRefGoogle Scholar
  62. 62.
    File TM Jr, Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis. 2012;55(Suppl 3):S173–80.CrossRefGoogle Scholar
  63. 63.
    Lagace-Wiens P, Rubinstein E. Adverse reactions to beta-lactam antimicrobials. Expert Opin Drug Safety. 2012;11(3):381–99.CrossRefGoogle Scholar
  64. 64.
    Romano A, Gaeta F, Valluzzi RL, Caruso C, Rumi G, Bousquet PJ. IgE-mediated hypersensitivity to cephalosporins: cross-reactivity and tolerability of penicillins, monobactams, and carbapenems. J Allergy Clin Immunol. 2010;126(5):994–9.CrossRefGoogle Scholar
  65. 65.
    Chang C, Mahmood MM, Teuber SS, Gershwin ME. Overview of penicillin allergy. Clin Rev Allergy Immunol. 2012;43(1–2):84–97.CrossRefGoogle Scholar
  66. 66.
    Prescott WA Jr, Kusmierski KA. Clinical importance of carbapenem hypersensitivity in patients with self-reported and documented penicillin allergy. Pharmacotherapy. 2007;27(1):137–42.CrossRefGoogle Scholar
  67. 67.
    Bickford CL, Spencer AP. Biliary sludge and hyperbilirubinemia associated with ceftriaxone in an adult: case report and review of the literature. Pharmacotherapy. 2005;25(10):1389–95.CrossRefGoogle Scholar
  68. 68.
    Alitalo R, Ruutu M, Valtonen V, Lehtonen T, Pentikainen PJ. Hypoprothrombinaemia and bleeding during administration of cefamandole and cefoperazone. Report of three cases. Ann Clin Res. 1985;17(3):116–9.Google Scholar
  69. 69.
    Levine DP. Vancomycin: a history. Clin Infect Dis. 2006;42(Suppl 1):S5–12.CrossRefGoogle Scholar
  70. 70.
    Kirst HA, Thompson DG, Nicas TI. Historical yearly usage of vancomycin. Antimicrob Agents Chemother. 1998;42(5):1303–4.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Peacock JJE, Marsik FJ, Wenzel RP. Methicillin-resistant Staphylococcus aureus: introduction and spread within a hospital. Ann Intern Med. 1998;93(4):526–32.CrossRefGoogle Scholar
  72. 72.
    Saravolatz LD, Pohlod DJ, Arking LM. Community-acquired methicillin-resistant Staphylococcus aureus infections: a new source for nosocomial outbreaks. Ann Intern Med. 1982;97(3):325–9.CrossRefGoogle Scholar
  73. 73.
    Rogers HJ, Forsberg CW. Role of autolysins in the killing of bacteria by some bactericidal antibiotics. J Bacteriol. 1971;108(3):1235–43.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Krogstad DJ, Pargwette AR. Defective killing of enterococci: a common property of antimicrobial agents acting on the cell wall. Antimicrob Agents Chemother. 1980;17(6):965–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Geraci JE, Wilson WR. Vancomycin therapy for infective endocarditis. Rev Infect Dis. 1981;3(Suppl):S250–8.CrossRefGoogle Scholar
  76. 76.
    Uttley AH, Collins CH, Naidoo J, George RC. Vancomycin-resistant enterococci. Lancet. 1988;1(8575–6):57–8.CrossRefGoogle Scholar
  77. 77.
    Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in enterococcus faecium. N Engl J Med. 1988;319(3):157–61.CrossRefGoogle Scholar
  78. 78.
    Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother. 1997;40(1):135–6.CrossRefGoogle Scholar
  79. 79.
    Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003;348(14):1342–7.CrossRefGoogle Scholar
  80. 80.
    Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42(Suppl 1):S25–34.CrossRefGoogle Scholar
  81. 81.
    Navarro F, Courvalin P. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in enterococcus casseliflavus and enterococcus flavescens. Antimicrob Agents Chemother. 1994;38(8):1788–93.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol. 1996;4(10):401–7.CrossRefGoogle Scholar
  83. 83.
    Green M, Shlaes JH, Barbadora K, Shlaes DM. Bacteremia due to vancomycin-dependent Enterococcus faecium. Clin Infect Dis. 1995;20(3):712–4.CrossRefGoogle Scholar
  84. 84.
    Farrag N, Eltringham I, Liddy H. Vancomycin-dependent Enterococcus faecalis. Lancet. 1996;348(9041):1581–2.CrossRefGoogle Scholar
  85. 85.
    Van Bambeke F, Chauvel M, Reynolds PE, Fraimow HS, Courvalin P. Vancomycin-dependent enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother. 1999;43(1):41–7.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Geraci JEHF, Nichols DR, Ross GT, Wellman WE. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Proc Staff Meet Mayo Clin. 1956;31(21):564–82.Google Scholar
  87. 87.
    Moellering RC Jr. The specter of glycopeptide resistance: current trends and future considerations. Am J Med. 1998;104(5A):3S–6S.CrossRefGoogle Scholar
  88. 88.
    Siebert WT, Moreland N, Williams TW Jr. Synergy of vancomycin plus cefazolin or cephalothin against methicillin-resistance Staphylococcus epidermidis. J Infect Dis. 1979;139(4):452–7.CrossRefGoogle Scholar
  89. 89.
    Noble WC, Virani Z, Cree RG. Co-transfer of vancomycin and other resistance genes from enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett. 1992;72(2):195–8.CrossRefGoogle Scholar
  90. 90.
    Srinivasan A, Dick JD, Perl TM. Vancomycin resistance in staphylococci. Clin Microbiol Rev. 2002;15(3):430–8.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC. Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006. Clin Infect Dis. 2008;46(5):668–74.CrossRefGoogle Scholar
  92. 92.
    Tenover FC, Moellering RC Jr. The rationale for revising the clinical and laboratory standards institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis. 2007;44(9):1208–15.CrossRefGoogle Scholar
  93. 93.
    Daum RS, Gupta S, Sabbagh R, Milewski WM. Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. J Infect Dis. 1992;166(5):1066–72.CrossRefGoogle Scholar
  94. 94.
    Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother. 1998;42(2):199–209.CrossRefGoogle Scholar
  95. 95.
    Sieradzki K, Tomasz A. Gradual alterations in cell wall structure and metabolism in vancomycin-resistant mutants of Staphylococcus aureus. J Bacteriol. 1999;181(24):7566–70.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Charles PG, Ward PB, Johnson PD, Howden BP, Grayson ML. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis. 2004;38(3):448–51.CrossRefGoogle Scholar
  97. 97.
    Yeh YC, Yeh KM, Lin TY, Chiu SK, Yang YS, Wang YC, et al. Impact of vancomycin MIC creep on patients with methicillin-resistant Staphylococcus aureus bacteremia. J Microbiol Immunol Infect. 2012;45(3):214–20.CrossRefGoogle Scholar
  98. 98.
    Steinkraus G, White R, Friedrich L. Vancomycin MIC Creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001-05. J Antimicrob Chemother. 2007;60(4):788–94.CrossRefGoogle Scholar
  99. 99.
    Sherris JC. Problems in in vitro determination of antibiotic tolerance in clinical isolates. Antimicrob Agents Chemother. 1986;30(5):633–7.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jones RN. Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis. 2006;42(Suppl 1):S13–24.CrossRefGoogle Scholar
  101. 101.
    Sakoulas G, Eliopoulos GM, Moellering RC Jr, Wennersten C, Venkataraman L, Novick RP, et al. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother. 2002;46(5):1492–502.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Verdier I, Reverdy ME, Etienne J, Lina G, Bes M, Vandenesch F. Staphylococcus aureus isolates with reduced susceptibility to glycopeptides belong to accessory gene regulator group I or II. Antimicrob Agents Chemother. 2004;48(3):1024–7.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Farber BF, Moellering RC Jr. Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob Agents Chemother. 1983;23(1):138–41.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25(4):679–87.CrossRefGoogle Scholar
  105. 105.
    Hammond DA, Smith MN, Li C, Hayes SM, Lusardi K, Bookstaver PB. Systematic review and meta-analysis of acute kidney injury associated with Concomitant Vancomycin and Piperacillin/tazobactam. Clin Infect Dis. 2017;64(5):666–74.Google Scholar
  106. 106.
    Navalkele B, Pogue JM, Karino S, Nishan B, Salim M, Solanki S, et al. Risk of acute kidney injury in patients on concomitant Vancomycin and Piperacillin-Tazobactam compared to those on Vancomycin and Cefepime. Clin Infect Dis. 2017;64(2):116–23.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC Jr, Craig WA, Billeter M, et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2009;29(11):1275–9.CrossRefGoogle Scholar
  108. 108.
    Bergman MM, Glew RH, Ebert TH. Acute interstitial nephritis associated with vancomycin therapy. Arch Int Med. 1988;148(10):2139–40.CrossRefGoogle Scholar
  109. 109.
    Brummett RE. Ototoxicity of vancomycin and analogues. Otolaryngol Clin N Am. 1993;26(5):821–8.Google Scholar
  110. 110.
    Traber PG, Levine DP. Vancomycin ototoxicity in patient with normal renal function. Ann Intern Med. 1981;95(4):458–60.CrossRefGoogle Scholar
  111. 111.
    Pai MP, Mercier RC, Koster SA. Epidemiology of vancomycin-induced neutropenia in patients receiving home intravenous infusion therapy. Ann Pharmacother. 2006;40(2):224–8.CrossRefGoogle Scholar
  112. 112.
    Black E, Lau TT, Ensom MH. Vancomycin-induced neutropenia: is it dose- or duration-related? Ann Pharmacother. 2011;45(5):629–38.CrossRefGoogle Scholar
  113. 113.
    Von Drygalski A, Curtis BR, Bougie DW, McFarland JG, Ahl S, Limbu I, et al. Vancomycin-induced immune thrombocytopenia. N Engl J Med. 2007;356(9):904–10.CrossRefGoogle Scholar
  114. 114.
    O'Sullivan TL, Ruffing MJ, Lamp KC, Warbasse LH, Rybak MJ. Prospective evaluation of red man syndrome in patients receiving vancomycin. J Infect Dis. 1993;168(3):773–6.CrossRefGoogle Scholar
  115. 115.
    Sahai J, Healy DP, Garris R, Berry A, Polk RE. Influence of antihistamine pretreatment on vancomycin-induced red-man syndrome. J Infect Dis. 1989;160(5):876–81.CrossRefGoogle Scholar
  116. 116.
    Li H, Yu DL, Ren L, Zhong L, Peng ZH, Teng MJ. Analysis of gram-positive bacterial infection in patients following liver transplantation. Chin Med J. 2012;125(14):2417–21.Google Scholar
  117. 117.
    Shields RK, Clancy CJ, Minces LR, Kwak EJ, Silveira FP, Abdel Massih RC, et al. Staphylococcus aureus infections in the early period after lung transplantation: epidemiol risk factors outcomes. J Heart Lung Transplant. 2012;31(11):1199–206.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Willems L, Porcher R, Lafaurie M, Casin I, Robin M, Xhaard A, et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. Biol Blood Marrow Transplant. 2012;18(8):1295–301.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Begg EJ, Barclay ML. Aminoglycosides--50 years on. Br J Clin Pharmacol. 1995;39(6):597–603.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Weinstein MJ, Luedemann GM, Oden EM, Wagman GH, Rosselet JP, Marquez JA, et al. Gentamicin, a new antibiotic complex from MICROMONOSPORA. J Med Chem. 1963;6:463–4.CrossRefGoogle Scholar
  121. 121.
    Haidar G, Alkroud A, Cheng S, Churilla TM, Churilla BM, Shields RK, et al. Association between the presence of aminoglycoside-modifying enzymes and in vitro activity of gentamicin, tobramycin, Amikacin, and Plazomicin against Klebsiella pneumoniae Carbapenemase- and extended-Spectrum-beta-lactamase-producing Enterobacter species. Antimicrob Agents Chemother. 2016;60(9):5208–14.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Noller HF. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227.CrossRefGoogle Scholar
  123. 123.
    Davis BD, Chen LL, Tai PC. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci U S A. 1986;83(16):6164–8.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Peterson AA, Hancock RE, McGroarty EJ. Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol. 1985;164(3):1256–61.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Bryan LE, Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother. 1983;23(6):835–45.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Taber HW, Mueller JP, Miller PF, Arrow AS. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev. 1987;51(4):439–57.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Damper PD, Epstein W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob Agents Chemother. 1981;20(6):803–8.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Zimelis VM, Jackson GG. Activity of aminoglycoside antibiotics against Pseudomonas aeruginosa: specificity and site of calcium and magnesium antagonism. J Infect Dis. 1973;127(6):663–9.CrossRefGoogle Scholar
  129. 129.
    Fantin B, Carbon C. In vivo antibiotic synergism: contribution of animal models. Antimicrob Agents Chemother. 1992;36(5):907–12.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Magnet S, Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev. 2005;105(2):477–98.CrossRefGoogle Scholar
  131. 131.
    Miller GH, Sabatelli FJ, Hare RS, Glupczynski Y, Mackey P, Shlaes D, et al. The most frequent aminoglycoside resistance mechanisms--changes with time and geographic area: a reflection of aminoglycoside usage patterns? Aminoglycoside resistance study groups. Clin Infect Dis. 1997;24(Suppl 1):S46–62.CrossRefGoogle Scholar
  132. 132.
    Hocquet D, Vogne C, El Garch F, Vejux A, Gotoh N, Lee A, et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 2003;47(4):1371–5.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Benveniste R, Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem. 1973;42:471–506.CrossRefGoogle Scholar
  134. 134.
    Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57(1):138–63.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Acar JF, Witchitz JL, Goldstein F, Talbot JN, Le Goffic F. Susceptibility of aminoglycoside-resistant gram-negative bacilli to amikacin: delineation of individual resistance patterns. J Infect Dis. 1976;134(SUPPL):S280–5.CrossRefGoogle Scholar
  136. 136.
    Damaso D, Moreno-Lopez M, Martinez-Beltran J, Garcia-Iglesias MC. Susceptibility of current clinical isolates of Pseudomonas aeruginosa and enteric gram-negative bacilli to amikacin and other aminoglycoside antibiotics. J Infect Dis. 1976;134(SUPPL):S394–0.Google Scholar
  137. 137.
    Bryan LE, O'Hara K, Wong S. Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984;26(2):250–5.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Vogne C, Aires JR, Bailly C, Hocquet D, Plésiat P. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2004;48(5):1676–80.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Daikos GL, Jackson GG, Lolans VT, Livermore DM. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis. 1990;162(2):414–20.CrossRefGoogle Scholar
  140. 140.
    Smith CR, Lipsky JJ, Laskin OL, Hellmann DB, Mellits ED, Longstreth J, et al. Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin. N Engl J Med. 1980;302(20):1106–9.CrossRefGoogle Scholar
  141. 141.
    Bertino JS Jr, Booker LA, Franck PA, Jenkins PL, Franck KR, Nafziger AN. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis. 1993;167(1):173–9.CrossRefGoogle Scholar
  142. 142.
    Prins JM, Weverling GJ, de Blok K, van Ketel RJ, Speelman P. Validation and nephrotoxicity of a simplified once-daily aminoglycoside dosing schedule and guidelines for monitoring therapy. Antimicrob Agents Chemother. 1996;40(11):2494–9.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Schentag JJ, Plaut ME, Cerra FB. Comparative nephrotoxicity of gentamicin and tobramycin: pharmacokinetic and clinical studies in 201 patients. Antimicrob Agents Chemother. 1981;19(5):859–66.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Gilbert DN, Plamp C, Starr P, Bennet WM, Houghton DC, Porter G. Comparative nephrotoxicity of gentamicin and tobramycin in rats. Antimicrob Agents Chemother. 1978;13(1):34–40.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Luft FC, Bloch R, Sloan RS, Yum MN, Costello R, Maxwell DR. Comparative nephrotoxicity of aminoglycoside antibiotics in rats. J Infect Dis. 1978;138(4):541–5.CrossRefGoogle Scholar
  146. 146.
    Cohen L, Lapkin R, Kaloyanides GJ. Effect of gentamicin on renal function in the rat. J Pharmacol Exp Ther. 1975;193(1):264–73.Google Scholar
  147. 147.
    Kaloyanides GJ, Pastoriza-Munoz E. Aminoglycoside nephrotoxicity. Kidney Int. 1980;18(5):571–82.CrossRefGoogle Scholar
  148. 148.
    Fabre J, Rudhardt M, Blanchard P, Regamey C. Persistence of sisomicin and gentamicin in renal cortex and medulla compared with other organs and serum of rats. Kidney Int. 1976;10(6):444–9.CrossRefGoogle Scholar
  149. 149.
    Sandoval R, Leiser J, Molitoris BA. Aminoglycoside antibiotics traffic to the Golgi complex in LLC-PK1 cells. J Am Soc Nephrol. 1998;9(2):167–74.Google Scholar
  150. 150.
    Verroust PJ, Birn H, Nielsen R, Kozyraki R, Christensen EI. The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology. Kidney Int. 2002;62(3):745–56.CrossRefGoogle Scholar
  151. 151.
    Somermeyer MG, Knauss TC, Weinberg JM, Humes HD. Characterization of Ca2+ transport in rat renal brush-border membranes and its modulation by phosphatidic acid. Biochem J. 1983;214(1):37–46.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Klotman PE, Yarger WE. Reduction of renal blood flow and proximal bicarbonate reabsorption in rats by gentamicin. Kidney Int. 1983;24(5):638–43.CrossRefGoogle Scholar
  153. 153.
    Tulkens PM. Experimental studies on nephrotoxicity of aminoglycosides at low doses. Mechanisms and perspectives. Am J Med. 1986;80(6B):105–14.CrossRefGoogle Scholar
  154. 154.
    Russo JC, Adelman RD. Gentamicin-induced Fanconi syndrome. J Pediatr. 1980;96(1):151–3.CrossRefGoogle Scholar
  155. 155.
    Gilbert DN, Houghton DC, Bennett WM, Plamp CE, Reger K, Porter GA. Reversibility of gentamicin nephrotoxicity in rats: recovery during continuous drug administration. Proc Soc Exp Biol Med. 1979;160(1):99–103.CrossRefGoogle Scholar
  156. 156.
    Nonclercq D, Wrona S, Toubeau G, Zanen J, Heuson-Stiennon JA, Schaudies RP, et al. Tubular injury and regeneration in the rat kidney following acute exposure to gentamicin: a time-course study. Ren Fail. 1992;14(4):507–21.CrossRefGoogle Scholar
  157. 157.
    Klastersky J, Hensgens C, Debusscher L. Empiric therapy for cancer patients: comparative study of ticarcillin-tobramycin, ticarcillin-cephalothin, and cephalothin-tobramycin. Antimicrob Agents Chemother. 1975;7(5):640–5.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Ohnishi A, Bryant TD, Branch KR, Sabra R, Branch RA. Role of sodium in the protective effect of ticarcillin on gentamicin nephrotoxicity in rats. Antimicrob Agents Chemother. 1989;33(6):928–32.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Fausti SA, Helt WJ, Phillips DS, Gordon JS, Bratt GW, Sugiura KM, et al. Early detection of ototoxicity using 1/6th-octave steps. J Am Acad Audiol. 2003;14(8):444–50.Google Scholar
  160. 160.
    Govaerts PJ, Claes J, van de Heyning PH, Jorens PG, Marquet J, De Broe ME. Aminoglycoside-induced ototoxicity. Toxicol Lett. 1990;52(3):227–51.CrossRefGoogle Scholar
  161. 161.
    Lyford-Pike S, Vogelheim C, Chu E, Della Santina CC, Carey JP. Gentamicin is primarily localized in vestibular type I hair cells after intratympanic administration. J Assoc Res Otolaryngol. 2007;8(4):497–508.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Hashino E, Shero M, Salvi RJ. Lysosomal targeting and accumulation of aminoglycoside antibiotics in sensory hair cells. Brain Res. 1997;777(1–2):75–85.CrossRefGoogle Scholar
  163. 163.
    Manian FA, Stone WJ, Alford RH. Adverse antibiotic effects associated with renal insufficiency. Rev Infect Dis. 1990;12(2):236–49.CrossRefGoogle Scholar
  164. 164.
    Brummett RE, Fox KE. Aminoglycoside-induced hearing loss in humans. Antimicrob Agents Chemother. 1989;33(6):797–800.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Moore RD, Smith CR, Lietman PS. Risk factors for the development of auditory toxicity in patients receiving aminoglycosides. J Infect Dis. 1984;149(1):23–30.CrossRefGoogle Scholar
  166. 166.
    Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics. 2005;6(1):27–36.CrossRefGoogle Scholar
  167. 167.
    Yamada S, Kuno Y, Iwanaga H. Effects of aminoglycoside antibiotics on the neuromuscular junction: part I. Int J Clin Pharmacol Ther Toxicol. 1986;24(3):130–8.Google Scholar
  168. 168.
    Barrons RW. Drug-induced neuromuscular blockade and myasthenia gravis. Pharmacotherapy. 1997;17(6):1220–32.Google Scholar
  169. 169.
    Snavely SR, Hodges GR. The neurotoxicity of antibacterial agents. Ann Intern Med. 1984;101(1):92–104.CrossRefGoogle Scholar
  170. 170.
    Del Pozo E, Baeyens JM. Effects of calcium channel blockers on neuromuscular blockade induced by aminoglycoside antibiotics. Eur J Pharmacol. 1986;128(1–2):49–54.CrossRefGoogle Scholar
  171. 171.
    Singh YN, Harvey AL, Marshall IG. Antibiotic-induced paralysis of the mouse phrenic nerve-hemidiaphragm preparation, and reversibility by calcium and by neostigmine. Anesthesiology. 1978;48(6):418–24.CrossRefGoogle Scholar
  172. 172.
    Linares L, Cervera C, Cofan F, Ricart MJ, Esforzado N, Torregrosa V, et al. Epidemiology and outcomes of multiple antibiotic-resistant bacterial infection in renal transplantation. Transplant Proc. 2007;39(7):2222–4.CrossRefGoogle Scholar
  173. 173.
    Kalpoe JS, Sonnenberg E, Factor SH, del Rio MJ, Schiano T, Patel G, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transplant. 2012;18(4):468–74.CrossRefGoogle Scholar
  174. 174.
    Slee AM, Wuonola MA, McRipley RJ, Zajac I, Zawada MJ, Bartholomew PT, et al. Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob Agents Chemother. 1987;31(11):1791–7.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Ford CW, Zurenko GE, Barbachyn MR. The discovery of linezolid, the first oxazolidinone antibacterial agent. Curr Drug Targets Infect Disord. 2001;1(2):181–99.CrossRefGoogle Scholar
  176. 176.
    Das D, Tulkens PM, Mehra P, Fang E, Prokocimer P. tedizolid phosphate for the management of acute bacterial skin and skin structure infections: safety summary. Clin Infect Dis. 2014;58(suppl_1):S51–S7.CrossRefGoogle Scholar
  177. 177.
    Lin AH, Murray RW, Vidmar TJ, Marotti KR. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob Agents Chemother. 1997;41(10):2127–31.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, et al. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem. 2008;51(12):3353–6.CrossRefGoogle Scholar
  179. 179.
    Thompson J, O'Connor M, Mills JA, Dahlberg AE. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J Mol Biol. 2002;322(2):273–9.CrossRefGoogle Scholar
  180. 180.
    Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN, et al. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell. 2006;127(4):721–33.CrossRefGoogle Scholar
  181. 181.
    Bowersock TL, Salmon SA, Portis ES, Prescott JF, Robison DA, Ford CW, et al. MICs of oxazolidinones for Rhodococcus equi strains isolated from humans and animals. Antimicrob Agents Chemother. 2000;44(5):1367–9.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW, Wallace RJ Jr. In vitro activities of linezolid against multiple Nocardia species. Antimicrob Agents Chemother. 2001;45(4):1295–7.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Behra-Miellet J, Calvet L, Dubreuil L. Activity of linezolid against anaerobic bacteria. Int J Antimicrob Agents. 2003;22(1):28–34.CrossRefGoogle Scholar
  184. 184.
    Wallace RJ Jr, Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW. Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2001;45(3):764–7.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Brown-Elliott BA, Crist CJ, Mann LB, Wilson RW, Wallace RJ Jr. In vitro activity of linezolid against slowly growing nontuberculous mycobacteria. Antimicrob Agents Chemother. 2003;47(5):1736–8.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Condos R, Hadgiangelis N, Leibert E, Jacquette G, Harkin T, Rom WN. Case series report of a linezolid-containing regimen for extensively drug-resistant tuberculosis. Chest. 2008;134(1):187–92.CrossRefGoogle Scholar
  187. 187.
    Barber KE, Smith JR, Raut A, Rybak MJ. Evaluation of tedizolid against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. J Antimicrob Chemother. 2016;71(1):152–5.CrossRefGoogle Scholar
  188. 188.
    D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–61.CrossRefGoogle Scholar
  189. 189.
    Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Pelaez B, et al. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis. 2010;50(6):821–5.CrossRefGoogle Scholar
  190. 190.
    Meka VG, Gold HS. Antimicrobial resistance to linezolid. Clin Infect Dis. 2004;39(7):1010–5.CrossRefGoogle Scholar
  191. 191.
    Prystowsky J, Siddiqui F, Chosay J, Shinabarger DL, Millichap J, Peterson LR, et al. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 2001;45(7):2154–6.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Herrero IA, Issa NC, Patel R. Nosocomial spread of linezolid-resistant, vancomycin-resistant enterococcus faecium. N Engl J Med. 2002;346(11):867–9.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Pai MP, Rodvold KA, Schreckenberger PC, Gonzales RD, Petrolatti JM, Quinn JP. Risk factors associated with the development of infection with linezolid- and vancomycin-resistant enterococcus faecium. Clin Infect Dis. 2002;35(10):1269–72.CrossRefGoogle Scholar
  194. 194.
    Pogue JM, Paterson DL, Pasculle AW, Potoski BA. Determination of risk factors associated with isolation of linezolid-resistant strains of vancomycin-resistant enterococcus. Infect Control Hosp Epidemiol. 2007;28(12):1382–8.CrossRefGoogle Scholar
  195. 195.
    Dobbs TE, Patel M, Waites KB, Moser SA, Stamm AM, Hoesley CJ. Nosocomial spread of enterococcus faecium resistant to vancomycin and linezolid in a tertiary care medical center. J Clin Microbiol. 2006;44(9):3368–70.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Meskauskas A, Dinman JD. Ribosomal protein L3 functions as a ‘rocker switch’ to aid in coordinating of large subunit-associated functions in eukaryotes and archaea. Nucleic Acids Res. 2008;36(19):6175–86.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother. 2012;56(2):603–12.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Davidovich C, Bashan A, Yonath A. Structural basis for cross-resistance to ribosomal PTC antibiotics. Proc Natl Acad Sci U S A. 2008;105(52):20665–70.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin a antibiotics. Antimicrob Agents Chemother. 2006;50(7):2500–5.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob Agents Chemother. 2008;52(6):2244–6.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Arias CA, Vallejo M, Reyes J, Panesso D, Moreno J, Castaneda E, et al. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. J Clin Microbiol. 2008;46(3):892–6.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Liu Y, Wang Y, Wu C, Shen Z, Schwarz S, Du XD, et al. First report of the multidrug resistance gene cfr in enterococcus faecalis of animal origin. Antimicrob Agents Chemother. 2012;56(3):1650–4.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of enterococcus faecalis. Antimicrob Agents Chemother. 2012;56(7):3917–22.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Flamm RK, Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. LEADER surveillance program results for 2010: an activity and spectrum analysis of linezolid using 6801 clinical isolates from the United States (61 medical centers). Diagn Microbiol Infect Dis. 2012;74(1):54–61.CrossRefGoogle Scholar
  205. 205.
    Gerson SL, Kaplan SL, Bruss JB, Le V, Arellano FM, Hafkin B, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother. 2002;46(8):2723–6.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Sasaki T, Takane H, Ogawa K, Isagawa S, Hirota T, Higuchi S, et al. Population pharmacokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia, in Japanese patients. Antimicrob Agents Chemother. 2011;55(5):1867–73.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Bernstein WB, Trotta RF, Rector JT, Tjaden JA, Barile AJ. Mechanisms for linezolid-induced anemia and thrombocytopenia. Ann Pharmacother. 2003;37(4):517–20.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    McKee EE, Ferguson M, Bentley AT, Marks TA. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother. 2006;50(6):2042–9.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Hogan HL, Hachem RY, Neuhauser M, Raad II, Coyle E. Clinical experience of linezolid in bone marrow transplantation patients. J Pharm Pract. 2010;23(4):352–7.CrossRefGoogle Scholar
  210. 210.
    Nambiar S, Rellosa N, Wassel RT, Borders-Hemphill V, Bradley JS. Linezolid-associated peripheral and optic neuropathy in children. Pediatrics. 2011;127(6):e1528–32.CrossRefGoogle Scholar
  211. 211.
    Bressler AM, Zimmer SM, Gilmore JL, Somani J. Peripheral neuropathy associated with prolonged use of linezolid. Lancet Infect Dis. 2004;4(8):528–31.CrossRefGoogle Scholar
  212. 212.
    Legout L, Senneville E, Gomel JJ, Yazdanpanah Y, Mouton Y. Linezolid-induced neuropathy. Clin Infect Dis. 2004;38(5):767–8.CrossRefGoogle Scholar
  213. 213.
    Narita M, Tsuji BT, Yu VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy. 2007;27(8):1189–97.CrossRefGoogle Scholar
  214. 214.
    Nagel S, Kohrmann M, Huttner HB, Storch-Hagenlocher B, Schwab S. Linezolid-induced posterior reversible leukoencephalopathy syndrome. Arch Neurol. 2007;64(5):746–8.CrossRefGoogle Scholar
  215. 215.
    Hachem RY, Hicks K, Huen A, Raad I. Myelosuppression and serotonin syndrome associated with concurrent use of linezolid and selective serotonin reuptake inhibitors in bone marrow transplant recipients. Clin Infect Dis. 2003;37(1):e8–11.CrossRefGoogle Scholar
  216. 216.
    Butterfield JM, Lawrence KR, Reisman A, Huang DB, Thompson CA, Lodise TP. Comparison of serotonin toxicity with concomitant use of either linezolid or comparators and serotonergic agents: an analysis of phase III and IV randomized clinical trial data. J Antimicrob Chemother. 2012;67(2):494–502.CrossRefGoogle Scholar
  217. 217.
    Taylor JJ, Estes LL, Wilson JW. Linezolid and serotonergic drug interactions. Clin Infect Dis. 2006;43(10):1371.CrossRefGoogle Scholar
  218. 218.
    Lakey JH, Ptak M. Fluorescence indicates a calcium-dependent interaction between the lipopeptide antibiotic LY146032 and phospholipid membranes. Biochemistry. 1988;27(13):4639–45.CrossRefGoogle Scholar
  219. 219.
    Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(8):2538–44.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Mascio CT, Alder JD, Silverman JA. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother. 2007;51(12):4255–60.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Silverman JA, Mortin LI, Vanpraagh AD, Li T, Alder J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis. 2005;191(12):2149–52.CrossRefGoogle Scholar
  222. 222.
    Greenwood D, Palfreyman J. Comparative activity of LY146032 against anaerobic cocci. Eur J Clin Microbiol. 1987;6(6):682–4.CrossRefGoogle Scholar
  223. 223.
    Cui L, Tominaga E, Neoh HM, Hiramatsu K. Correlation between reduced Daptomycin susceptibility and Vancomycin resistance in Vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(3):1079–82.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Patel JB, Jevitt LA, Hageman J, McDonald LC, Tenover FC. An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in Staphylococcus aureus. Clin Infect Dis. 2006;42(11):1652–3.CrossRefGoogle Scholar
  225. 225.
    Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother. 2008;52(1):269–78.CrossRefGoogle Scholar
  226. 226.
    Baltz RH. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol. 2009;13(2):144–51.CrossRefGoogle Scholar
  227. 227.
    Jones T, Yeaman MR, Sakoulas G, Yang S-J, Proctor RA, Sahl H-G, et al. Failures in clinical treatment of Staphylococcus aureus infection with Daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother. 2008;52(1):269–78.CrossRefGoogle Scholar
  228. 228.
    Egli A, Schmid H, Kuenzli E, Widmer AF, Battegay M, Plagge H, et al. Association of daptomycin use with resistance development in Enterococcus faecium bacteraemia-a 7-year individual and population-based analysis. Clin Microbiol Infect. 2017;23(2):118.e1–7.CrossRefGoogle Scholar
  229. 229.
    DiPippo AJ, Tverdek FP, Tarrand JJ, Munita JM, Tran TT, Arias CA, et al. Daptomycin non-susceptible enterococcus faecium in leukemia patients: role of prior daptomycin exposure. J Infect. 2017;74(3):243–7.CrossRefGoogle Scholar
  230. 230.
    Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF, Miller C, et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med. 2011;365(10):892–900.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Shukla BS, Shelburne S, Reyes K, Kamboj M, Lewis JD, Rincon SL, et al. Influence of minimum inhibitory concentration in clinical outcomes of enterococcus faecium bacteremia treated with Daptomycin: is it time to change the breakpoint? Clin Infect Dis. 2016;62(12):1514–20.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Moise PA, Sakoulas G, McKinnell JA, Lamp KC, DePestel DD, Yoon MJ, et al. Clinical outcomes of Daptomycin for Vancomycin-resistant Enterococcus Bacteremia. Clin Therapeut. 2015;37(7):1443–53.e2.CrossRefGoogle Scholar
  233. 233.
    Smith JR, Barber KE, Raut A, Aboutaleb M, Sakoulas G, Rybak MJ. Beta-lactam combinations with daptomycin provide synergy against vancomycin-resistant enterococcus faecalis and enterococcus faecium. J Antimicrob Chemother. 2015;70(6):1738–43.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Henson KE, Yim J, Smith JR, Sakoulas G, Rybak MJ. Beta-Lactamase Inhibitors Enhance the Synergy between beta-Lactam Antibiotics and Daptomycin against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(1):e01564–16.CrossRefGoogle Scholar
  235. 235.
    Tally FP, DeBruin MF. Development of daptomycin for gram-positive infections. J Antimicrob Chemother. 2000;46(4):523–6.CrossRefGoogle Scholar
  236. 236.
    Oleson FB Jr, Berman CL, Kirkpatrick JB, Regan KS, Lai JJ, Tally FP. Once-daily dosing in dogs optimizes daptomycin safety. Antimicrob Agents Chemother. 2000;44(11):2948–53.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Patel SJ, Samo TC, Suki WN. Early-onset rhabdomyolysis related to daptomycin use. Int J Antimicrob Agents. 2007;30(5):472–4.CrossRefGoogle Scholar
  238. 238.
    Papadopoulos S, Ball AM, Liewer SE, Martin CA, Winstead PS, Murphy BS. Rhabdomyolysis during therapy with daptomycin. Clin Infect Dis. 2006;42(12):e108–10.CrossRefGoogle Scholar
  239. 239.
    Kazory A, Dibadj K, Weiner ID. Rhabdomyolysis and acute renal failure in a patient treated with daptomycin. J Antimicrob Chemother. 2006;57(3):578–9.CrossRefGoogle Scholar
  240. 240.
    Kraft S, Mackler E, Schlickman P, Welch K, DePestel DD. Outcomes of therapy: vancomycin-resistant enterococcal bacteremia in hematology and bone marrow transplant patients. Support Care Cancer. 2011;19(12):1969–74.CrossRefGoogle Scholar
  241. 241.
    Vernadakis S, Saner FH, Rath PM, Kaiser GM, Mathe Z, Treckmann J, et al. Successful salvage therapy with daptomycin after linezolid and vancomycin failure in a liver transplant recipient with methicillin-resistant Staphylococcus aureus endocarditis. Transplant Infect Dis. 2009;11(4):346–8.CrossRefGoogle Scholar
  242. 242.
    Wudhikarn K, Gingrich RD, de Magalhaes Silverman M. Daptomycin nonsusceptible enterococci in hematologic malignancy and hematopoietic stem cell transplant patients: an emerging threat. Ann Hematol. 2013;92(1):129–31.CrossRefGoogle Scholar
  243. 243.
    Sakoulas G, Bayer AS, Pogliano J, Tsuji BT, Yang SJ, Mishra NN, et al. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant enterococcus faecium. Antimicrob Agents Chemother. 2012;56(2):838–44.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Rose WE, Schulz LT, Andes D, Striker R, Berti AD, Hutson PR, et al. Addition of ceftaroline to daptomycin after emergence of daptomycin-nonsusceptible Staphylococcus aureus during therapy improves antibacterial activity. Antimicrob Agents Chemother. 2012;56(10):5296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Roberts MC. Tetracycline therapy: update. Clin Infect Dis. 2003;36(4):462–7.CrossRefGoogle Scholar
  246. 246.
    Zuckerman JM, Qamar F, Bono BR. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin N Am. 2011;95(4):761–91. viiiCrossRefGoogle Scholar
  247. 247.
    Stein GE, Craig WA. Tigecycline: a critical analysis. Clin Infect Dis. 2006;43(4):518–24.CrossRefGoogle Scholar
  248. 248.
    Doan TL, Fung HB, Mehta D, Riska PF. Tigecycline: a glycylcycline antimicrobial agent. Clin Therapeut. 2006;28(8):1079–106.CrossRefGoogle Scholar
  249. 249.
    Spanu T, De Angelis G, Cipriani M, Pedruzzi B, D’Inzeo T, Cataldo MA, et al. In vivo emergence of tigecycline resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 2012;56(8):4516–8.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Boso-Ribelles V, Roma-Sanchez E, Carmena J, Caceres C, Bautista D. Tigecycline: a new treatment choice against Acinetobacter baumannii. Recent Pat Antiinfect Drug Discov. 2008;3(2):117–22.CrossRefGoogle Scholar
  251. 251.
    Dowzicky MJ. Susceptibility to tigecycline and linezolid among gram-positive isolates collected in the United States as part of the tigecycline evaluation and surveillance trial (TEST) between 2004 and 2009. Clin Therapeut. 2011;33(12):1964–73.CrossRefGoogle Scholar
  252. 252.
    Marot JC, Jonckheere S, Munyentwali H, Belkhir L, Vandercam B, Yombi JC. Tigecycline-induced acute pancreatitis: about two cases and review of the literature. Acta Clin Belg. 2012;67(3):229–32.Google Scholar
  253. 253.
    Gardiner D, Dukart G, Cooper A, Babinchak T. Safety and efficacy of intravenous tigecycline in subjects with secondary bacteremia: pooled results from 8 phase III clinical trials. Clin Infect Dis. 2010;50(2):229–38.CrossRefGoogle Scholar
  254. 254.
    Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis. 2012;54(12):1699–709.CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Bergamasco MD, Barroso Barbosa M, de Oliveira GD, Cipullo R, Moreira JC, Baia C, et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in solid organ transplantation. Transplant Infect Dis. 2012;14(2):198–205.CrossRefGoogle Scholar
  256. 256.
    Mlynarczyk G, Kosykowska E, de Walthoffen SW, Szymanek-Majchrzak K, Sawicka-Grzelak A, Baczkowska T, et al. A threat of the Klebsiella pneumoniae carbapenemase-producing strains among transplant recipients. Transplant Proc. 2011;43(8):3135–6.CrossRefGoogle Scholar
  257. 257.
    Rodriguez-Avial C, Rodriguez-Avial I, Merino P, Picazo JJ. Klebsiella pneumoniae: development of a mixed population of carbapenem and tigecycline resistance during antimicrobial therapy in a kidney transplant patient. Clin Microbiol Infect. 2012;18(1):61–6.CrossRefGoogle Scholar
  258. 258.
    Sevillano D, Alou L, Aguilar L, Echevarria O, Gimenez MJ, Prieto J. Azithromycin iv pharmacodynamic parameters predicting Streptococcus pneumoniae killing in epithelial lining fluid versus serum: an in vitro pharmacodynamic simulation. J Antimicrob Chemother. 2006;57(6):1128–33.CrossRefGoogle Scholar
  259. 259.
    Sivapalasingam SASN. Macrolides, clindamycin, and ketolides. In: Gerald M, editor. Principles and practice of infectious diseases. Philadelphia: Elsevier Churchill Livingstone; 2005. p. 396–417.Google Scholar
  260. 260.
    Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, et al. Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun. 2000;267(1):124–8.CrossRefGoogle Scholar
  261. 261.
    Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, et al. Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Therapeut. 2000;292(1):156–63.Google Scholar
  262. 262.
    Doern GV. Macrolide and ketolide resistance with Streptococcus pneumoniae. Med Clin N Am. 2006;90(6):1109–24.CrossRefGoogle Scholar
  263. 263.
    Chong YP, Lee SO, Song EH, Lee EJ, Jang EY, Kim SH, et al. Quinupristin-dalfopristin versus linezolid for the treatment of vancomycin-resistant enterococcus faecium bacteraemia: efficacy and development of resistance. Scand J Infect Dis. 2010;42(6–7):491–9.CrossRefGoogle Scholar
  264. 264.
    Athamna A, Athamna M, Medlej B, Bast DJ, Rubinstein E. In vitro post-antibiotic effect of fluoroquinolones, macrolides, beta-lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on Bacillus anthracis. J Antimicrob Chemother. 2004;53(4):609–15.CrossRefGoogle Scholar
  265. 265.
    Stamatakis MK, Richards JG. Interaction between quinupristin/dalfopristin and cyclosporine. Ann Pharmacother. 1997;31(5):576–8.CrossRefGoogle Scholar
  266. 266.
    Linden PK, Bompart F, Gray S, Talbot GH. Hyperbilirubinemia during quinupristin-dalfopristin therapy in liver transplant recipients: correlation with available liver biopsy results. Pharmacotherapy. 2001;21(6):661–8.CrossRefGoogle Scholar
  267. 267.
    Winston DJ, Emmanouilides C, Kroeber A, Hindler J, Bruckner DA, Territo MC, et al. Quinupristin/Dalfopristin therapy for infections due to vancomycin-resistant enterococcus faecium. Clin Infect Dis. 2000;30(5):790–7.CrossRefGoogle Scholar
  268. 268.
    Gearhart M, Martin J, Rudich S, Thomas M, Wetzel D, Solomkin J, et al. Consequences of vancomycin-resistant enterococcus in liver transplant recipients: a matched control study. Clin Transpl. 2005;19(6):711–6.Google Scholar
  269. 269.
    Tsiatis AC, Manes B, Calder C, Billheimer D, Wilkerson KS, Frangoul H. Incidence and clinical complications of vancomycin-resistant enterococcus in pediatric stem cell transplant patients. Bone Marrow Transplant. 2004;33(9):937–41.CrossRefGoogle Scholar
  270. 270.
    Knoll BM, Hellmann M, Kotton CN. Vancomycin-resistant enterococcus faecium meningitis in adults: case series and review of the literature. Scand J Infect Dis. 2013;45(2):131–9.CrossRefGoogle Scholar
  271. 271.
    Verma A, Dhawan A, Philpott-Howard J, Rela M, Heaton N, Vergani GM, et al. Glycopeptide-resistant enterococcus faecium infections in paediatric liver transplant recipients: safety and clinical efficacy of quinupristin/dalfopristin. J Antimicrob Chemother. 2001;47(1):105–8.CrossRefGoogle Scholar
  272. 272.
    Lappin E, Ferguson AJ. Gram-positive toxic shock syndromes. Lancet Infect Dis. 2009;9(5):281–90.CrossRefGoogle Scholar
  273. 273.
    Holmstrom B, Grimsley EW. Necrotizing fasciitis and toxic shock-like syndrome caused by group B streptococcus. South Med J. 2000;93(11):1096–8.CrossRefGoogle Scholar
  274. 274.
    McDougal LK, Fosheim GE, Nicholson A, Bulens SN, Limbago BM, Shearer JE, et al. Emergence of resistance among USA300 methicillin-resistant Staphylococcus aureus isolates causing invasive disease in the United States. Antimicrob Agents Chemother. 2010;54(9):3804–11.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Hedberg M, Nord CE. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe. Clin Microbiol Infect. 2003;9(6):475–88.CrossRefGoogle Scholar
  276. 276.
    Vardakas KZ, Konstantelias AA, Loizidis G, Rafailidis PI, Falagas ME. Risk factors for development of Clostridium difficile infection due to BI/NAP1/027 strain: a meta-analysis. Int J Infect Dis. 2012;16(11):e768–73.CrossRefGoogle Scholar
  277. 277.
    O’Connor JR, Johnson S, Gerding DN. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology. 2009;136(6):1913–24.CrossRefGoogle Scholar
  278. 278.
    Parchman ML, Munoz A. Risk factors for methicillin-resistant staphylococcal aureus skin and soft tissue infections presenting in primary care: a South Texas ambulatory research network (STARNet) study. J Am Board Fam Med. 2009;22(4):375–9.CrossRefGoogle Scholar
  279. 279.
    Cadena J, Sreeramoju P, Nair S, Henao-Martinez A, Jorgensen J, Patterson JE. Clindamycin-resistant methicillin-resistant Staphylococcus aureus: epidemiologic and molecular characteristics and associated clinical factors. Diagn Microbiol Infect Dis. 2012;74(1):16–21.CrossRefGoogle Scholar
  280. 280.
    Siberry GK, Tekle T, Carroll K, Dick J. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003;37(9):1257–60.CrossRefGoogle Scholar
  281. 281.
    Diep BA, Chambers HF, Graber CJ, Szumowski JD, Miller LG, Han LL, et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med. 2008;148(4):249–57.CrossRefGoogle Scholar
  282. 282.
    Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsui Y, Togashi J, et al. Acquisition of methicillin-resistant Staphylococcus aureus after living donor liver transplantation: a retrospective cohort study. BMC Infect Dis. 2008;8:155.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Florescu DF, McCartney AM, Qiu F, Langnas AN, Botha J, Mercer DF, et al. Staphylococcus aureus infections after liver transplantation. Infection. 2012;40(3):263–9.CrossRefGoogle Scholar
  284. 284.
    Tsuji BT, Rybak MJ, Cheung CM, Amjad M, Kaatz GW. Community- and health care-associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents. Diagn Microbiol Infect Dis. 2007;58(1):41–7.CrossRefGoogle Scholar
  285. 285.
    Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsui Y, Moriya K, et al. Impact of new methicillin-resistant Staphylococcus aureus carriage postoperatively after living donor liver transplantation. Transplant Proc. 2007;39(10):3271–5.CrossRefGoogle Scholar
  286. 286.
    Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother. 1994;33(4):685–706.CrossRefGoogle Scholar
  287. 287.
    Hawkey PM. Mechanisms of quinolone action and microbial response. J Antimicrob Chemother. 2003;51(Suppl 1):29–35.CrossRefGoogle Scholar
  288. 288.
    Gellert M, Mizuuchi K, O'Dea MH, Nash HA. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A. 1976;73(11):3872–6.CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Fisher LM, Austin CA, Hopewell R, Margerrison EE, Oram M, Patel S, et al. DNA supercoiling and relaxation by ATP-dependent DNA topoisomerases. Philos Trans R Soc Lond Ser B Biol Sci. 1992;336(1276):83–91.CrossRefGoogle Scholar
  290. 290.
    Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H. New topoisomerase essential for chromosome segregation in E. coli. Cell. 1990;63(2):393–404.CrossRefGoogle Scholar
  291. 291.
    Ullsperger C, Cozzarelli NR. Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J Biol Chem. 1996;271(49):31549–55.CrossRefGoogle Scholar
  292. 292.
    Gonzalez I, Georgiou M, Alcaide F, Balas D, Linares J, de la Campa AG. Fluoroquinolone resistance mutations in the parC, parE, and gyrA genes of clinical isolates of viridans group streptococci. Antimicrob Agents Chemother. 1998;42(11):2792–8.CrossRefPubMedPubMedCentralGoogle Scholar
  293. 293.
    Weigel LM, Steward CD, Tenover FC. gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob Agents Chemother. 1998;42(10):2661–7.CrossRefPubMedPubMedCentralGoogle Scholar
  294. 294.
    Kampranis SC, Maxwell A. The DNA Gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage. J Biol Chem. 1998;273(35):22615–26.CrossRefGoogle Scholar
  295. 295.
    Drlica K, Malik M, Kerns RJ, Zhao X. Quinolone-mediated bacterial death. Antimicrob Agents Chemother. 2008;52(2):385–92.CrossRefGoogle Scholar
  296. 296.
    Khodursky AB, Zechiedrich EL, Cozzarelli NR. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci U S A. 1995;92(25):11801–5.CrossRefPubMedPubMedCentralGoogle Scholar
  297. 297.
    Heddle JG, Barnard FM, Wentzell LM, Maxwell A. The interaction of drugs with DNA gyrase: a model for the molecular basis of quinolone action. Nucleosides Nucleotides Nucleic Acids. 2000;19(8):1249–64.CrossRefGoogle Scholar
  298. 298.
    Malik M, Zhao X, Drlica K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol Microbiol. 2006;61(3):810–25.CrossRefGoogle Scholar
  299. 299.
    Chen CR, Malik M, Snyder M, Drlica K. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol. 1996;258(4):627–37.CrossRefGoogle Scholar
  300. 300.
    Schlacher K, Goodman MF. Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat Rev Mol Cell Biol. 2007;8(7):587–94.CrossRefGoogle Scholar
  301. 301.
    Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810.CrossRefGoogle Scholar
  302. 302.
    Diver JM, Wise R. Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. J Antimicrob Chemother. 1986;18(Suppl D):31–41.CrossRefGoogle Scholar
  303. 303.
    Dorr T, Lewis K, Vulic M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 2009;5(12):e1000760.CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427(6969):72–4.CrossRefGoogle Scholar
  305. 305.
    Lister PD. Pharmacodynamics of moxifloxacin and levofloxacin against Staphylococcus aureus and Staphylococcus epidermidis in an in vitro pharmacodynamic model. Clin Infect Dis. 2001;32(Suppl 1):S33–8.CrossRefGoogle Scholar
  306. 306.
    Remy JM, Tow-Keogh CA, McConnell TS, Dalton JM, Devito JA. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization. J Antimicrob Chemother. 2012;67(12):2814–20.CrossRefGoogle Scholar
  307. 307.
    Maurin M, Abergel C, Raoult D. DNA gyrase-mediated natural resistance to fluoroquinolones in Ehrlichia spp. Antimicrob Agents Chemother. 2001;45(7):2098–105.CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Angelakis E, Biswas S, Taylor C, Raoult D, Rolain JM. Heterogeneity of susceptibility to fluoroquinolones in Bartonella isolates from Australia reveals a natural mutation in gyrA. J Antimicrob Chemother. 2008;61(6):1252–5.CrossRefGoogle Scholar
  309. 309.
    Jacobs MR. Activity of quinolones against mycobacteria. Drugs. 1999;58(Suppl 2):19–22.CrossRefGoogle Scholar
  310. 310.
    Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN. Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrob Agents Chemother. 1986;29(4):639–44.CrossRefPubMedPubMedCentralGoogle Scholar
  311. 311.
    Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351(9105):797–9.CrossRefGoogle Scholar
  312. 312.
    Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005;41(Suppl 2):S120–6.CrossRefGoogle Scholar
  313. 313.
    Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 1990;34(6):1271–2.CrossRefPubMedPubMedCentralGoogle Scholar
  314. 314.
    Belland RJ, Morrison SG, Ison C, Huang WM. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol. 1994;14(2):371–80.CrossRefGoogle Scholar
  315. 315.
    Morais Cabral JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC. Crystal structure of the breakage-Reunion domain of DNA gyrase. Nature. 1997;388(6645):903–6.CrossRefGoogle Scholar
  316. 316.
    Yoshida H, Kojima T, Yamagishi J, Nakamura S. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. Mol Gen Genet. 1988;211(1):1–7.CrossRefGoogle Scholar
  317. 317.
    Takei M, Fukuda H, Kishii R, Hosaka M. Target preference of 15 quinolones against Staphylococcus aureus, based on antibacterial activities and target inhibition. Antimicrob Agents Chemother. 2001;45(12):3544–7.CrossRefPubMedPubMedCentralGoogle Scholar
  318. 318.
    Strahilevitz J, Hooper DC. Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin. Antimicrob Agents Chemother. 2005;49(5):1949–56.CrossRefPubMedPubMedCentralGoogle Scholar
  319. 319.
    Kugelberg E, Lofmark S, Wretlind B, Andersson DI. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother. 2005;55(1):22–30.CrossRefGoogle Scholar
  320. 320.
    Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother. 2003;51(1):9–11.CrossRefGoogle Scholar
  321. 321.
    Saier MH Jr, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 1998;12(3):265–74.CrossRefGoogle Scholar
  322. 322.
    Poole K. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother. 2000;44(10):2595–9.CrossRefPubMedPubMedCentralGoogle Scholar
  323. 323.
    Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, et al. Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem. 2004;279(51):52816–9.CrossRefGoogle Scholar
  324. 324.
    Pradel E, Pages JM. The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother. 2002;46(8):2640–3.CrossRefPubMedPubMedCentralGoogle Scholar
  325. 325.
    Neves P, Berkane E, Gameiro P, Winterhalter M, de Castro B. Interaction between quinolones antibiotics and bacterial outer membrane porin OmpF. Biophys Chem. 2005;113(2):123–8.CrossRefGoogle Scholar
  326. 326.
    Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1999;43(1):187–9.CrossRefPubMedPubMedCentralGoogle Scholar
  327. 327.
    Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6′)-Ib and its bifunctional, fluoroquinolone-active AAC(6′)-Ib-cr variant. Biochemistry. 2008;47(37):9825–35.CrossRefPubMedPubMedCentralGoogle Scholar
  328. 328.
    Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50(11):3953–5.CrossRefPubMedPubMedCentralGoogle Scholar
  329. 329.
    Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22(4):664–89.CrossRefPubMedPubMedCentralGoogle Scholar
  330. 330.
    Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99(8):5638–42.CrossRefPubMedPubMedCentralGoogle Scholar
  331. 331.
    Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2007;51(9):3354–60.CrossRefPubMedPubMedCentralGoogle Scholar
  332. 332.
    Singh R, Swick MC, Ledesma KR, Yang Z, Hu M, Zechiedrich L, et al. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother. 2012;56(4):1680–5.CrossRefPubMedPubMedCentralGoogle Scholar
  333. 333.
    Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis. 2001;33(Suppl 3):S147–56.CrossRefGoogle Scholar
  334. 334.
    Kawakami J, Yamamoto K, Asanuma A, Yanagisawa K, Sawada Y, Iga T. Inhibitory effect of new quinolones on GABA(a) receptor-mediated response and its potentiation with felbinac in Xenopus oocytes injected with mouse-brain mRNA: correlation with convulsive potency in vivo. Toxicol Appl Pharmacol. 1997;145(2):246–54.CrossRefGoogle Scholar
  335. 335.
    Jones SC, Sorbello A, Boucher RM. Fluoroquinolone-associated myasthenia gravis exacerbation: evaluation of postmarketing reports from the US FDA adverse event reporting system and a literature review. Drug Saf. 2011;34(10):839–47.CrossRefGoogle Scholar
  336. 336.
    Owens RC Jr, Ambrose PG. Torsades de pointes associated with fluoroquinolones. Pharmacotherapy. 2002;22(5):663–8. discussion 8-72CrossRefGoogle Scholar
  337. 337.
    Alexandrou AJ, Duncan RS, Sullivan A, Hancox JC, Leishman DJ, Witchel HJ, et al. Mechanism of hERG K+ channel blockade by the fluoroquinolone antibiotic moxifloxacin. Br J Pharmacol. 2006;147(8):905–16.CrossRefPubMedPubMedCentralGoogle Scholar
  338. 338.
    Lapi F, Wilchesky M, Kezouh A, Benisty JI, Ernst P, Suissa S. Fluoroquinolones and the risk of serious arrhythmia: a population-based study. Clin Infect Dis. 2012;55(11):1457–65.CrossRefGoogle Scholar
  339. 339.
    Man I, Traynor NJ, Ferguson J. Recent developments in fluoroquinolone phototoxicity. Photodermatol Photoimmunol Photomed. 1999;15(1):32–3.CrossRefGoogle Scholar
  340. 340.
    McCusker ME, Harris AD, Perencevich E, Roghmann MC. Fluoroquinolone use and Clostridium difficile-associated diarrhea. Emerg Infect Dis. 2003;9(6):730–3.CrossRefPubMedPubMedCentralGoogle Scholar
  341. 341.
    Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K, Posey K, et al. A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol. 2005;26(3):273–80.CrossRefGoogle Scholar
  342. 342.
    Zaiss NH, Witte W, Nubel U. Fluoroquinolone resistance and Clostridium difficile. Germany Emerg Infect Dis. 2010;16(4):675–7.CrossRefGoogle Scholar
  343. 343.
    Pepin J, Saheb N, Coulombe MA, Alary ME, Corriveau MP, Authier S, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis. 2005;41(9):1254–60.CrossRefGoogle Scholar
  344. 344.
    Razonable RR, Litzow MR, Khaliq Y, Piper KE, Rouse MS, Patel R. Bacteremia due to viridans group streptococci with diminished susceptibility to levofloxacin among neutropenic patients receiving levofloxacin prophylaxis. Clin Infect Dis. 2002;34(11):1469–74.CrossRefPubMedPubMedCentralGoogle Scholar
  345. 345.
    Prabhu RM, Piper KE, Litzow MR, Steckelberg JM, Patel R. Emergence of quinolone resistance among viridans group streptococci isolated from the oropharynx of neutropenic peripheral blood stem cell transplant patients receiving quinolone antimicrobial prophylaxis. Eur J Clin Microbiol Infect Dis. 2005;24(12):832–8.CrossRefGoogle Scholar
  346. 346.
    Therriault BL, Wilson JW, Barreto JN, Estes LL. Characterization of bacterial infections in allogeneic hematopoietic stem cell transplant recipients who received prophylactic levofloxacin with either penicillin or doxycycline. Mayo Clin Proc Mayo Clin. 2010;85(8):711–8.CrossRefGoogle Scholar
  347. 347.
    Busca A, Cavecchia I, Locatelli F, D’Ardia S, De Rosa FG, Marmont F, et al. Blood stream infections after allogeneic stem cell transplantation: a single-center experience with the use of levofloxacin prophylaxis. Transplant Infect Dis. 2012;14(1):40–8.CrossRefGoogle Scholar
  348. 348.
    Vehreschild JJ, Moritz G, Vehreschild MJ, Arenz D, Mahne M, Bredenfeld H, et al. Efficacy and safety of moxifloxacin as antibacterial prophylaxis for patients receiving autologous haematopoietic stem cell transplantation: a randomised trial. Int J Antimicrob Agents. 2012;39(2):130–4.CrossRefGoogle Scholar
  349. 349.
    Miller AN, Glode A, Hogan KR, Schaub C, Kramer C, Stuart RK, et al. Efficacy and safety of ciprofloxacin for prophylaxis of polyomavirus BK virus-associated hemorrhagic cystitis in allogeneic hematopoietic stem cell transplantation recipients. Biol Blood Marrow Transplant. 2011;17(8):1176–81.CrossRefGoogle Scholar
  350. 350.
    Yoon HE, Jeon YJ, Chung HW, Shin SJ, Hwang HS, Lee SJ, et al. Safety and efficacy of a quinolone-based regimen for treatment of tuberculosis in renal transplant recipients. Transplant Proc. 2012;44(3):730–3.CrossRefGoogle Scholar
  351. 351.
    Barge-Caballero E, Crespo-Leiro MG, Paniagua-Martin MJ, Muniz J, Naya C, Bouzas-Mosquera A, et al. Quinolone-related Achilles tendinopathy in heart transplant patients: incidence and risk factors. J Heart Lung Transplant. 2008;27(1):46–51.CrossRefGoogle Scholar
  352. 352.
    Esparza EM, Takeshita J, George E. Lymphomatoid hypersensitivity reaction to levofloxacin during autologous stem cell transplantation: a potential diagnostic pitfall in patients treated for lymphoma or leukemia. J Cutan Pathol. 2011;38(1):33–7.CrossRefGoogle Scholar
  353. 353.
    Lofmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis. 2010;50(Suppl 1):S16–23.CrossRefGoogle Scholar
  354. 354.
    Edwards DI. Reduction of nitroimidazoles in vitro and DNA damage. Biochem Pharmacol. 1986;35(1):53–8.CrossRefGoogle Scholar
  355. 355.
    Tocher JH, Edwards DI. Evidence for the direct interaction of reduced metronidazole derivatives with DNA bases. Biochem Pharmacol. 1994;48(6):1089–94.CrossRefGoogle Scholar
  356. 356.
    van der Wouden EJ, Thijs JC, Kusters JG, van Zwet AA, Kleibeuker JH. Mechanism and clinical significance of metronidazole resistance in helicobacter pylori. Scand J Gastroenterol Suppl. 2001;234:10–4.CrossRefGoogle Scholar
  357. 357.
    Upcroft P, Upcroft JA. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev. 2001;14(1):150–64.CrossRefPubMedPubMedCentralGoogle Scholar
  358. 358.
    Stratton CW, Weeks LS, Aldridge KE. Comparison of the bactericidal activity of clindamycin and metronidazole against cefoxitin-susceptible and cefoxitin-resistant isolates of the Bacteroides fragilis group. Diagn Microbiol Infect Dis. 1991;14(5):377–82.CrossRefGoogle Scholar
  359. 359.
    Stratton CW, Weeks LS, Aldridge KE. Inhibitory and bactericidal activity of selected beta-lactam agents alone and in combination with beta-lactamase inhibitors compared with that of cefoxitin and metronidazole against cefoxitin-susceptible and cefoxitin-resistant isolates of the Bacteroides fragilis group. Diagn Microbiol Infect Dis. 1992;15(4):321–30.CrossRefGoogle Scholar
  360. 360.
    Nix DE, Tyrrell R, Muller M. Pharmacodynamics of metronidazole determined by a time-kill assay for Trichomonas vaginalis. Antimicrob Agents Chemother. 1995;39(8):1848–52.CrossRefPubMedPubMedCentralGoogle Scholar
  361. 361.
    Schaumann R, Funke M, Janssen E, Rodloff AC. In vitro activities of clindamycin, imipenem, metronidazole, and piperacillin-tazobactam against susceptible and resistant isolates of Bacteroides fragilis evaluated by kill kinetics. Antimicrob Agents Chemother. 2012;56(6):3413–6.CrossRefPubMedPubMedCentralGoogle Scholar
  362. 362.
    Goldstein EJ, Citron DM, Cherubin CE, Hillier SL. Comparative susceptibility of the Bacteroides fragilis group species and other anaerobic bacteria to meropenem, imipenem, piperacillin, cefoxitin, ampicillin/sulbactam, clindamycin and metronidazole. J Antimicrob Chemother. 1993;31(3):363–72.CrossRefGoogle Scholar
  363. 363.
    Teare L, Peters T, Saverymuttu S, Owen R, Tiwari I. Antibiotic resistance in helicobacter pylori. Lancet. 1999;353(9148):242.CrossRefGoogle Scholar
  364. 364.
    Land KM, Johnson PJ. Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. Drug Resist Updat. 1999;2(5):289–94.CrossRefGoogle Scholar
  365. 365.
    Rasmussen BA, Bush K, Tally FP. Antimicrobial resistance in Bacteroides. Clin Infect Dis. 1993;16(Suppl 4):S390–400.CrossRefGoogle Scholar
  366. 366.
    Leiros HK, Kozielski-Stuhrmann S, Kapp U, Terradot L, Leonard GA, McSweeney SM. Structural basis of 5-nitroimidazole antibiotic resistance: the crystal structure of NimA from Deinococcus radiodurans. J Biol Chem. 2004;279(53):55840–9.CrossRefGoogle Scholar
  367. 367.
    Lofmark S, Fang H, Hedberg M, Edlund C. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother. 2005;49(3):1253–6.CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Erwin ME, Fix AM, Jones RN. Three independent yearly analyses of the spectrum and potency of metronidazole: a multicenter study of 1,108 contemporary anaerobic clinical isolates. Diagn Microbiol Infect Dis. 2001;39(2):129–32.CrossRefGoogle Scholar
  369. 369.
    Snydman DR, Jacobus NV, McDermott LA, Supran S, Cuchural GJ Jr, Finegold S, et al. Multicenter study of in vitro susceptibility of the Bacteroides fragilis group, 1995 to 1996, with comparison of resistance trends from 1990 to 1996. Antimicrob Agents Chemother. 1999;43(10):2417–22.CrossRefPubMedPubMedCentralGoogle Scholar
  370. 370.
    Aldridge KE, Ashcraft D, O'Brien M, Sanders CV. Bacteremia due to Bacteroides fragilis group: distribution of species, beta-lactamase production, and antimicrobial susceptibility patterns. Antimicrob Agents Chemother. 2003;47(1):148–53.CrossRefPubMedPubMedCentralGoogle Scholar
  371. 371.
    Labbe AC, Bourgault AM, Vincelette J, Turgeon PL, Lamothe F. Trends in antimicrobial resistance among clinical isolates of the Bacteroides fragilis group from 1992 to 1997 in Montreal, Canada. Antimicrob Agents Chemother. 1999;43(10):2517–9.CrossRefPubMedPubMedCentralGoogle Scholar
  372. 372.
    Megraud F, Lehn N, Lind T, Bayerdorffer E, O’Morain C, Spiller R, et al. Antimicrobial susceptibility testing of helicobacter pylori in a large multicenter trial: the MACH 2 study. Antimicrob Agents Chemother. 1999;43(11):2747–52.CrossRefPubMedPubMedCentralGoogle Scholar
  373. 373.
    Lacey SL, Moss SF, Taylor GW. Metronidazole uptake by sensitive and resistant isolates of helicobacter pylori. J Antimicrob Chemother. 1993;32(3):393–400.CrossRefGoogle Scholar
  374. 374.
    Tankovic J, Lamarque D, Delchier JC, Soussy CJ, Labigne A, Jenks PJ. Frequent association between alteration of the rdxA gene and metronidazole resistance in French and north African isolates of helicobacter pylori. Antimicrob Agents Chemother. 2000;44(3):608–13.CrossRefPubMedPubMedCentralGoogle Scholar
  375. 375.
    Krajden S, Lossick JG, Wilk E, Yang J, Keystone JS, Elliott K. Persistent Trichomonas vaginalis infection due to a metronidazole-resistant strain. CMAJ. 1986;134(12):1373–4.PubMedPubMedCentralGoogle Scholar
  376. 376.
    Quon DV, d'Oliveira CE, Johnson PJ. Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc Nat Acad Sci USA. 1992;89(10):4402–6.CrossRefGoogle Scholar
  377. 377.
    Liu SM, Brown DM, O'Donoghue P, Upcroft P, Upcroft JA. Ferredoxin involvement in metronidazole resistance of Giardia duodenalis. Mol Biochem Parasitol. 2000;108(1):137–40.CrossRefGoogle Scholar
  378. 378.
    Finegold SM. Metronidazole. Ann Intern Med. 1980;93(4):585–7.CrossRefGoogle Scholar
  379. 379.
    Feder HM Jr. Bacteroides fragilis meningitis. Rev Infect Dis. 1987;9(4):783–6.CrossRefGoogle Scholar
  380. 380.
    Jensen JC, Gugler R. Single- and multiple-dose metronidazole kinetics. Clin Pharmacol Therapeut. 1983;34(4):481–7.CrossRefGoogle Scholar
  381. 381.
    Gupta AK, Agarwal MP, Avasthi R, Bhadoria DP, Rohatgi N. Metronidazole-induced neurotoxicity. J Assoc Physicians India. 2003;51:617–8.Google Scholar
  382. 382.
    Tan CH, Chen YF, Chen CC, Chao CC, Liou HH, Hsieh ST. Painful neuropathy due to skin denervation after metronidazole-induced neurotoxicity. J Neurol Neurosurg Psychiatry. 2011;82(4):462–5.CrossRefGoogle Scholar
  383. 383.
    Nigwekar SU, Casey KJ. Metronidazole-induced pancreatitis. A case report and review of literature. JOP. 2004;5(6):516–9.Google Scholar
  384. 384.
    Saginur R, Hawley CR, Bartlett JG. Colitis associated with metronidazole therapy. J Infect Dis. 1980;141(6):772–4.CrossRefGoogle Scholar
  385. 385.
    Knowles S, Choudhury T, Shear NH. Metronidazole hypersensitivity. Ann Pharmacother. 1994;28(3):325–6.CrossRefGoogle Scholar
  386. 386.
    Edwards DL, Fink PC, Van Dyke PO. Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole. Clin Pharm. 1986;5(12):999–1000.Google Scholar
  387. 387.
    Cina SJ, Russell RA, Conradi SE. Sudden death due to metronidazole/ethanol interaction. Am J Forensic Med Pathol. 1996;17(4):343–6.CrossRefGoogle Scholar
  388. 388.
    Teicher MH, Altesman RI, Cole JO, Schatzberg AF. Possible nephrotoxic interaction of lithium and metronidazole. JAMA. 1987;257(24):3365–6.CrossRefGoogle Scholar
  389. 389.
    Holt RK, Anderson EA, Cantrell MA, Shaw RF, Egge JA. Preemptive dose reduction of warfarin in patients initiating metronidazole. Drug Metabol Drug Interact. 2010;25(1–4):35–9.Google Scholar
  390. 390.
    Kounas SP, Letsas KP, Sideris A, Efraimidis M, Kardaras F. QT interval prolongation and torsades de pointes due to a coadministration of metronidazole and amiodarone. Pacing Clin Electrophysiol. 2005;28(5):472–3.CrossRefGoogle Scholar
  391. 391.
    Gulbis AM, Culotta KS, Jones RB, Andersson BS. Busulfan and metronidazole: an often forgotten but significant drug interaction. Ann Pharmacother. 2011;45(7–8):e39.Google Scholar
  392. 392.
    Page RL 2nd, Klem PM, Rogers C. Potential elevation of tacrolimus trough concentrations with concomitant metronidazole therapy. Ann Pharmacother. 2005;39(6):1109–13.CrossRefGoogle Scholar
  393. 393.
    Montebugnoli L, Servidio D, Prati C. Effectiveness of metronidazole gel on cyclosporine-induced gingival overgrowth in heart transplant patients. Clin Oral Investig. 2002;6(1):24–7.CrossRefGoogle Scholar
  394. 394.
    Aufricht C, Hogan EL, Ettenger RB. Oral metronidazole does not improve cyclosporine A-induced gingival hyperplasia. Pediatr Nephrol (Berlin, Germany). 1997;11(5):552–5.CrossRefGoogle Scholar
  395. 395.
    Pant C, Anderson MP, O'Connor JA, Marshall CM, Deshpande A, Sferra TJ. Association of Clostridium difficile infection with outcomes of hospitalized solid organ transplant recipients: results from the 2009 Nationwide inpatient sample database. Transplant Infect Dis. 2012;14(5):540–7.CrossRefGoogle Scholar
  396. 396.
    Ali M, Ananthakrishnan AN, Ahmad S, Kumar N, Kumar G, Saeian K. Clostridium difficile infection in hospitalized liver transplant patients: a nationwide analysis. Liver Transplant. 2012;18(8):972–8.CrossRefGoogle Scholar
  397. 397.
    Rosen JB, Schecter MG, Heinle JS, McKenzie ED, Morales DL, Dishop MK, et al. Clostridium difficile colitis in children following lung transplantation. Pediatr Transplant. 2010;14(5):651–6.CrossRefGoogle Scholar
  398. 398.
    Riddle DJ, Dubberke ER. Clostridium difficile infection in solid organ transplant recipients. Curr Opin Organ Transplant. 2008;13(6):592–600.CrossRefGoogle Scholar
  399. 399.
    Sensi P. History of the development of rifampin. Rev Infect Dis. 1983;5(Suppl 3):S402–6.CrossRefGoogle Scholar
  400. 400.
    Floss HG, Yu TW. Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev. 2005;105(2):621–32.CrossRefGoogle Scholar
  401. 401.
    Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, et al. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell. 2005;122(3):351–63.CrossRefGoogle Scholar
  402. 402.
    Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104(6):901–12.CrossRefGoogle Scholar
  403. 403.
    Kunin CM. Antimicrobial activity of rifabutin. Clin Infect Dis. 1996;22(Suppl 1):S3–13. discussion S-4.CrossRefGoogle Scholar
  404. 404.
    Cavusoglu C, Karaca-Derici Y, Bilgic A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin Microbiol Infect. 2004;10(7):662–5.CrossRefGoogle Scholar
  405. 405.
    Rastogi N, Goh KS, Berchel M, Bryskier A. Activity of rifapentine and its metabolite 25-O-desacetylrifapentine compared with rifampicin and rifabutin against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG. J Antimicrob Chemother. 2000;46(4):565–70.CrossRefGoogle Scholar
  406. 406.
    Thornsberry C, Hill BC, Swenson JM, McDougal LK. Rifampin: spectrum of antibacterial activity. Rev Infect Dis. 1983;5(Suppl 3):S412–7.CrossRefGoogle Scholar
  407. 407.
    Hoover WW, Gerlach EH, Hoban DJ, Eliopoulos GM, Pfaller MA, Jones RN. Antimicrobial activity and spectrum of rifaximin, a new topical rifamycin derivative. Diagn Microbiol Infect Dis. 1993;16(2):111–8.CrossRefGoogle Scholar
  408. 408.
    Gillespie SH. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother. 2002;46(2):267–74.CrossRefPubMedPubMedCentralGoogle Scholar
  409. 409.
    O’Neill AJ, Cove JH, Chopra I. Mutation frequencies for resistance to fusidic acid and rifampicin in Staphylococcus aureus. J Antimicrob Chemother. 2001;47(5):647–50.CrossRefGoogle Scholar
  410. 410.
    Forrest GN, Tamura K. Rifampin combination therapy for nonmycobacterial infections. Clin Microbiol Rev. 2010;23(1):14–34.CrossRefPubMedPubMedCentralGoogle Scholar
  411. 411.
    Pugsley AP, Zimmerman W, Wehrli W. Highly efficient uptake of a rifamycin derivative via the FhuA-TonB-dependent uptake route in Escherichia coli. J Gen Microbiol. 1987;133(12):3505–11.Google Scholar
  412. 412.
    Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341(8846):647–50.CrossRefGoogle Scholar
  413. 413.
    Hui J, Gordon N, Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother. 1977;11(5):773–9.CrossRefPubMedPubMedCentralGoogle Scholar
  414. 414.
    Dabbs ER, Yazawa K, Mikami Y, Miyaji M, Morisaki N, Iwasaki S, et al. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob Agents Chemother. 1995;39(4):1007–9.CrossRefPubMedPubMedCentralGoogle Scholar
  415. 415.
    Tribuddharat C, Fennewald M. Integron-mediated rifampin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(4):960–2.CrossRefPubMedPubMedCentralGoogle Scholar
  416. 416.
    Arlet G, Nadjar D, Herrmann JL, Donay JL, Lagrange PH, Philippon A. Plasmid-mediated rifampin resistance encoded by an arr-2-like gene cassette in Klebsiella pneumoniae producing an ACC-1 class C beta-lactamase. Antimicrob Agents Chemother. 2001;45(10):2971–2.CrossRefPubMedPubMedCentralGoogle Scholar
  417. 417.
    Naas T, Mikami Y, Imai T, Poirel L, Nordmann P. Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J Bacteriol. 2001;183(1):235–49.CrossRefPubMedPubMedCentralGoogle Scholar
  418. 418.
    Cook SV, Fujiwara PI, Frieden TR. Rates and risk factors for discontinuation of rifampicin. Int J Tuberc Lung Dis. 2000;4(2):118–22.Google Scholar
  419. 419.
    Holdiness MR. A review of the Redman syndrome and rifampicin overdosage. Med Toxicol Adverse Drug Exp. 1989;4(6):444–51.CrossRefGoogle Scholar
  420. 420.
    Capelle P, Dhumeaux D, Mora M, Feldmann G, Berthelot P. Effect of rifampicin on liver function in man. Gut. 1972;13(5):366–71.CrossRefPubMedPubMedCentralGoogle Scholar
  421. 421.
    Cascio A, Scarlata F, Giordano S, Antinori S, Colomba C, Titone L. Treatment of human brucellosis with rifampin plus minocycline. J Chemother. 2003;15(3):248–52.CrossRefGoogle Scholar
  422. 422.
    Menzies D, Dion MJ, Rabinovitch B, Mannix S, Brassard P, Schwartzman K. Treatment completion and costs of a randomized trial of rifampin for 4 months versus isoniazid for 9 months. Am J Respir Crit Care Med. 2004;170(4):445–9.CrossRefGoogle Scholar
  423. 423.
    Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest. 1991;99(2):465–71.CrossRefGoogle Scholar
  424. 424.
    Prince MI, Burt AD, Jones DE. Hepatitis and liver dysfunction with rifampicin therapy for pruritus in primary biliary cirrhosis. Gut. 2002;50(3):436–9.CrossRefPubMedPubMedCentralGoogle Scholar
  425. 425.
    Hadfield JW. Rifampicin-induced thrombocytopenia. Postgrad Med J. 1980;56(651):59–60.CrossRefPubMedPubMedCentralGoogle Scholar
  426. 426.
    Pereira J, Hidalgo P, Ocqueteau M, Blacutt M, Marchesse M, Nien Y, et al. Glycoprotein Ib/IX complex is the target in rifampicin-induced immune thrombocytopenia. Br J Haematol. 2000;110(4):907–10.CrossRefGoogle Scholar
  427. 427.
    De Vriese AS, Robbrecht DL, Vanholder RC, Vogelaers DP, Lameire NH. Rifampicin-associated acute renal failure: pathophysiologic, immunologic, and clinical features. Am J Kidney Dis. 1998;31(1):108–15.CrossRefGoogle Scholar
  428. 428.
    Shafran SD, Singer J, Zarowny DP, Deschenes J, Phillips P, Turgeon F, et al. Determinants of rifabutin-associated uveitis in patients treated with rifabutin, clarithromycin, and ethambutol for Mycobacterium avium complex bacteremia: a multivariate analysis. Canadian HIV trials network protocol 010 study group. J Infect Dis. 1998;177(1):252–5.CrossRefGoogle Scholar
  429. 429.
    Chen J, Raymond K. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006;5:3.CrossRefPubMedPubMedCentralGoogle Scholar
  430. 430.
    Baciewicz AM, Chrisman CR, Finch CK, Self TH. Update on rifampin and rifabutin drug interactions. Am J Med Sci. 2008;335(2):126–36.CrossRefGoogle Scholar
  431. 431.
    Koselj M, Bren A, Kandus A, Kovac D. Drug interactions between cyclosporine and rifampicin, erythromycin, and azoles in kidney recipients with opportunistic infections. Transplant Proc. 1994;26(5):2823–4.Google Scholar
  432. 432.
    Zelunka EJ. Intravenous cyclosporine-rifampin interaction in a pediatric bone marrow transplant recipient. Pharmacotherapy. 2002;22(3):387–90.CrossRefGoogle Scholar
  433. 433.
    Kim YH, Yoon YR, Kim YW, Shin JG, Cha IJ. Effects of rifampin on cyclosporine disposition in kidney recipients with tuberculosis. Transplant Proc. 1998;30(7):3570–2.CrossRefGoogle Scholar
  434. 434.
    Finch CK, Chrisman CR, Baciewicz AM, Self TH. Rifampin and rifabutin drug interactions: an update. Arch Int Med. 2002;162(9):985–92.CrossRefGoogle Scholar
  435. 435.
    Aguado JM, Torre-Cisneros J, Fortun J, Benito N, Meije Y, Doblas A, et al. Tuberculosis in solid-organ transplant recipients: consensus statement of the group for the study of infection in transplant recipients (GESITRA) of the Spanish Society of Infectious Diseases and Clinical Microbiology. Clin Infect Dis. 2009;48(9):1276–84.CrossRefGoogle Scholar
  436. 436.
    Neff G, Zacharias V, Kaiser TE, Gaddis A, Kemmer N. Rifaximin for the treatment of recurrent Clostridium difficile infection after liver transplantation: a case series. Liver Transplant. 2010;16(8):960–3.CrossRefGoogle Scholar
  437. 437.
    Carithers HA. The first use of an antibiotic in America. Am J Dis Children (1960). 1974;128(2):207–11.Google Scholar
  438. 438.
    Petri W. Sulfonamides, trimethoprim-Sulfamethoxazole, quinolones, and agents for urinary tract infections. New York: McGraw Hill; 2011.Google Scholar
  439. 439.
    Kalkut G. Sulfonamides and trimethoprim. Cancer Investig. 1998;16(8):612–5.CrossRefGoogle Scholar
  440. 440.
    Hong YL, Hossler PA, Calhoun DH, Meshnick SR. Inhibition of recombinant pneumocystis carinii dihydropteroate synthetase by sulfa drugs. Antimicrob Agents Chemother. 1995;39(8):1756–63.CrossRefPubMedPubMedCentralGoogle Scholar
  441. 441.
    Smilack JD. Trimethoprim-sulfamethoxazole. Mayo Clin Proc Mayo Clin. 1999;74(7):730–4.CrossRefGoogle Scholar
  442. 442.
    Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis. 2001;32(11):1608–14.CrossRefGoogle Scholar
  443. 443.
    Martin JN, Rose DA, Hadley WK, Perdreau-Remington F, Lam PK, Gerberding JL. Emergence of trimethoprim-sulfamethoxazole resistance in the AIDS era. J Infect Dis. 1999;180(6):1809–18.CrossRefGoogle Scholar
  444. 444.
    Karlowsky JA, Jones ME, Thornsberry C, Critchley I, Kelly LJ, Sahm DF. Prevalence of antimicrobial resistance among urinary tract pathogens isolated from female outpatients across the US in 1999. Int J Antimicrob Agents. 2001;18(2):121–7.CrossRefGoogle Scholar
  445. 445.
    Jesudason MV, John TJ. Plasmid mediated multidrug resistance in Salmonella typhi. Indian J Med Res. 1992;95:66–7.Google Scholar
  446. 446.
    Ziha-Zarifi I, Llanes C, Kohler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother. 1999;43(2):287–91.CrossRefPubMedPubMedCentralGoogle Scholar
  447. 447.
    Swedberg G, Ringertz S, Skold O. Sulfonamide resistance in Streptococcus pyogenes is associated with differences in the amino acid sequence of its chromosomal dihydropteroate synthase. Antimicrob Agents Chemother. 1998;42(5):1062–7.CrossRefPubMedPubMedCentralGoogle Scholar
  448. 448.
    Skold O. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat. 2000;3(3):155–60.CrossRefGoogle Scholar
  449. 449.
    Gallardo F, Ruiz J, Marco F, Towner KJ, Vila J. Increase in incidence of resistance to ampicillin, chloramphenicol and trimethoprim in clinical isolates of Salmonella serotype Typhimurium with investigation of molecular epidemiology and mechanisms of resistance. J Med Microbiol. 1999;48(4):367–74.CrossRefGoogle Scholar
  450. 450.
    Prats G, Mirelis B, Llovet T, Munoz C, Miro E, Navarro F. Antibiotic resistance trends in enteropathogenic bacteria isolated in 1985-1987 and 1995-1998 in Barcelona. Antimicrob Agents Chemother. 2000;44(5):1140–5.CrossRefPubMedPubMedCentralGoogle Scholar
  451. 451.
    Olson RP, Harrell LJ, Kaye KS. Antibiotic resistance in urinary isolates of Escherichia coli from college women with urinary tract infections. Antimicrob Agents Chemother. 2009;53(3):1285–6.CrossRefPubMedPubMedCentralGoogle Scholar
  452. 452.
    Miranda Novales MG, Solorzano Santos F, Guiscafre Gallardo H, Leanos Miranda B, Echaniz Aviles G, Carnalla Barajas MN, et al. Streptococcus pneumoniae: low frequency of penicillin resistance and high resistance to trimethoprim-sulfamethoxazole in nasopharyngeal isolates from children in a rural area in Mexico. Arch Med Res. 1997;28(4):559–63.Google Scholar
  453. 453.
    Hu LF, Chang X, Ye Y, Wang ZX, Shao YB, Shi W, et al. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int J Antimicrob Agents. 2011;37(3):230–4.CrossRefGoogle Scholar
  454. 454.
    Ma L, Borio L, Masur H, Kovacs JA. Pneumocystis carinii dihydropteroate synthase but not dihydrofolate reductase gene mutations correlate with prior trimethoprim-sulfamethoxazole or dapsone use. J Infect Dis. 1999;180(6):1969–78.CrossRefGoogle Scholar
  455. 455.
    Gibreel A, Skold O. High-level resistance to trimethoprim in clinical isolates of campylobacter jejuni by acquisition of foreign genes (dfr1 and dfr9) expressing drug-insensitive dihydrofolate reductases. Antimicrob Agents Chemother. 1998;42(12):3059–64.CrossRefPubMedPubMedCentralGoogle Scholar
  456. 456.
    Coque TM, Singh KV, Weinstock GM, Murray BE. Characterization of dihydrofolate reductase genes from trimethoprim-susceptible and trimethoprim-resistant strains of enterococcus faecalis. Antimicrob Agents Chemother. 1999;43(1):141–7.CrossRefPubMedPubMedCentralGoogle Scholar
  457. 457.
    Lin D, Tucker MJ, Rieder MJ. Increased adverse drug reactions to antimicrobials and anticonvulsants in patients with HIV infection. Ann Pharmacother. 2006;40(9):1594–601.CrossRefGoogle Scholar
  458. 458.
    Floris-Moore MA, Amodio-Groton MI, Catalano MT. Adverse reactions to trimethoprim/sulfamethoxazole in AIDS. Ann Pharmacother. 2003;37(12):1810–3.CrossRefGoogle Scholar
  459. 459.
    Mittmann N, Knowles SR, Koo M, Shear NH, Rachlis A, Rourke SB. Incidence of toxic epidermal necrolysis and Stevens-Johnson syndrome in an HIV cohort: an observational, retrospective case series study. Am J Clin Dermatol. 2012;13(1):49–54.CrossRefGoogle Scholar
  460. 460.
    Leoung GS, Stanford JF, Giordano MF, Stein A, Torres RA, Giffen CA, et al. Trimethoprim-sulfamethoxazole (TMP-SMZ) dose escalation versus direct rechallenge for pneumocystis Carinii pneumonia prophylaxis in human immunodeficiency virus-infected patients with previous adverse reaction to TMP-SMZ. J Infect Dis. 2001;184(8):992–7.CrossRefGoogle Scholar
  461. 461.
    Gluckstein D, Ruskin J. Rapid oral desensitization to trimethoprim-sulfamethoxazole (TMP-SMZ): use in prophylaxis for pneumocystis carinii pneumonia in patients with AIDS who were previously intolerant to TMP-SMZ. Clin Infect Dis. 1995;20(4):849–53.CrossRefGoogle Scholar
  462. 462.
    Kocak Z, Hatipoglu CA, Ertem G, Kinikli S, Tufan A, Irmak H, et al. Trimethoprim-sulfamethoxazole induced rash and fatal hematologic disorders. J Infect. 2006;52(2):e49–52.CrossRefGoogle Scholar
  463. 463.
    Bygbjerg IC, Lund JT, Hording M. Effect of folic and folinic acid on cytopenia occurring during co-trimoxazole treatment of pneumocystis carinii pneumonia. Scand J Infect Dis. 1988;20(6):685–6.CrossRefGoogle Scholar
  464. 464.
    D’Antonio RG, Johnson DB, Winn RE, van Dellen AF, Evans ME. Effect of folinic acid on the capacity of trimethoprim-sulfamethoxazole to prevent and treat pneumocystis carinii pneumonia in rats. Antimicrob Agents Chemother. 1986;29(2):327–9.CrossRefPubMedPubMedCentralGoogle Scholar
  465. 465.
    Markowitz N, Saravolatz LD. Use of trimethoprim-sulfamethoxazole in a glucose-6-phosphate dehydrogenase-deficient population. Rev Infect Dis. 1987;9(Suppl 2):S218–29.CrossRefGoogle Scholar
  466. 466.
    Kouklakis G, Mpoumponaris A, Zezos P, Moschos J, Koulaouzidis A, Nakos A, et al. Cholestatic hepatitis with severe systemic reactions induced by trimethoprim-sulfamethoxazole. Ann Hepatol. 2007;6(1):63–5.Google Scholar
  467. 467.
    Perazella MA, Mahnensmith RL. Trimethoprim-sulfamethoxazole: hyperkalemia is an important complication regardless of dose. Clin Nephrol. 1996;46(3):187–92.Google Scholar
  468. 468.
    Capra C, Monza GM, Meazza G, Ramella G. Trimethoprim-sulfamethoxazole-induced aseptic meningitis: case report and literature review. Intensive Care Med. 2000;26(2):212–4.CrossRefGoogle Scholar
  469. 469.
    Rosini JM, Martinez E, Jain R. Severe hypoglycemia associated with use of trimethoprim/sulfamethoxazole in a patient with chronic renal insufficiency. Ann Pharmacother. 2008;42(4):593–4.CrossRefGoogle Scholar
  470. 470.
    Delanaye P, Mariat C, Cavalier E, Maillard N, Krzesinski JM, White CA. Trimethoprim, creatinine and creatinine-based equations. Nephron Clin Pract. 2011;119(3):c187–93. discussion c93–4CrossRefPubMedPubMedCentralGoogle Scholar
  471. 471.
    Shrishrimal K, Wesson J. Sulfamethoxazole crystalluria. Am J Kidney Dis. 2011;58(3):492–3.CrossRefGoogle Scholar
  472. 472.
    Ryan C, Madalon M, Wortham DW, Graziano FM. Sulfa hypersensitivity in patients with HIV infection: onset, treatment, critical review of the literature. WMJ. 1998;97(5):23–7.Google Scholar
  473. 473.
    Antoniou T, Gomes T, Mamdani MM, Juurlink DN. Trimethoprim/sulfamethoxazole-induced phenytoin toxicity in the elderly: a population-based study. Br J Clin Pharmacol. 2011;71(4):544–9.CrossRefPubMedPubMedCentralGoogle Scholar
  474. 474.
    Guastaldi RB, Reis AM, Figueras A, Secoli SR. Prevalence of potential drug-drug interactions in bone marrow transplant patients. Int J Clin Pharm. 2011;33(6):1002–9.CrossRefGoogle Scholar
  475. 475.
    Macingwana L, Baker B, Ngwane AH, Harper C, Cotton MF, Hesseling A, et al. Sulfamethoxazole enhances the antimycobacterial activity of rifampicin. J Antimicrob Chemother. 2012;67(12):2908–11.CrossRefGoogle Scholar
  476. 476.
    Antoniou T, Gomes T, Mamdani MM, Yao Z, Hellings C, Garg AX, et al. Trimethoprim-sulfamethoxazole induced hyperkalaemia in elderly patients receiving spironolactone: nested case-control study. BMJ. 2011;343:d5228.CrossRefPubMedPubMedCentralGoogle Scholar
  477. 477.
    Gleckman R, Gantz NM, Joubert DW. Intravenous sulfamethoxazole-trimethoprim: pharmacokinetics, therapeutic indications, and adverse reactions. Pharmacotherapy. 1981;1(3):206–11.CrossRefGoogle Scholar
  478. 478.
    Dudley MN, Levitz RE, Quintiliani R, Hickingbotham JM, Nightingale CH. Pharmacokinetics of trimethoprim and sulfamethoxazole in serum and cerebrospinal fluid of adult patients with normal meninges. Antimicrob Agents Chemother. 1984;26(6):811–4.CrossRefPubMedPubMedCentralGoogle Scholar
  479. 479.
    Siber GR, Gorham CC, Ericson JF, Smith AL. Pharmacokinetics of intravenous trimethoprim-sulfamethoxazole in children and adults with normal and impaired renal function. Rev Infect Dis. 1982;4(2):566–78.CrossRefGoogle Scholar
  480. 480.
    Nissenson AR, Wilson C, Holazo A. Pharmacokinetics of intravenous trimethoprim-sulfamethoxazole during hemodialysis. Am J Nephrol. 1987;7(4):270–4.CrossRefGoogle Scholar
  481. 481.
    Goto N, Oka S. Pneumocystis jirovecii pneumonia in kidney transplantation. Transplant Infect Dis. 2011;13(6):551–8.CrossRefGoogle Scholar
  482. 482.
    Husain S, McCurry K, Dauber J, Singh N, Kusne S. Nocardia infection in lung transplant recipients. J Heart Lung Transplant. 2002;21(3):354–9.CrossRefPubMedPubMedCentralGoogle Scholar
  483. 483.
    Peleg AY, Husain S, Qureshi ZA, Silveira FP, Sarumi M, Shutt KA, et al. Risk factors, clinical characteristics, and outcome of Nocardia infection in organ transplant recipients: a matched case-control study. Clin Infect Dis. 2007;44(10):1307–14.CrossRefPubMedPubMedCentralGoogle Scholar
  484. 484.
    Poonyagariyagorn HK, Gershman A, Avery R, Minai O, Blazey H, Asamoto K, et al. Challenges in the diagnosis and management of Nocardia infections in lung transplant recipients. Transplant Infect Dis. 2008;10(6):403–8.CrossRefGoogle Scholar
  485. 485.
    Wood JB, Smith DB, Baker EH, Brecher SM, Gupta K. Has emergence of community-associated MRSA increased trimethoprim-Sulfamethoxazole use and resistance? A 10 year time series analysis. Antimicrob Agents Chemother. 2012;56(11):5655–60.CrossRefPubMedPubMedCentralGoogle Scholar
  486. 486.
    Landman D, Georgescu C, Martin DA, Quale J. Polymyxins revisited. Clin Microbiol Rev. 2008;21(3):449–65.CrossRefPubMedPubMedCentralGoogle Scholar
  487. 487.
    Kubin CJ, Ellman TM, Phadke V, Haynes LJ, Calfee DP, Yin MT. Incidence and predictors of acute kidney injury associated with intravenous polymyxin B therapy. J Infect. 2012;65(1):80–7.CrossRefGoogle Scholar
  488. 488.
    Morrison DC, Jacobs DM. Binding of polymyxin B to the lipid a portion of bacterial lipopolysaccharides. Immunochemistry. 1976;13(10):813–8.CrossRefGoogle Scholar
  489. 489.
    Warner SJ, Mitchell D, Savage N, McClain E. Dose-dependent reduction of lipopolysaccharide pyrogenicity by polymyxin B. Biochem Pharmacol. 1985;34(22):3995–8.CrossRefGoogle Scholar
  490. 490.
    Bozkurt-Guzel C, Gerceker AA. Post-antibiotic effect of colistin, alone and in combination with amikacin, on Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. J Antibiot. 2012;65(2):83–6.CrossRefGoogle Scholar
  491. 491.
    Akin FE, Bayram A, Balci I. Comparison of disc diffusion, E-test, and broth microdilution methods for the determination of resistance to colistin, polymyxin B, and tigecycline in multi-resistant Acinetobacter baumannii isolates. Mikrobiyoloji Bulteni. 2010;44(2):203–10.Google Scholar
  492. 492.
    Galani I, Kontopidou F, Souli M, Rekatsina PD, Koratzanis E, Deliolanis J, et al. Colistin susceptibility testing by Etest and disk diffusion methods. Int J Antimicrob Agents. 2008;31(5):434–9.CrossRefGoogle Scholar
  493. 493.
    Pogue JM, Lee J, Marchaim D, Yee V, Zhao JJ, Chopra T, et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis. 2011;53(9):879–84.CrossRefGoogle Scholar
  494. 494.
    Esaian D, Dubrovskaya Y, Phillips M, Papadopoulos J. Effectiveness and tolerability of a polymyxin B dosing protocol. Ann Pharmacother. 2012;46(3):455–6.CrossRefGoogle Scholar
  495. 495.
    Yahav D, Farbman L, Leibovici L, Paul M. Colistin: new lessons on an old antibiotic. Clin Microbiol Infect. 2012;18(1):18–29.CrossRefGoogle Scholar
  496. 496.
    Kofteridis DP, Alexopoulou C, Valachis A, Maraki S, Dimopoulou D, Georgopoulos D, et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect Dis. 2010;51(11):1238–44.CrossRefGoogle Scholar
  497. 497.
    Naesens R, Vlieghe E, Verbrugghe W, Jorens P, Ieven M. A retrospective observational study on the efficacy of colistin by inhalation as compared to parenteral administration for the treatment of nosocomial pneumonia associated with multidrug-resistant Pseudomonas aeruginosa. BMC Infect Dis. 2011;11:317.CrossRefPubMedPubMedCentralGoogle Scholar
  498. 498.
    Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2008;46(7):1069–77.CrossRefGoogle Scholar
  499. 499.
    Tullio V, Cuffini AM, Banche G, Mandras N, Allizond V, Roana J, et al. Role of fosfomycin tromethamine in modulating non-specific defence mechanisms in chronic uremic patients towards ESBL-producing Escherichia coli. Int J Immunopathol Pharmacol. 2008;21(1):153–60.CrossRefGoogle Scholar
  500. 500.
    de Souza RM, Olsburgh J. Urinary tract infection in the renal transplant patient. Nat Clin Pract Nephrol. 2008;4(5):252–64.CrossRefGoogle Scholar
  501. 501.
    Rivera-Sanchez R, Delgado-Ochoa D, Flores-Paz RR, Garcia-Jimenez EE, Espinosa-Hernandez R, Bazan-Borges AA, et al. Prospective study of urinary tract infection surveillance after kidney transplantation. BMC Infect Dis. 2010;10:245.CrossRefPubMedPubMedCentralGoogle Scholar
  502. 502.
    Santimaleeworagun W, Wongpoowarak P, Chayakul P, Pattharachayakul S, Tansakul P, Garey KW. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J Trop Med Public Health. 2011;42(4):890–900.Google Scholar
  503. 503.
    Fernandes P, Pereira D. Efforts to support the development of fusidic acid in the United States. Clin Infect Dis. 2011;52(Suppl 7):S542–6.CrossRefGoogle Scholar
  504. 504.
    Moellering RC Jr, Corey GR, Grayson ML. Introduction: fusidic acid enters the United States. Clin Infect Dis. 2011;52(Suppl 7):S467–8.CrossRefGoogle Scholar
  505. 505.
    Jones RN, Mendes RE, Sader HS, Castanheira M. In vitro antimicrobial findings for fusidic acid tested against contemporary (2008-2009) gram-positive organisms collected in the United States. Clin Infect Dis. 2011;52(Suppl 7):S477–86.CrossRefGoogle Scholar
  506. 506.
    Craft JC, Moriarty SR, Clark K, Scott D, Degenhardt TP, Still JG, et al. A randomized, double-blind phase 2 study comparing the efficacy and safety of an oral fusidic acid loading-dose regimen to oral linezolid for the treatment of acute bacterial skin and skin structure infections. Clin Infect Dis. 2011;52(Suppl 7):S520–6.CrossRefGoogle Scholar
  507. 507.
    Theriault RJ, Karwowski JP, Jackson M, Girolami RL, Sunga GN, Vojtko CM, et al. Tiacumicins, a novel complex of 18-membered macrolide antibiotics. I. Taxonomy, fermentation and antibacterial activity. J Antibiot. 1987;40(5):567–74.CrossRefGoogle Scholar
  508. 508.
    Artsimovitch I, Seddon J, Sears P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis. 2012;55(Suppl 2):S127–31.CrossRefPubMedPubMedCentralGoogle Scholar
  509. 509.
    Tupin A, Gualtieri M, Leonetti JP, Brodolin K. The transcription inhibitor lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site. EMBO J. 2010;29(15):2527–37.CrossRefPubMedPubMedCentralGoogle Scholar
  510. 510.
    Goldstein EJ, Babakhani F, Citron DM. Antimicrobial activities of fidaxomicin. Clin Infect Dis. 2012;55(Suppl 2):S143–8.CrossRefPubMedPubMedCentralGoogle Scholar
  511. 511.
    Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364(5):422–31.CrossRefGoogle Scholar
  512. 512.
    Seddon J BF, Sears P. Mutant prevention concentration of fidaxomicin for Clostridium difficile. Fifty-second Interscience Conference on Antimicrobial Agents and Chemotherapy 2012.Google Scholar
  513. 513.
    Sears P, Crook DW, Louie TJ, Miller MA, Weiss K. Fidaxomicin attains high fecal concentrations with minimal plasma concentrations following oral administration in patients with Clostridium difficile infection. Clin Infect Dis. 2012;55(Suppl 2):S116–20.CrossRefPubMedPubMedCentralGoogle Scholar
  514. 514.
    Weiss K, Allgren RL, Sellers S. Safety analysis of fidaxomicin in comparison with oral vancomycin for Clostridium difficile infections. Clin Infect Dis. 2012;55(Suppl 2):S110–5.CrossRefPubMedPubMedCentralGoogle Scholar
  515. 515.
    Johnson AP, Wilcox MH. Fidaxomicin: a new option for the treatment of Clostridium difficile infection. J Antimicrob Chemother. 2012;Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jerry Altshuler
    • 1
    Email author
  • Samuel L. Aitken
    • 2
  • Melanie Maslow
    • 3
  • John Papadopoulos
    • 4
  • Amar Safdar
    • 5
  1. 1.The Mount Sinai Hospital, Department of PharmacyNew YorkUSA
  2. 2.Infectious Diseases, The University of Texas MD Anderson Cancer Center, Division of PharmacyHoustonUSA
  3. 3.New York University School of MedicineNew YorkUSA
  4. 4.Department of Pharmacy, Division of PharmacotherapyNYU Langone Medical CenterNew YorkUSA
  5. 5.Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of MedicineEl PasoUSA

Personalised recommendations