Advertisement

Infections in Intestinal and Multivisceral Transplantation

  • Raffaele GirlandaEmail author
  • Joseph G. TimponeJr
  • Kevin M. Soriano
  • Thomas M. Fishbein
Chapter

Abstract

Intestinal and multivisceral transplantation are associated with a significantly higher risk of infectious complications compared to other transplants. In this chapter we describe the approach to common infections after intestinal and multivisceral transplantation along with recent developments in the understanding of the gut microbiota and intestinal immune homeostasis.

Notes

Acknowledgment

Dr. Stuart S Kaufman, MD for endoscopic pictures, Dr. Therese Cermak, MD for histology slides, and Michele Malloy for editorial assistance.

References

  1. 1.
  2. 2.
    Intestinal Transplant Association. Intestinal transplant registry report. 2009.Google Scholar
  3. 3.
    Centers for Medicare & Medicaid Services. Centers for medicare & medicaid services. http://www.cms.gov/. Updated 2012. Accessed 8/16/2012, 2012.
  4. 4.
    Harper SJF, Jamieson NV. Intestinal and multivisceral transplantation. Surgery. 2014;32(7):377–83.Google Scholar
  5. 5.
    Blackwell V, Holdaway L, Reddy S, et al. Careful donor selection reduces the risk of cytomegalovirus viraemia following intestinal transplant: the oxford experience. Transplantation. 2015;99(6):S75.Google Scholar
  6. 6.
    Martinez Rivera A, Wales PW. Intestinal transplantation in children: Current status. Pediatr Surg Int. 2016;32(6):529–40.  https://doi.org/10.1007/s00383-016-3885-2.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Todo S, Tzakis A, Reyes J, et al. Small intestinal transplantation in humans with or without the colon. Transplantation. 1994;57(6):840–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Kato T, Selvaggi G, Gaynor JJ, et al. Inclusion of donor colon and ileocecal valve in intestinal transplantation. Transplantation. 2008;86(2):293–7. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=18645493.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Todo S, Reyes J, Furukawa H, et al. Outcome analysis of 71 clinical intestinal transplantations. Ann Surg. 1995;222(3):270–80. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=7677458.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lee RG, Nakamura K, Tsamandas AC, et al. Pathology of human intestinal transplantation. Gastroenterology. 1996;110(6):1820–34. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=8964408.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wu T, Abu-Elmagd K, Bond G, Nalesnik MA, Randhawa P, Demetris AJ. A schema for histologic grading of small intestine allograft acute rejection. Transplantation. 2003;75(8):1241–8. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12717210.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tsai HL, Island ER, Chang JW, et al. Association between donor-specific antibodies and acute rejection and resolution in small bowel and multivisceral transplantation. Transplantation. 2011;92(6):709–15. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=21804443.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dick AA, Horslen S. Antibody-mediated rejection after intestinal transplantation. Curr Opin Organ Transplant. 2012;17(3):250–7.  https://doi.org/10.1097/MOT.0b013e3283533847.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shulzhenko N, Morgun A, Hsiao W, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;17(12):1585–93. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medc&AN=22101768.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    McDole JR, Wheeler LW, McDonald KG, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483(7389):345–9. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=22422267.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=17653185.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
  19. 19.
    Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology. 2001;204(5):572–81. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=11846220.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307(5707):254–8. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15653504.CrossRefGoogle Scholar
  21. 21.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.  https://doi.org/10.1084/jem.20070590.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lough D, Abdo J, Guerra-Castro JF, et al. Abnormal CX3CR1+ lamina propria myeloid cells from intestinal transplant recipients with NOD2 mutations. Am J Transplant. 2012;12(4):992–1003. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=22233287.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
    Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19(6):362–71.  https://doi.org/10.1016/j.smim.2007.10.007.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
  27. 27.
    Brenchley JM, Douek DC. Microbial translocation across the GI tract. Annu Rev Immunol. 2012;30:149–73.  https://doi.org/10.1146/annurev-immunol-020711-075001.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol. 2012;24(1):58–66.  https://doi.org/10.1016/j.smim.2011.11.008.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shanahan F. The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol. 2002;16(6):915–31. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12473298.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol. 1995;39(8):555–62. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=7494493.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=18987631.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Oh PL, Martinez I, Sun Y, Walter J, Peterson DA, Mercer DF. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am J Transplant. 2012;12(3):753–62. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=22152019.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
  34. 34.
    Scheifele DW, Olsen EM, Pendray MR. Endotoxinemia and thrombocytopenia during neonatal necrotizing enterocolitis. Am J Clin Pathol. 1985;83(2):227–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bucher BT, McDuffie LA, Shaikh N, et al. Bacterial DNA content in the intestinal wall from infants with necrotizing enterocolitis. J Pediatr Surg. 2011;46(6):1029–33.  https://doi.org/10.1016/j.jpedsurg.2011.03.026.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rothman D, Latham MC, Walker WA. Transport of macromolecules in malnourished animals:: I. evidence for increased uptake of intestinal antigens. Nutr Res. 1982;2(4):467–73.CrossRefGoogle Scholar
  37. 37.
  38. 38.
  39. 39.
    Kaushal M, Carlson GL. Management of enterocutaneous fistulas. Clin Colon Rectal Surg. 2004;17(2):79–88.  https://doi.org/10.1055/s-2004-828654.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Soeters PB, Ebeid AM, Fischer JE. Review of 404 patients with gastrointestinal fistulas. Impact of parenteral nutrition. Ann Surg. 1979;190(2):189–202. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med1&AN=111638.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    McLauchlan GJ, Anderson ID, Grant IS, Fearon KC. Outcome of patients with abdominal sepsis treated in an intensive care unit. Br J Surg. 1995;82(4):524–9. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=7613902.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Thomas HA. Radiologic investigation and treatment of gastrointestinal fistulas. Surg Clin North Am. 1996;76(5):1081–94.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kwon SH, Oh JH, Kim HJ, Park SJ, Park HC. Interventional management of gastrointestinal fistulas. Korean J Radiol. 2008;9(6):541–9. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=19039271.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Paterson DL. The epidemiological profile of infections with multidrug-resistant pseudomonas aeruginosa and acinetobacter species. Clin Infect Dis. 2006;43(Suppl 2):S43–8. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16894514.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jacobson KL, Cohen SH, Inciardi JF, et al. The relationship between antecedent antibiotic use and resistance to extended-spectrum cephalosporins in group I beta-lactamase-producing organisms. Clin Infect Dis. 1995;21(5):1107–13.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Fraimow HS, Tsigrelis C. Antimicrobial resistance in the intensive care unit: mechanisms, epidemiology, and management of specific resistant pathogens. Crit Care Clin. 2011;27(1):163–205.  https://doi.org/10.1016/j.ccc.2010.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Santos JI. Nutrition, infection, and immunocompetence. Infect Dis Clin N Am. 1994;8(1):243–67.Google Scholar
  48. 48.
    Savendahl L, Underwood LE. Decreased interleukin-2 production from cultured peripheral blood mononuclear cells in human acute starvation. J Clin Endocrinol Metab. 1997;82(4):1177–80.PubMedPubMedCentralGoogle Scholar
  49. 49.
  50. 50.
    Carbone J, Micheloud D, Salcedo M, et al. Humoral and cellular immune monitoring might be useful to identify liver transplant recipients at risk for development of infection. Transpl Infect Dis. 2008;10(6):396–402.  https://doi.org/10.1111/j.1399-3062.2008.00329.x.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Altin M, Rajkovic IA, Hughes RD, Williams R. Neutrophil adherence in chronic liver disease and fulminant hepatic failure. Gut. 1983;24(8):746–50. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med2&AN=6873736.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Seki S, Habu Y, Kawamura T, et al. The liver as a crucial organ in the first line of host defense: the roles of kupffer cells, natural killer (NK) cells and NK1.1 ag+ T cells in T helper 1 immune responses. Immunol Rev. 2000;174:35–46. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10807505.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Tokars JI, Cookson ST, McArthur MA, Boyer CL, McGeer AJ, Jarvis WR. Prospective evaluation of risk factors for bloodstream infection in patients receiving home infusion therapy. Ann Intern Med. 1999;131(5):340–7. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10475886.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ishizuka M, Nagata H, Takagi K, Kubota K. Total parenteral nutrition is a major risk factor for central venous catheter-related bloodstream infection in colorectal cancer patients receiving postoperative chemotherapy. Eur Surg Res. 2008;41(4):341–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=18841020.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mohammed A, Grant FK, Zhao VM, Shane AL, Ziegler TR, Cole CR. Characterization of posthospital bloodstream infections in children requiring home parenteral nutrition. J Parenter Enter Nutr. 2011;35(5):581–7. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=21799191.CrossRefGoogle Scholar
  56. 56.
    Sondheimer JM, Asturias E, Cadnapaphornchai M. Infection and cholestasis in neonates with intestinal resection and long-term parenteral nutrition. J Pediatr Gastroenterol Nutr. 1998;27(2):131–7. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=9702641.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Beath SV, Davies P, Papadopoulou A, et al. Parenteral nutrition-related cholestasis in postsurgical neonates: multivariate analysis of risk factors. J Pediatr Surg. 1996;31(4):604–6. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=8801324.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Marra AR, Opilla M, Edmond MB, Kirby DF. Epidemiology of bloodstream infections in patients receiving long-term total parenteral nutrition. J Clin Gastroenterol. 2007;41(1):19–28. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=17198060.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Matsumoto C, Kaufman S, Fennelly E, Davis J, Gupta P, Fishbein TM. Impact of positive preoperative surveillance blood cultures from chronic indwelling catheters in cadaveric intestinal transplant recipients. Transplant Proc. 2006;38(6):1676–7. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16908244.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–17. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15306996.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ostrowsky BE, Whitener C, Bredenberg HK, et al. Serratia marcescens bacteremia traced to an infused narcotic. N Engl J Med. 2002;346(20):1529–37. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12015392.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Centers for Disease Control and Prevention (CDC): Morbidity and Mortality Weekly Report. Pseudomonas bloodstream infections associated with a heparin/saline flush --- missouri, new york, texas, and michigan, 2004--2005 http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5411a1.htm. Updated 2005. Accessed 8/3/2012, 2012.
  63. 63.
    Maki DG. Infections due to infusion therapy. In: Jarvis WR, editor. Bennett and brachman’s hospital infections. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.Google Scholar
  64. 64.
    Plouffe JF, Brown DG, Silva J Jr, Eck T, Stricof RL, Fekety FR Jr. Nosocomial outbreak of candida parapsilosis fungemia related to intravenous infusions. Arch Intern Med. 1977;137(12):1686–9. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med1&AN=412474.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Solomon SL, Khabbaz RF, Parker RH, et al. An outbreak of candida parapsilosis bloodstream infections in patients receiving parenteral nutrition. J Infect Dis. 1984;149(1):98–102. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med2&AN=6420478.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of america. Clin Infect Dis. 2009;48(5):503–35.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Pappas PG, Rex JH, Lee J, et al. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis. 2003;37(5):634–43. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12942393.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tortorano AM, Peman J, Bernhardt H, et al. Epidemiology of candidaemia in europe: results of 28-month european confederation of medical mycology (ECMM) hospital-based surveillance study. Eur J Clin Microbiol Infect Dis. 2004;23(4):317–22. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15029512.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Trick WE, Fridkin SK, Edwards JR, Hajjeh RA, Gaynes RP, National Nosocomial Infections Surveillance System Hospitals. Secular trend of hospital-acquired candidemia among intensive care unit patients in the united states during 1989–1999. Clin Infect Dis. 2002;35(5):627–30. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12173140.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Curry CR, Quie PG. Fungal septicemia in patients receiving parenteral hyperalimentation. N Engl J Med. 1971;285(22):1221–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med1&AN=5000319.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Henderson DK, Edwards JE Jr, Montgomerie JZ. Hematogenous candida endophthalmitis in patients receiving parenteral hyperalimentation fluids. J Infect Dis. 1981;143(5):655–61. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med2&AN=6787141.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Montgomerie JZ, Edwards JE Jr. Association of infection due to candida albicans with intravenous hyperalimentation. J Infect Dis. 1978;137(2):197–201. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med1&AN=415098.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases society of america. Clin Infect Dis. 2009;49(1):1–45. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=19489710.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fortun J, Grill F, Martin-Davila P, et al. Treatment of long-term intravascular catheter-related bacteraemia with antibiotic-lock therapy. J Antimicrob Chemother. 2006;58(4):816–21. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16899468.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Rijnders BJ, Van Wijngaerden E, Vandecasteele SJ, Stas M, Peetermans WE. Treatment of long-term intravascular catheter-related bacteraemia with antibiotic lock: randomized, placebo-controlled trial. J Antimicrob Chemother. 2005;55(1):90–4.  https://doi.org/10.1093/jac/dkh488.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Onder AM, Kato T, Simon N, et al. Prevention of catheter-related bacteremia in pediatric intestinal transplantation/short gut syndrome children with long-term central venous catheters. Pediatr Transplant. 2007;11(1):87–93.  https://doi.org/10.1111/j.1399-3046.2006.00634.x.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Casas S, Munoz L, Moure R, et al. Comparison of the 2-step tuberculin skin test and the quantiFERON-TB gold in-tube test for the screening of tuberculosis infection before liver transplantation. Liver Transpl. 2011;17(10):1205–11. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=22279622.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Theodoropoulos N, Lanternier F, Rassiwala J, et al. Use of the QuantiFERON-TB gold interferon-gamma release assay for screening transplant candidates: a single-center retrospective study. Transpl Infect Dis. 2012;14(1):1–8. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=21883759.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    John M, Gondolesi G, Herold BC, Kaufman S, Fishbein T, Posada R. Impact of surveillance stool culture guided selection of antibiotics in the management of pediatric small bowel transplant recipients. Pediatr Transplant. 2006;10(2):198–204. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16573607.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Danzinger-Isakov L, Kumar D, AST Infectious Diseases Community of Practice. Guidelines for vaccination of solid organ transplant candidates and recipients. Am J Transplant. 2009;9(Suppl 4):S258–62. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20070687.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
  82. 82.
  83. 83.
  84. 84.
    Primeggia J, Matsumoto CS, Fishbein TM, Karacki PS, Fredette TM, Timpone JG. Infection among adult small bowel and multivisceral transplant recipients in the 30-day postoperative period. Transpl Infect Dis. 2013;15(5):441–8.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Kimura T, Lauro A, Cescon M, et al. Impact of induction therapy on bacterial infections and long-term outcome in adult intestinal and multivisceral transplantation: a comparison of two different induction protocols: Daclizumab vs. alemtuzumab. Clin Transpl. 2009;23(3):420–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=19537304.CrossRefGoogle Scholar
  86. 86.
    Berg RD. Promotion of the translocation of enteric bacteria from the gastrointestinal tracts of mice by oral treatment with penicillin, clindamycin, or metronidazole. Infect Immun. 1981;33(3):854–61. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med2&AN=6456996.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Mainous M, Xu DZ, Lu Q, Berg RD, Deitch EA. Oral-TPN-induced bacterial translocation and impaired immune defenses are reversed by refeeding. Surgery. 1991;110(2):277–83. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=1907032.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Akhter K, Timpone J, Matsumoto C, Fishbein T, Kaufman S, Kumar P. Six-month incidence of bloodstream infections in intestinal transplant patients. Transpl Infect Dis. 2012;14(3):242–7.  https://doi.org/10.1111/j.1399-3062.2011.00683.x.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Hartman AL, Lough DM, Barupal DK, et al. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci U S A. 2009;106(40):17187–92. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=19805153.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
  91. 91.
    Lee TK, Heeckt P, Smith SD, Lee KK, Rowe MI, Schraut WH. Postoperative selective bowel decontamination prevents gram-negative bacterial translocation in small-bowel graft recipients. J Surg Res. 1995;58(5):496–502. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=7538186.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Green M, Barbadora K. Recovery of ceftazidime-resistant klebsiella pneumoniae from pediatric liver and intestinal transplant recipients. Pediatr Transplant. 1998;2(3):224–30. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10084747.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Dodds-Ashley E. Management of drug and food interactions with azole antifungal agents in transplant recipients. Pharmacotherapy. 2010;30(8):842–54. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20653361.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
  95. 95.
    Humar A, Snydman D, AST Infectious Diseases Community of Practice. Cytomegalovirus in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S78–86.  https://doi.org/10.1111/j.1600-6143.2009.02897.x.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Eid AJ, Razonable RR. New developments in the management of cytomegalovirus infection after solid organ transplantation. Drugs. 2010;70(8):965–81.  https://doi.org/10.2165/10898540-000000000-00000.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Manez R, Kusne S, Green M, et al. Incidence and risk factors associated with the development of cytomegalovirus disease after intestinal transplantation. Transplantation. 1995;59(7):1010–4.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bueno J, Green M, Kocoshis S, et al. Cytomegalovirus infection after intestinal transplantation in children. Clin Infect Dis. 1997;25(5):1078–83. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medc&AN=9402361.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Avsar Y, Cicinnati V, Kabar I, et al. Allograft failure in an intestinal graft recipient after cytomegalovirus disease without dnaemia. Transpl Int. 2013;26(Suppl 1):28–32.Google Scholar
  100. 100.
    Florescu DF, Langnas AN, Grant W, et al. Incidence, risk factors, and outcomes associated with cytomegalovirus disease in small bowel transplant recipients. Pediatr Transplant. 2012;16(3):294–301.  https://doi.org/10.1111/j.1399-3046.2011.01628.x.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Timpone JG, Yimen M, Cox S, et al. Resistant cytomegalovirus in intestinal and multivisceral transplant recipients. Transpl Infect Dis. 2016;18(2):202–9.  https://doi.org/10.1111/tid.12507.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Talmon GA. Histologic features of cytomegalovirus enteritis in small bowel allografts. Transplant Proc. 2010;42(7):2671–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20832567.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ichihara H, Nakamae H, Hirose A, et al. Immunoglobulin prophylaxis against cytomegalovirus infection in patients at high risk of infection following allogeneic hematopoietic cell transplantation. Transplant Proc. 2011;43(10):3927–32.  https://doi.org/10.1016/j.transproceed.2011.08.104.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Mor E, Meyers BR, Yagmur O, et al. High-dose acyclovir and intravenous immune globulin reduce the incidence of CMV disease after liver transplantation. Transplant Int. 1995;8(2):152–6. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=7766298.CrossRefGoogle Scholar
  105. 105.
    Florescu DF, Abu-Elmagd K, Mercer DF, Qiu F, Kalil AC. An international survey of cytomegalovirus prevention and treatment practices in intestinal transplantation. Transplantation. 2014;97(1):78–82.  https://doi.org/10.1097/TP.0b013e3182a6baa2.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Nagai S, Mangus RS, Anderson E, et al. Cytomegalovirus infection after intestinal/multivisceral transplantation: a single-center experience with 210 cases. Transplantation. 2016;100(2):451–60.  https://doi.org/10.1097/TP.0000000000000832.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Fortun Abete J, Martin-Davila P, Moreno S, Quijano Y, de Vicente E, Pou L. Pharmacokinetics of oral valganciclovir and intravenous ganciclovir administered to prevent cytomegalovirus disease in an adult patient receiving small-intestine transplantation. Antimicrob Agents Chemother. 2004;48(7):2782–3. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15215150.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Goldsmith PM, Husain MM, Carmichael A, Zhang H, Middleton SJ. Case report: multidrug-resistant cytomegalovirus in a modified multivisceral transplant recipient. Transplantation. 2012;93(7):e30–2.  https://doi.org/10.1097/TP.0b013e318249b163.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Sagedal S, Nordal KP, Hartmann A, et al. The impact of cytomegalovirus infection and disease on rejection episodes in renal allograft recipients. Am J Transplant. 2002;2(9):850–6. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12392291.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Allen U, Preiksaitis J, AST Infectious Diseases Community of Practice. Epstein-barr virus and posttransplant lymphoproliferative disorder in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S87–96. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20070701.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kaufman S. Small intestinal transplantation. In: Kleinman RE, Walker WA, editors. Walker’s pediatric gastrointestinal disease: physiology, diagnosis, management. Hamilton/Lewiston: BC Decker; 2008. p. 621.Google Scholar
  112. 112.
    Green M, Bueno J, Rowe D, et al. Predictive negative value of persistent low epstein-barr virus viral load after intestinal transplantation in children. Transplantation. 2000;70(4):593–6. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10972215.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Vrakas G, Arantes R, Day N, Reddy S, Friend P, Vaidya A. Post transplantation lymphoproliferative disorder after intestinal transplantation. Transplantation. 2014;98(Suppl 1):244 CrossRefGoogle Scholar
  114. 114.
    Gross TG. Management of posttransplant lymphoproliferative disease. In: Langnas AN, editor. Intestinal failure : diagnosis, management and transplantation. Malden: Blackwell Pub; 2008.Google Scholar
  115. 115.
    Opelz G, Dohler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant. 2004;4(2):222–30. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=14974943.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Hryhorczuk AL, Kim HB, Harris MH, Vargas SO, Zurakowski D, Lee EY. Imaging findings in children with proliferative disorders following multivisceral transplantation. Pediatr Radiol. 2015;45(8):1138–45.  https://doi.org/10.1007/s00247-015-3303-2.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Plant AS, Venick RS, Farmer DG, Upadhyay S, Said J, Kempert P. Plasmacytoma-like post-transplant lymphoproliferative disorder seen in pediatric combined liver and intestinal transplant recipients. Pediatr Blood Cancer. 2013;60(11):E137–9.  https://doi.org/10.1002/pbc.24632.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Lauro A, Arpinati M, Pinna AD. Managing the challenge of PTLD in liver and bowel transplant recipients. Br J Haematol. 2015;169(2):157–72.  https://doi.org/10.1111/bjh.13213.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Oertel SH, Verschuuren E, Reinke P, et al. Effect of anti-CD 20 antibody rituximab in patients with post-transplant lymphoproliferative disorder (PTLD). Am J Transplant. 2005;5(12):2901–6. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16303003.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Pescovitz MD. The use of rituximab, anti-CD20 monoclonal antibody, in pediatric transplantation. Pediatr Transplant. 2004;8(1):9–21. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15009836.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6(5 Pt 1):859–66. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16611321.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Buell JF, Gross TG, Hanaway MJ, et al. Chemotherapy for posttransplant lymphoproliferative disorder: the Israel penn international transplant tumor registry experience. Transplant Proc. 2005;37(2):956–7. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15848588.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Gross TG, Bucuvalas JC, Park JR, et al. Low-dose chemotherapy for epstein-barr virus-positive post-transplantation lymphoproliferative disease in children after solid organ transplantation. J Clin Oncol. 2005;23(27):6481–8. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16170157.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
  125. 125.
    McLaughlin GE, Delis S, Kashimawo L, et al. Adenovirus infection in pediatric liver and intestinal transplant recipients: utility of DNA detection by PCR. Am J Transplant. 2003;3(2):224–8. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12603217.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Pinchoff RJ, Kaufman SS, Magid MS, et al. Adenovirus infection in pediatric small bowel transplantation recipients. Transplantation. 2003;76(1):183–9. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12865807.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Berho M, Torroella M, Viciana A, et al. Adenovirus enterocolitis in human small bowel transplants. Pediatr Transplant. 1998;2(4):277–82. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10084729.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Florescu DF, Islam MK, Mercer DF, et al. Adenovirus infections in pediatric small bowel transplant recipients. Transplantation. 2010;90(2):198–204. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20467354.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Adeyi OA, Randhawa PA, Nalesnik MA, et al. Posttransplant adenoviral enteropathy in patients with small bowel transplantation. Arch Pathol Lab Med. 2008;132(4):703–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=18384224.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Kaufman SS, Magid MS, Tschernia A, LeLeiko NS, Fishbein TM. Discrimination between acute rejection and adenoviral enteritis in intestinal transplant recipients. Transplant Proc. 2002;34(3):943–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12034252.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Ison MG, Green M, AST Infectious Diseases Community of Practice. Adenovirus in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S161–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20070676.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
  133. 133.
    Kaufman SS, Chatterjee NK, Fuschino ME, et al. Calicivirus enteritis in an intestinal transplant recipient. Am J Transplant. 2003;3(6):764–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
  135. 135.
    Singh N. Antifungal prophylaxis for solid organ transplant recipients: seeking clarity amidst controversy. Clin Infect Dis. 2000;31(2):545–53. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10987719.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Kubak BM, Huprikar SS, AST Infectious Diseases Community of Practice. Emerging & rare fungal infections in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S208–26. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20070683.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Brizendine KD, Vishin S, Baddley JW. Antifungal prophylaxis in solid organ transplant recipients. Expert Rev Antiinfect Ther. 2011;9(5):571–81. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=21609268.CrossRefGoogle Scholar
  138. 138.
    Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis. 2010;50(8):1101–11. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20218876.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kusne S, Furukawa H, Abu-Elmagd K, et al. Infectious complications after small bowel transplantation in adults: an update. Transplant Proc. 1996;28(5):2761–2. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medc&AN=8908045.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Sauvat F, Dupic L, Caldari D, et al. Factors influencing outcome after intestinal transplantation in children. Transplant Proc. 2006;38(6):1689–91. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16908249.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49(9):3640–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16127033.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Singh N, Husain S, AST Infectious Diseases Community of Practice. Invasive aspergillosis in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S180–91. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20070679.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kohler S, Gerlach U, Guckelberger O, et al. Successful treatment of invasive sphenoidal, pulmonary and intracerebral aspergillosis after multivisceral transplantation. Transplant Int. 2009;22(5):589–91. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=19175558.CrossRefGoogle Scholar
  144. 144.
    Vianna R, Misra V, Fridell JA, Goldman M, Mangus RS, Tector J. Survival after disseminated invasive aspergillosis in a multivisceral transplant recipient. Transplant Proc. 2007;39(1):305–7. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=17275530.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Singh N, Avery RK, Munoz P, et al. Trends in risk profiles for and mortality associated with invasive aspergillosis among liver transplant recipients. Clin Infect Dis. 2003;36(1):46–52. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12491201.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Gavalda J, Len O, San Juan R, Aguado JM, Fortun J, Lumbreras C, Moreno A, Munoz P, Blanes M, Ramos A, Rufi G, Gurgui M, Torre-Cisneros J, Montejo M, Cuenca-Estrella M, Rodriguez-Tudela JL, Pahissa A. RESITRA (Spanish Network for Research on Infection in Transplantation). Risk factors for invasive aspergillosis in solid-organ transplant recipients: a case-control study. Clin Infect Dis. 2005;41(1):52–9. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15937763.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kusne S, Torre-Cisneros J, Manez R, et al. Factors associated with invasive lung aspergillosis and the significance of positive aspergillus culture after liver transplantation. J Infect Dis. 1992;166(6):1379–83. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=1431256.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Osawa M, Ito Y, Hirai T, et al. Risk factors for invasive aspergillosis in living donor liver transplant recipients. Liver Transpl. 2007;13(4):566–70. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=17394155.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    George MJ, Snydman DR, Werner BG, et al. The independent role of cytomegalovirus as a risk factor for invasive fungal disease in orthotopic liver transplant recipients. Boston center for liver transplantation CMVIG-study group. Cytogam, MedImmune, Inc. Gaithersburg, Maryland. Am J Med. 1997;103(2):106–13. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=9274893.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Collins LA, Samore MH, Roberts MS, et al. Risk factors for invasive fungal infections complicating orthotopic liver transplantation. J Infect Dis. 1994;170(3):644–52. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=8077723.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Reyes J, Todo S, Green M, et al. Graft-versus-host disease after liver and small bowel transplantation in a child. Clin Transpl. 1997;11(5 Pt 1):345–8. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medc&AN=9361921.Google Scholar
  152. 152.
    Uemoto S, Fujimoto Y, Inomata Y, et al. Living-related small bowel transplantation: the first case in Japan. Pediatr Transplant. 1998;2(1):40–4. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10084759.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Campbell AL, Goldberg CL, Magid MS, Gondolesi G, Rumbo C, Herold BC. First case of toxoplasmosis following small bowel transplantation and systematic review of tissue-invasive toxoplasmosis following noncardiac solid organ transplantation. Transplantation. 2006;81(3):408–17. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16477228.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Gerber DA, Green M, Jaffe R, Greenberg D, Mazariegos G, Reyes J. Cryptosporidial infections after solid organ transplantation in children. Pediatr Transplant. 2000;4(1):50–5. http://0-ovidsp.ovid.com.library.lausys.georgetown.edu/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=10731059.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
  156. 156.
    Hsu CN, Tseng SH, Chang SW, Chen Y. Strongyloides stercoralis infection in an intestinal transplant recipient. Transpl Infect Dis. 2013;15(4):E139–43.  https://doi.org/10.1111/tid.12104.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
  158. 158.
  159. 159.
    Furukawa H, Kusne S, Sutton DA, et al. Acute invasive sinusitis due to trichoderma longibrachiatum in a liver and small bowel transplant recipient. Clin Infect Dis. 1998;26(2):487–9. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=9502475.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Singh N, Chang FY, Gayowski T, Marino IR. Infections due to dematiaceous fungi in organ transplant recipients: case report and review. Clin Infect Dis. 1997;24(3):369–74. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=9114187.PubMedCrossRefGoogle Scholar
  161. 161.
    Ashkenazi-Hoffnung L, Bilavsky E, Avitzur Y, Amir J. Successful treatment of cutaneous zygomycosis with intravenous amphotericin B followed by oral posaconazole in a multivisceral transplant recipient. Transplantation. 2010;90(10):1133–5.  https://doi.org/10.1097/TP.0b013e3181f86916.CrossRefPubMedGoogle Scholar
  162. 162.
    Irtan S, Lamerain M, Lesage F, et al. Mucormycosis as a rare cause of severe gastrointestinal bleeding after multivisceral transplantation. Transpl Infect Dis. 2013;15(6):E235–8.  https://doi.org/10.1111/tid.12147.CrossRefPubMedGoogle Scholar
  163. 163.
    Rege A, Chaubal G, Reddy J, Vikraman D, Kadiyala R, Sudan D. Unusual rare infections following intestinal transplantation. Transplantation. 2015;99(6):S73.Google Scholar
  164. 164.
    Qu L, Strollo DC, Bond G, Kusne S. Nocardia prostatitis in a small intestine transplant recipient. Transpl Infect Dis. 2003;5(2):94–7. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12974790.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Pascher A, Klupp J, Schulz RJ, Dignass A, Neuhaus P. CMV, EBV, HHV6, and HHV7 infections after intestinal transplantation without specific antiviral prophylaxis. Transplant Proc. 2004;36(2):381–2. http://proxy.library.georgetown.edu/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15050166.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Raffaele Girlanda
    • 1
    Email author
  • Joseph G. TimponeJr
    • 1
  • Kevin M. Soriano
    • 1
  • Thomas M. Fishbein
    • 1
  1. 1.Georgetown University HospitalWashington, DCUSA

Personalised recommendations