Advertisement

Impacts and Challenges of Advanced Diagnostic Assays for Transplant Infectious Diseases

  • N. Esther Babady
  • Yeon Joo Lee
  • Genovefa Papanicolaou
  • Yi-Wei TangEmail author
Chapter

Abstract

The advanced technologies described in this chapter should allow for full inventories to be made of bacterial genes, their time- and place-dependent expression, and the resulting proteins as well as their outcome metabolites. The evolution of these molecular technologies will continue, not only in the microbial pathogens but also in the context of host-pathogen interactions targeting human genomics and transcriptomics. Their performance characteristics and limitations must be clearly understood by both laboratory personnel and clinicians to ensure proper utilization and interpretation.

Keywords

Culture Galactomannan BD glucans PCR Viral loads Standardization Commutability Genomics Transcriptomics Proteomics Metabolomics Cytomegalovirus BK virus Polyomavirus Adenovirus Human herpesvirus 6 

References

  1. 1.
    Sayer HG, Longton G, Bowden R, Pepe M, Storb R. Increased risk of infection in marrow transplant patients receiving methylprednisolone for graft-versus-host disease prevention. Blood. 1994;84(4):1328–32.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Patel R, Paya CV. Infections in solid-organ transplant recipients. Clin Microbiol Rev. 1997;10(1):86–124.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Guerrant RL, Van Gilder T, Steiner TS, Thielman NM, Slutsker L, Tauxe RV, et al. Practice guidelines for the management of infectious diarrhea. Clin Infect Dis. 2001;32(3):331–51.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hohenthal U, Itala M, Salonen J, Sipila J, Rantakokko-Jalava K, Meurman O, et al. Bronchoalveolar lavage in immunocompromised patients with haematological malignancy--value of new microbiological methods. Eur J Haematol. 2005;74(3):203–11.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Krones E, Hogenauer C. Diarrhea in the immunocompromised patient. Gastroenterol Clin N Am. 2012;41(3):677–701.CrossRefGoogle Scholar
  6. 6.
    Kamboj M, Mihu CN, Sepkowitz K, Kernan NA, Papanicolaou GA. Work-up for infectious diarrhea after allogeneic hematopoietic stem cell transplantation: single specimen testing results in cost savings without compromising diagnostic yield. Transplant Infect Dis. 2007;9(4):265–9.CrossRefGoogle Scholar
  7. 7.
    Zaidi AK, Macone A, Goldmann AD. Impact of simple screening criteria on utilization of low-yield bacterial stool cultures in a Children’s hospital. Pediatrics. 1999;103(6 Pt 1):1189–92.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ginsburg PM, Thuluvath PJ. Diarrhea in liver transplant recipients: etiology and management. Liver Transplant. 2005;11(8):881–90.CrossRefGoogle Scholar
  9. 9.
    Glass RI, Parashar UD, Estes MK. Norovirus gastroenteritis. N Engl J Med. 2009;361(18):1776–85.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Logan C, O'Leary JJ, O'Sullivan N. Real-time reverse transcription PCR detection of norovirus, sapovirus and astrovirus as causative agents of acute viral gastroenteritis. J Virol Methods. 2007;146(1–2):36–44.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wolffs PF, Bruggeman CA, van Well GT, van Loo IH. Replacing traditional diagnostics of fecal viral pathogens by a comprehensive panel of real-time PCRs. J Clin Microbiol. 2011;49(5):1926–31.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sampsonas F, Kontoyiannis DP, Dickey BF, Evans SE. Performance of a standardized bronchoalveolar lavage protocol in a comprehensive cancer center: a prospective 2-year study. Cancer. 2011;117(15):3424–33.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chan CC, Abi-Saleh WJ, Arroliga AC, Stillwell PC, Kirby TJ, Gordon SM, et al. Diagnostic yield and therapeutic impact of flexible bronchoscopy in lung transplant recipients. J Heart Lung Transplant. 1996;15(2):196–205.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lehto JT, Anttila VJ, Lommi J, Nieminen MS, Harjula A, Taskinen E, et al. Clinical usefulness of bronchoalveolar lavage in heart transplant recipients with suspected lower respiratory tract infection. J Heart Lung Transplant. 2004;23(5):570–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lehto JT, Koskinen PK, Anttila VJ, Lautenschlager I, Lemstrom K, Sipponen J, et al. Bronchoscopy in the diagnosis and surveillance of respiratory infections in lung and heart-lung transplant recipients. Transpl Int. 2005;18(5):562–71.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Palmer SM, Alexander BD, Sanders LL, Edwards LJ, Reller LB, Davis RD, et al. Significance of blood stream infection after lung transplantation: analysis in 176 consecutive patients. Transplantation. 2000;69(11):2360–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Roth A, Wiklund AE, Palsson AS, Melander EZ, Wullt M, Cronqvist J, et al. Reducing blood culture contamination by a simple informational intervention. J Clin Microbiol. 2010;48(12):4552–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kosmin AR, Fekete T. Use of fungal blood cultures in an academic medical center. J Clin Microbiol. 2008;46(11):3800–1.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bates DW, Cook EF, Goldman L, Lee TH. Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann Int Med. 1990;113(7):495–500.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ramanujam P, Rathlev NK. Blood cultures do not change management in hospitalized patients with community-acquired pneumonia. Acad Emerg Med. 2006;13(7):740–5.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Vetter E, Torgerson C, Feuker A, Hughes J, Harmsen S, Schleck C, et al. Comparison of the BACTEC MYCO/F Lytic bottle to the isolator tube, BACTEC Plus Aerobic F/bottle, and BACTEC Anaerobic Lytic/10 bottle and comparison of the BACTEC Plus Aerobic F/bottle to the Isolator tube for recovery of bacteria, mycobacteria, and fungi from blood. J Clin Microbiol. 2001;39(12):4380–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Waite RT, Woods GL. Evaluation of BACTEC MYCO/F lytic medium for recovery of mycobacteria and fungi from blood. J Clin Microbiol. 1998;36(5):1176–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Fuller DD, Davis TE Jr, Denys GA, York MK. Evaluation of BACTEC MYCO/F Lytic medium for recovery of mycobacteria, fungi, and bacteria from blood. J Clin Microbiol. 2001;39(8):2933–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Archibald LK, McDonald LC, Addison RM, McKnight C, Byrne T, Dobbie H, et al. Comparison of BACTEC MYCO/F LYTIC and WAMPOLE ISOLATOR 10 (lysis-centrifugation) systems for detection of bacteremia, mycobacteremia, and fungemia in a developing country. J Clin Microbiol. 2000;38(8):2994–7.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Creger RJ, Weeman KE, Jacobs MR, Morrissey A, Parker P, Fox RM, et al. Lack of utility of the lysis-centrifugation blood culture method for detection of fungemia in immunocompromised cancer patients. J Clin Microbiol. 1998;36(1):290–3.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Berenguer J, Buck M, Witebsky F, Stock F, Pizzo PA, Walsh TJ. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis. 1993;17(2):103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Speich R, van der Bij W. Epidemiology and management of infections after lung transplantation. Clin Infect Dis. 2001;33(Suppl 1):S58–65.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hsu RB, Chang CI, Fang CT, Chang SC, Wang SS, Chu SH. Bloodstream infection in heart transplant recipients: 12-year experience at a university hospital in Taiwan. Eur J Cardiothorac Surg. 2011;40(6):1362–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Joosten A, Maertens J, Verhaegen J, Lodewyck T, Vermeulen E, Lagrou K. High incidence of bloodstream infection detected by surveillance blood cultures in hematology patients on corticosteroid therapy. Support Care Cancer. 2012;20(11):3013–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rodriguez L, Ethier MC, Phillips B, Lehrnbecher T, Doyle J, Sung L. Utility of peripheral blood cultures in patients with cancer and suspected blood stream infections: a systematic review. Support Care Cancer. 2012;20(12):3261–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hummel M, Warga C, Hof H, Hehlmann R, Buchheidt D. Diagnostic yield of blood cultures from antibiotic-naive and antibiotically treated patients with haematological malignancies and high-risk neutropenia. Scand J Infect Dis. 2009;41(9):650–5.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rubio M, Palau L, Vivas JR, del Potro E, Diaz-Mediavilla J, Alvarez A, et al. Predominance of gram-positive microorganisms as a cause of septicemia in patients with hematological malignancies. Infect Control Hosp Epidemiol. 1994;15(2):101–4.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Chitasombat MN, Kofteridis DP, Jiang Y, Tarrand J, Lewis RE, Kontoyiannis DP. Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. J Infect. 2012;64(1):68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Miceli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis. 2011;11(2):142–51.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Duthie R, Denning DW. Aspergillus fungemia: report of two cases and review. Clin Infect Dis. 1995;20(3):598–605.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Reimer LG, Wilson ML, Weinstein MP. Update on detection of bacteremia and fungemia. Clin Microbiol Rev. 1997;10(3):444–65.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Geha DJ, Roberts GD. Laboratory detection of fungemia. Clin Lab Med. 1994;14(1):83–97.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Park BJ, Pappas PG, Wannemuehler KA, Alexander BD, Anaissie EJ, Andes DR, et al. Invasive non-aspergillus mold infections in transplant recipients, United States, 2001-2006. Emerg Infect Dis. 2011;17(10):1855–64.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Campo M, Lewis RE, Kontoyiannis DP. Invasive fusariosis in patients with hematologic malignancies at a cancer center: 1998–2009. J Infect. 2010;60(5):331–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Petti CA, Hassan H, Reller LB. Bloodstream infections. In: Hayden RT, Carroll KC, Tang Y-W, Wolk DM, editors. Diagnostic microbiology of the immunocompromised host. Washington, DC: ASM Press; 2009. p. 409–18.Google Scholar
  41. 41.
    Limmathurotsakul D, Jamsen K, Arayawichanont A, Simpson JA, White LJ, Lee SJ, et al. Defining the true sensitivity of culture for the diagnosis of melioidosis using Bayesian latent class models. PLoS One. 2010;5(8):e12485.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Charlson ES, Diamond JM, Bittinger K, Fitzgerald AS, Yadav A, Haas AR, et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota following lung transplant. Am J Respir Crit Care Med. 2012;186(6):536–45.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55(7):905–14.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) consensus group. Clin Infect Dis. 2008;46(12):1813–21.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wheat LJ. Approach to the diagnosis of invasive aspergillosis and candidiasis. Clin Chest Med. 2009;30(2):367–77. viii.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;42(10):1417–27.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jathavedam A, Dure DC, Taur Y, Weinstock DM. Limited utility of serum galactomannan assay after auto-SCT. Bone Marrow Transplant. 2009;44(1):59–61.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hachem RY, Kontoyiannis DP, Chemaly RF, Jiang Y, Reitzel R, Raad I. Utility of galactomannan enzyme immunoassay and (1,3) beta-D-glucan in diagnosis of invasive fungal infections: low sensitivity for Aspergillus fumigatus infection in hematologic malignancy patients. J Clin Microbiol. 2009;47(1):129–33.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Marr KA, Balajee SA, McLaughlin L, Tabouret M, Bentsen C, Walsh TJ. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis. 2004;190(3):641–9.CrossRefGoogle Scholar
  50. 50.
    Nguyen MH, Leather H, Clancy CJ, Cline C, Jantz MA, Kulkarni V, et al. Galactomannan testing in bronchoalveolar lavage fluid facilitates the diagnosis of invasive pulmonary aspergillosis in patients with hematologic malignancies and stem cell transplant recipients. Biol Blood Marrow Transplant. 2011;17(7):1043–50.CrossRefGoogle Scholar
  51. 51.
    Reinwald M, Spiess B, Heinz WJ, Vehreschild JJ, Lass-Florl C, Kiehl M, et al. Diagnosing pulmonary aspergillosis in patients with hematological malignancies: a multicenter prospective evaluation of an Aspergillus PCR assay and a galactomannan ELISA in bronchoalveolar lavage samples. Eur J Haematol. 2012;89(2):120–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Husain S, Clancy CJ, Nguyen MH, Swartzentruber S, Leather H, LeMonte AM, et al. Performance characteristics of the platelia Aspergillus enzyme immunoassay for detection of Aspergillus galactomannan antigen in bronchoalveolar lavage fluid. Clin Vaccine Immunol. 2008;15(12):1760–3. PubMed.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Husain S, Paterson DL, Studer SM, Crespo M, Pilewski J, Durkin M, et al. Aspergillus galactomannan antigen in the bronchoalveolar lavage fluid for the diagnosis of invasive aspergillosis in lung transplant recipients. Transplantation. 2007;83(10):1330–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nguyen MH, Jaber R, Leather HL, Wingard JR, Staley B, Wheat LJ, et al. Use of bronchoalveolar lavage to detect galactomannan for diagnosis of pulmonary aspergillosis among nonimmunocompromised hosts. J Clin Microbiol. 2007;45(9):2787–92.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Clancy CJ, Jaber RA, Leather HL, Wingard JR, Staley B, Wheat LJ, et al. Bronchoalveolar lavage galactomannan in diagnosis of invasive pulmonary aspergillosis among solid-organ transplant recipients. J Clin Microbiol. 2007;45(6):1759–65.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    D'Haese J, Theunissen K, Vermeulen E, Schoemans H, De Vlieger G, Lammertijn L, et al. Detection of galactomannan in bronchoalveolar lavage fluid samples of patients at risk for invasive pulmonary aspergillosis: analytical and clinical validity. J Clin Microbiol. 2012;50(4):1258–63.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Tortorano AM, Esposto MC, Prigitano A, Grancini A, Ossi C, Cavanna C, et al. Cross-reactivity of Fusarium spp. in the Aspergillus Galactomannan enzyme-linked immunosorbent assay. J Clin Microbiol. 2012;50(3):1051–3.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vergidis P, Razonable RR, Wheat LJ, Estes L, Caliendo AM, Baden LR, et al. Reduction in false-positive Aspergillus serum galactomannan enzyme immunoassay results associated with use of piperacillin-tazobactam in the United States. J Clin Microbiol. 2014;52(6):2199–201.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lamoth F, Cruciani M, Mengoli C, Castagnola E, Lortholary O, Richardson M, et al. beta-Glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: a systematic review and meta-analysis of cohort studies from the Third European Conference on Infections in Leukemia (ECIL-3). Clin Infect Dis. 2012;54(5):633–43.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. beta-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52(6):750–70.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Racil Z, Kocmanova I, Lengerova M, Weinbergerova B, Buresova L, Toskova M, et al. Difficulties in using 1,3-{beta}-D-glucan as the screening test for the early diagnosis of invasive fungal infections in patients with haematological malignancies--high frequency of false-positive results and their analysis. J Med Microbiol. 2010;59(Pt 9):1016–22.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Costa JM, Botterel F, Cabaret O, Foulet F, Cordonnier C, Bretagne S. Association between circulating DNA, serum (1->3)-beta-D-glucan, and pulmonary fungal burden in pneumocystis pneumonia. Clin Infect Dis. 2012;55(2):e5–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    de Boer MG, Gelinck LB, van Zelst BD, van de Sande WW, Willems LN, van Dissel JT, et al. beta-D-glucan and S-adenosylmethionine serum levels for the diagnosis of pneumocystis pneumonia in HIV-negative patients: a prospective study. J Infect. 2011;62(1):93–100.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Smith JA, Kauffman CA. Pulmonary fungal infections. Respirology. 2012;17(6):913–26.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Specter S, Hodinka RL, Wiedbrauk DL, Young SA. Diagnosis of viral infections. In: Richman DD, Whitley RJ, Hayden FG, editors. Clinical virology. Washington, DC: ASM Press; 2002. p. 243–72.Google Scholar
  66. 66.
    Boeckh M, Bowden RA, Goodrich JM, Pettinger M, Meyers JD. Cytomegalovirus antigen detection in peripheral blood leukocytes after allogeneic marrow transplantation. Blood. 1992;80(5):1358–64.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Boeckh M, Boivin G. Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin Microbiol Rev. 1998;11(3):533–54.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Razonable RR, Paya CV, Smith TF. Role of the laboratory in diagnosis and management of cytomegalovirus infection in hematopoietic stem cell and solid-organ transplant recipients. J Clin Microbiol. 2002;40(3):746–52.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pang XL, Chui L, Fenton J, LeBlanc B, Preiksaitis JK. Comparison of LightCycler-based PCR, COBAS amplicor CMV monitor, and pp65 antigenemia assays for quantitative measurement of cytomegalovirus viral load in peripheral blood specimens from patients after solid organ transplantation. J Clin Microbiol. 2003;41(7):3167–74.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gudiol C, Garcia-Vidal C, Fernandez-Sabe N, Verdaguer R, Llado L, Roca J, et al. Clinical features and outcomes of legionnaires’ disease in solid organ transplant recipients. Transpl Infect Dis. 2009;11(1):78–82.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Sousa D, Justo I, Dominguez A, Manzur A, Izquierdo C, Ruiz L, et al. Community-acquired pneumonia in immunocompromised older patients: incidence, causative organisms and outcome. Clin Microbiol Infect. 2013;19(2):187–92.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lisby G. Application of nucleic acid amplification in clinical microbiology. Mol Biotechnol. 1999;12(1):75–99.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Persing DH. Diagnostic molecular microbiology. Current challenges and future directions. Diagn Microbiol Infect Dis. 1993;16(2):159–63.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Datta VaH RT. In vitro nucleic acid amplification. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT, Van Belkum A, editors. Molecular Microbiology. Washington, DC: ASM Press; 2011. p. 33–62.CrossRefGoogle Scholar
  77. 77.
    Sidoti F, Bergallo M, Costa C, Cavallo R. Alternative molecular tests for virological diagnosis. Mol Biotechnol. 2013;53(3):352–62.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993;11(9):1026–30.Google Scholar
  79. 79.
    Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y). 1992;10(4):413–7.CrossRefGoogle Scholar
  80. 80.
    Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19(1):165–256.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cockerill FR 3rd. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory. Arch Pathol Lab Med. 2003;127(9):1112–20.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Belanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG. Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol. 2003;41(2):730–4.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    van den Berg RJ, Bruijnesteijn van Coppenraet LS, Gerritsen HJ, Endtz HP, van der Vorm ER, Kuijper EJ. Prospective multicenter evaluation of a new immunoassay and real-time PCR for rapid diagnosis of Clostridium difficile-associated diarrhea in hospitalized patients. J Clin Microbiol. 2005;43(10):5338–40.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Peterson LR, Manson RU, Paule SM, Hacek DM, Robicsek A, Thomson RB Jr, et al. Detection of toxigenic Clostridium difficile in stool samples by real-time polymerase chain reaction for the diagnosis of C. difficile-associated diarrhea. Clin Infect Dis. 2007;45(9):1152–60.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sloan LM, Duresko BJ, Gustafson DR, Rosenblatt JE. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol. 2008;46(6):1996–2001.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wetmur JG. DNA probes: applications of the principles of nucleic acid hybridization. Crit Rev Biochem Mol Biol. 1991;26(3–4):227–59.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Reisner BS, Gatson AM, Woods GL. Use of Gen-Probe AccuProbes to identify Mycobacterium avium complex, Mycobacterium tuberculosis complex, Mycobacterium kansasii, and Mycobacterium gordonae directly from BACTEC TB broth cultures. J Clin Microbiol. 1994;32(12):2995–8.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Peterson EM, Lu R, Floyd C, Nakasone A, Friedly G, de la Maza LM. Direct identification of Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium intracellulare from amplified primary cultures in BACTEC media using DNA probes. J Clin Microbiol. 1989;27(7):1543–7.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Ford EG, Snead SJ, Todd J, Warren NG. Strains of Mycobacterium terrae complex which react with DNA probes for M. tuberculosis complex. J Clin Microbiol. 1993;31(10):2805–6.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Lim SD, Todd J, Lopez J, Ford E, Janda JM. Genotypic identification of pathogenic Mycobacterium species by using a nonradioactive oligonucleotide probe. J Clin Microbiol. 1991;29(6):1276–8.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783–822.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    von Lilienfeld-Toal M, Lehmann LE, Raadts AD, Hahn-Ast C, Orlopp KS, Marklein G, et al. Utility of a commercially available multiplex real-time PCR assay to detect bacterial and fungal pathogens in febrile neutropenia. J Clin Microbiol. 2009;47(8):2405–10.CrossRefGoogle Scholar
  93. 93.
    Lamoth F, Jaton K, Prod'hom G, Senn L, Bille J, Calandra T, et al. Multiplex blood PCR in combination with blood cultures for improvement of microbiological documentation of infection in febrile neutropenia. J Clin Microbiol. 2010;48(10):3510–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rath PM, Saner F, Paul A, Lehmann N, Steinmann E, Buer J, et al. Multiplex PCR for rapid and improved diagnosis of bloodstream infections in liver transplant recipients. J Clin Microbiol. 2012;50(6):2069–71.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Mauro MV, Cavalcanti P, Perugini D, Noto A, Sperli D, Giraldi C. Diagnostic utility of LightCycler SeptiFast and procalcitonin assays in the diagnosis of bloodstream infection in immunocompromised patients. Diagn Microbiol Infect Dis. 2012;73(4):308–11.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Mancini N, Clerici D, Diotti R, Perotti M, Ghidoli N, De Marco D, et al. Molecular diagnosis of sepsis in neutropenic patients with haematological malignancies. J Med Microbiol. 2008;57(Pt 5):601–4.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761–4.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kang Y, Deng R, Wang C, Deng T, Peng P, Cheng X, et al. Etiologic diagnosis of lower respiratory tract bacterial infections using sputum samples and quantitative loop-mediated isothermal amplification. PLoS One. 2012;7(6):e38743.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Esteban J, Alonso-Rodriguez N, del-Prado G, Ortiz-Perez A, Molina-Manso D, Cordero-Ampuero J, et al. PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop. 2012;83(3):299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Welker M. Proteomics for routine identification of microorganisms. Proteomics. 2011;11(15):3143–53.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Cuenca-Estrella M, Bassetti M, Lass-Florl C, Racil Z, Richardson M, Rogers TR. Detection and investigation of invasive mould disease. J Antimicrob Chemother. 2011;66(Suppl 1):i15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Lin MT, Lu HC, Chen WL. Improving efficacy of antifungal therapy by polymerase chain reaction-based strategy among febrile patients with neutropenia and cancer. Clin Infect Dis. 2001;33(10):1621–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Stockman L, Clark KA, Hunt JM, Roberts GD. Evaluation of commercially available acridinium ester-labeled chemiluminescent DNA probes for culture identification of Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, and Histoplasma capsulatum. J Clin Microbiol. 1993;31(4):845–50.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Padhye AA, Smith G, Standard PG, McLaughlin D, Kaufman L. Comparative evaluation of chemiluminescent DNA probe assays and exoantigen tests for rapid identification of Blastomyces dermatitidis and Coccidioides immitis. J Clin Microbiol. 1994;32(4):867–70.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Brandt ME, Gaunt D, Iqbal N, McClinton S, Hambleton S, Sigler L. False-positive Histoplasma capsulatum Gen-Probe chemiluminescent test result caused by a Chrysosporium species. J Clin Microbiol. 2005;43(3):1456–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hall L, Le Febre KM, Deml SM, Wohlfiel SL, Wengenack NL. Evaluation of the yeast traffic light PNA FISH probes for identification of Candida species from positive blood cultures. J Clin Microbiol. 2012;50(4):1446–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, et al. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol. 2008;46(1):50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Reller ME, Mallonee AB, Kwiatkowski NP, Merz WG. Use of peptide nucleic acid-fluorescence in situ hybridization for definitive, rapid identification of five common Candida species. J Clin Microbiol. 2007;45(11):3802–3.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hata DJ, Buckwalter SP, Pritt BS, Roberts GD, Wengenack NL. Real-time PCR method for detection of zygomycetes. J Clin Microbiol. 2008;46(7):2353–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Innings A, Ullberg M, Johansson A, Rubin CJ, Noreus N, Isaksson M, et al. Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J Clin Microbiol. 2007;45(3):874–80.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Maaroufi Y, Heymans C, De Bruyne JM, Duchateau V, Rodriguez-Villalobos H, Aoun M, et al. Rapid detection of Candida albicans in clinical blood samples by using a TaqMan-based PCR assay. J Clin Microbiol. 2003;41(7):3293–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Spiess B, Buchheidt D, Baust C, Skladny H, Seifarth W, Zeilfelder U, et al. Development of a LightCycler PCR assay for detection and quantification of Aspergillus fumigatus DNA in clinical samples from neutropenic patients. J Clin Microbiol. 2003;41(5):1811–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Suarez F, Lortholary O, Buland S, Rubio MT, Ghez D, Mahe V, et al. Detection of circulating Aspergillus fumigatus DNA by real-time PCR assay of large serum volumes improves early diagnosis of invasive aspergillosis in high-risk adult patients under hematologic surveillance. J Clin Microbiol. 2008;46(11):3772–7.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Landlinger C, Preuner S, Willinger B, Haberpursch B, Racil Z, Mayer J, et al. Species-specific identification of a wide range of clinically relevant fungal pathogens by use of Luminex xMAP technology. J Clin Microbiol. 2009;47(4):1063–73.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Mandviwala T, Shinde R, Kalra A, Sobel JD, Akins RA. High-throughput identification and quantification of Candida species using high resolution derivative melt analysis of panfungal amplicons. J Mol Diagn. 2010;12(1):91–101.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Schabereiter-Gurtner C, Selitsch B, Rotter ML, Hirschl AM, Willinger B. Development of novel real-time PCR assays for detection and differentiation of eleven medically important Aspergillus and Candida species in clinical specimens. J Clin Microbiol. 2007;45(3):906–14.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Baskova L, Landlinger C, Preuner S, Lion T. The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species. J Med Microbiol. 2007;56(Pt 9):1167–73.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    McTaggart LR, Wengenack NL, Richardson SE. Validation of the MycAssay pneumocystis kit for detection of pneumocystis jirovecii in bronchoalveolar lavage specimens by comparison to a laboratory standard of direct immunofluorescence microscopy, real-time PCR, or conventional PCR. J Clin Microbiol. 2012;50(6):1856–9.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    White PL, Perry MD, Moody A, Follett SA, Morgan G, Barnes RA. Evaluation of analytical and preliminary clinical performance of Myconostica MycAssay Aspergillus when testing serum specimens for diagnosis of invasive Aspergillosis. J Clin Microbiol. 2011;49(6):2169–74.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Farina C, Russello G, Andreoni S, Bonetti C, Conte M, Fazi P, et al. Microarray technology for yeast identification directly from positive blood cultures. A multicenter Italian experience. Med Mycol. 2012;50(5):549–55.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Wengenack NL, Binnicker MJ. Fungal molecular diagnostics. Clin Chest Med. 2009;30(2):391–408. viii.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Hall L, Wohlfiel S, Roberts GD. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of commonly encountered, clinically important yeast species. J Clin Microbiol. 2003;41(11):5099–102.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hall L, Doerr KA, Wohlfiel SL, Roberts GD. Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol. 2003;41(4):1447–53.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hall L, Wohlfiel S, Roberts GD. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol. 2004;42(2):622–6.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hinrikson HP, Hurst SF, Lott TJ, Warnock DW, Morrison CJ. Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J Clin Microbiol. 2005;43(5):2092–103.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Linton CJ, Borman AM, Cheung G, Holmes AD, Szekely A, Palmer MD, et al. Molecular identification of unusual pathogenic yeast isolates by large ribosomal subunit gene sequencing: 2 years of experience at the United Kingdom mycology reference laboratory. J Clin Microbiol. 2007;45(4):1152–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Razonable RR, Eid AJ. Viral infections in transplant recipients. Minerva Med. 2009;100(6):479–501.Google Scholar
  128. 128.
    Caliendo AM, Valsamakis A, Bremer JW, Ferreira-Gonzalez A, Granger S, Sabatini L, et al. Multilaboratory evaluation of real-time PCR tests for hepatitis B virus DNA quantification. J Clin Microbiol. 2011;49(8):2854–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Caliendo AM, Valsamakis A, Zhou Y, Yen-Lieberman B, Andersen J, Young S, et al. Multilaboratory comparison of hepatitis C virus viral load assays. J Clin Microbiol. 2006;44(5):1726–32.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Forman MS, Valsamakis A. Performance characteristics of a quantitative hepatitis C virus RNA assay using COBAS AmpliPrep total nucleic acid isolation and COBAS taqman hepatitis C virus analyte-specific reagent. J Mol Diagn. 2008;10(2):147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sloma CR, Germer JJ, Gerads TM, Mandrekar JN, Mitchell PS, Yao JD. Comparison of the Abbott realtime human immunodeficiency virus type 1 (HIV-1) assay to the Cobas AmpliPrep/Cobas TaqMan HIV-1 test: workflow, reliability, and direct costs. J Clin Microbiol. 2009;47(4):889–95.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Pas S, Rossen JW, Schoener D, Thamke D, Pettersson A, Babiel R, et al. Performance evaluation of the new Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test version 2.0 for quantification of human immunodeficiency virus type 1 RNA. J Clin Microbiol. 2010;48(4):1195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Baxter JD, Mayers DL, Wentworth DN, Neaton JD, Hoover ML, Winters MA, et al. A randomized study of antiretroviral management based on plasma genotypic antiretroviral resistance testing in patients failing therapy. CPCRA 046 study team for the Terry Beirn community programs for clinical research on AIDS. AIDS. 2000;14(9):F83–93.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Sturmer M, Reinheimer C. Description of two commercially available assays for genotyping of HIV-1. Intervirology. 2012;55(2):134–7.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Niesters HG, Zoulim F, Pichoud C, Buti M, Shapiro F, D’Heuvaert N, et al. Validation of the INNO-LiPA HBV DR assay (version 2) in monitoring hepatitis B virus-infected patients receiving nucleoside analog treatment. Antimicrob Agents Chemother. 2010;54(3):1283–9.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Gintowt AA, Germer JJ, Mitchell PS, Yao JD. Evaluation of the MagNA pure LC used with the TRUGENE HBV genotyping kit. J Clin Virol. 2005;34(2):155–7.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Germer JJ, Majewski DW, Rosser M, Thompson A, Mitchell PS, Smith TF, et al. Evaluation of the TRUGENE HCV 5'NC genotyping kit with the new GeneLibrarian module 3.1.2 for genotyping of hepatitis C virus from clinical specimens. J Clin Microbiol. 2003;41(10):4855–7.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zekri AR, El-Din HM, Bahnassy AA, El-Shehabi AM, El-Leethy H, Omar A, et al. TRUGENE sequencing versus INNO-LiPA for sub-genotyping of HCV genotype-4. J Med Virol. 2005;75(3):412–20.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Caliendo AM, Shahbazian MD, Schaper C, Ingersoll J, Abdul-Ali D, Boonyaratanakornkit J, et al. A commutable cytomegalovirus calibrator is required to improve the agreement of viral load values between laboratories. Clin Chem. 2009;55(9):1701–10.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Hayden RT, Hokanson KM, Pounds SB, Bankowski MJ, Belzer SW, Carr J, et al. Multicenter comparison of different real-time PCR assays for quantitative detection of Epstein-Barr virus. J Clin Microbiol. 2008;46(1):157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Hoffman NG, Cook L, Atienza EE, Limaye AP, Jerome KR. Marked variability of BK virus load measurement using quantitative real-time PCR among commonly used assays. J Clin Microbiol. 2008;46(8):2671–80.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wolff DJ, Heaney DL, Neuwald PD, Stellrecht KA, Press RD. Multi-site PCR-based CMV viral load assessment-assays demonstrate linearity and precision, but lack numeric standardization: a report of the association for molecular pathology. J Mol Diagn. 2009;11(2):87–92.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Pang XL, Fox JD, Fenton JM, Miller GG, Caliendo AM, Preiksaitis JK. Interlaboratory comparison of cytomegalovirus viral load assays. Am J Transplant. 2009;9(2):258–68.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Preiksaitis JK, Pang XL, Fox JD, Fenton JM, Caliendo AM, Miller GG. Interlaboratory comparison of epstein-barr virus viral load assays. Am J Transplant. 2009;9(2):269–79.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Kraft CS, Armstrong WS, Caliendo AM. Interpreting quantitative cytomegalovirus DNA testing: understanding the laboratory perspective. Clin Infect Dis. 2012;54(12):1793–7.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Fryer JF, Heath AB AR, Minor PD and the collaborative study group. Collaborative study to evaluate the proposed 1st WHO International Standard for human cytomegalovirus (HCMV) for nucleic acid amplification (NAT)-based assays. 2010 Contract No.: WHO/BS/10.2138.Google Scholar
  147. 147.
    Fryer JF HA, Wilkinson DE, Minor PD and the collaborative study group. Collaborative study to evaluate the proposed 1st WHO International Standard for Epstein-Barr virus (EBV) for nucleic acid amplification (NAT)-based assays. 2011 Contract No.: WHO/BS/11.2172.Google Scholar
  148. 148.
    Hayden RT, Sun Y, Tang L, Procop GW, Hillyard DR, Pinsky BA, et al. Progress in quantitative viral load testing: variability and impact of the WHO quantitative international standards. J Clin Microbiol. 2017;55(2):423–30.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Drew WL. Cytomegalovirus resistance testing: pitfalls and problems for the clinician. Clin Infect Dis. 2010;50(5):733–6.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Ginocchio CC, Zhang F, Manji R, Arora S, Bornfreund M, Falk L, et al. Evaluation of multiple test methods for the detection of the novel 2009 influenza A (H1N1) during the New York City outbreak. J Clin Virol. 2009;45(3):191–5.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Ginocchio CC, St George K. Likelihood that an unsubtypeable influenza A virus result obtained with the Luminex xTAG respiratory virus panel is indicative of infection with novel A/H1N1 (swine-like) influenza virus. J Clin Microbiol. 2009;47(7):2347–8.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Hayden RT, Gu Z, Rodriguez A, Tanioka L, Ying C, Morgenstern M, et al. Comparison of two broadly multiplexed PCR systems for viral detection in clinical respiratory tract specimens from immunocompromised children. J Clin Virol. 2012;53(4):308–13.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Babady NE, Mead P, Stiles J, Brennan C, Li H, Shuptar S, et al. Comparison of the Luminex xTAG RVP fast assay and the Idaho technology FilmArray RP assay for detection of respiratory viruses in pediatric patients at a cancer hospital. J Clin Microbiol. 2012;50(7):2282–8.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Sanghavi SK, Bullotta A, Husain S, Rinaldo CR. Clinical evaluation of multiplex real-time PCR panels for rapid detection of respiratory viral infections. J Med Virol. 2012;84(1):162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Gadsby NJ, Hardie A, Claas EC, Templeton KE. Comparison of the Luminex respiratory virus panel fast assay with in-house real-time PCR for respiratory viral infection diagnosis. J Clin Microbiol. 2010;48(6):2213–6.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Loeffelholz MJ, Pong DL, Pyles RB, Xiong Y, Miller AL, Bufton KK, et al. Comparison of the FilmArray respiratory panel and Prodesse real-time PCR assays for detection of respiratory pathogens. J Clin Microbiol. 2011;49(12):4083–8.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Murali S, Langston AA, Nolte FS, Banks G, Martin R, Caliendo AM. Detection of respiratory viruses with a multiplex polymerase chain reaction assay (MultiCode-PLx respiratory virus panel) in patients with hematologic malignancies. Leuk Lymphoma. 2009;50(4):619–24.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Alby K, Popowitch EB, Miller MB. Comparative evaluation of the Nanosphere Verigene RV+ assay with the Simplexa Flu A/B & RSV kit for the detection of influenza and respiratory syncytial viruses. J Clin Microbiol. 2013;51(1):352–3. Epub 2012 Nov 14.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Selvaraju SB, Selvarangan R. Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses. J Clin Microbiol. 2010;48(11):3870–5.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25(2):264–96.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Patrat-Delon S, Gangneux JP, Lavoue S, Lelong B, Guiguen C, le Tulzo Y, et al. Correlation of parasite load determined by quantitative PCR to clinical outcome in a heart transplant patient with disseminated toxoplasmosis. J Clin Microbiol. 2010;48(7):2541–5.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Li L, Mahan CS, Palaci M, Horter L, Loeffelholz L, Johnson JL, et al. Sputum Mycobacterium tuberculosis mRNA as a marker of bacteriologic clearance in response to antituberculosis therapy. J Clin Microbiol. 2010;48(1):46–51.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Mdivani N, Li H, Akhalaia M, Gegia M, Goginashvili L, Kernodle DS, et al. Monitoring therapeutic efficacy by real-time detection of Mycobacterium tuberculosis mRNA in sputum. Clin Chem. 2009;55(9):1694–700.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Gaydos CA, Howell MR, Quinn TC, Gaydos JC, McKee KT Jr. Use of ligase chain reaction with urine versus cervical culture for detection of Chlamydia trachomatis in an asymptomatic military population of pregnant and nonpregnant females attending Papanicolaou smear clinics. J Clin Microbiol. 1998;36(5):1300–4.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Morre SA, Sillekens PT, Jacobs MV, de Blok S, Ossewaarde JM, van Aarle P, et al. Monitoring of Chlamydia trachomatis infections after antibiotic treatment using RNA detection by nucleic acid sequence based amplification. Mol Pathol. 1998;51(3):149–54.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Aellen S, Que YA, Guignard B, Haenni M, Moreillon P. Detection of live and antibiotic-killed bacteria by quantitative real-time PCR of specific fragments of rRNA. Antimicrob Agents Chemother. 2006;50(6):1913–20.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Desjardin LE, Perkins MD, Wolski K, Haun S, Teixeira L, Chen Y, et al. Measurement of sputum Mycobacterium tuberculosis messenger RNA as a surrogate for response to chemotherapy. Am J Resp Crit Care Med. 1999;160(1):203–10.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Eltringham IJ, Drobniewski FA, Mangan JA, Butcher PD, Wilson SM. Evaluation of reverse transcription-PCR and a bacteriophage-based assay for rapid phenotypic detection of rifampin resistance in clinical isolates of Mycobacterium tuberculosis. J Clin Microbiol. 1999;37(11):3524–7.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Hu Y, Mangan JA, Dhillon J, Sole KM, Mitchison DA, Butcher PD, et al. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J Bacteriol. 2000;182(22):6358–65.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Jou NT, Yoshimori RB, Mason GR, Louie JS, Liebling MR. Single-tube, nested, reverse transcriptase PCR for detection of viable Mycobacterium tuberculosis. J Clin Microbiol. 1997;35(5):1161–5.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Sotlar K, Stubner A, Diemer D, Menton S, Menton M, Dietz K, et al. Detection of high-risk human papillomavirus E6 and E7 oncogene transcripts in cervical scrapes by nested RT-polymerase chain reaction. J Med Virol. 2004;74(1):107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Szarewski A, Ambroisine L, Cadman L, Austin J, Ho L, Terry G, et al. Comparison of predictors for high-grade cervical intraepithelial neoplasia in women with abnormal smears. Cancer Epidemiol Biomark Prev. 2008;17(11):3033–42.CrossRefGoogle Scholar
  173. 173.
    Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344–9.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Phattarasukol S, Radey MC, Lappala CR, Oda Y, Hirakawa H, Brittnacher MJ, et al. Identification of a p-coumarate degradation regulon in Rhodopseudomonas palustris using Xpression, an integrated tool for prokaryotic RNA-seq data processing. Appl Environ Microbiol. 2012;13:13.Google Scholar
  175. 175.
    Law GL, Korth MJ, Benecke AG, Katze MG. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. Nat Rev Microbiol. 2013;11(7):455–66.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Hebecker B, Vlaic S, Conrad T, Bauer M, Brunke S, Kapitan M, et al. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci Rep. 2016;6:36055.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Rasmussen AL, Tchitchek N, Susnow NJ, Krasnoselsky AL, Diamond DL, Yeh MM, et al. Early transcriptional programming links progression to hepatitis C virus-induced severe liver disease in transplant patients. Hepatology (Baltimore, Md). 2012;56(1):17–27.CrossRefGoogle Scholar
  178. 178.
    Ko G, Cromeans TL, Sobsey MD. Detection of infectious adenovirus in cell culture by mRNA reverse transcription-PCR. Appl Environ Microbiol. 2003;69(12):7377–84.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wang G, Barton C, Rodgers FG. Bacterial DNA decontamination for reverse transcription polymerase chain reaction (RT-PCR). J Microbiol Methods. 2002;51(1):119–21.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Chen Y, Klein JR, McKay LL, Dunny GM. Quantitative analysis of group II intron expression and splicing in Lactococcus lactis. Appl Environ Microbiol. 2005;71(5):2576–86.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Cricca M, Venturoli S, Leo E, Costa S, Musiani M, Zerbini M. Molecular analysis of HPV 16 E6I/E6II spliced mRNAs and correlation with the viral physical state and the grade of the cervical lesion. J Med Virol. 2009;81(7):1276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Parshionikar S, Laseke I, Fout GS. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl Environ Microbiol. 2010;76(13):4318–26.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Pholwat S, Heysell S, Stroup S, Foongladda S, Houpt E. Rapid first- and second-line drug susceptibility assay for Mycobacterium tuberculosis isolates by use of quantitative PCR. J Clin Microbiol. 2011;49(1):69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001;20(4):157–71.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(10):1227–32.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Krishnamurthy T, Ross PL, Rajamani U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(8):883–8.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Bizzini A, Greub G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect. 2010;16(11):1614–9.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49(4):543–51.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    He Y, Li H, Lu X, Stratton CW, Tang YW. Mass spectrometry biotyper system identifies enteric bacterial pathogens directly from colonies grown on selective stool culture media. J Clin Microbiol. 2010;48(11):3888–92.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol. 2010;48(4):1169–75.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Marko DC, Saffert RT, Cunningham SA, Hyman J, Walsh J, Arbefeville S, et al. Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol. 2012;50(6):2034–9.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Loonen AJ, Jansz AR, Bergland JN, Valkenburg M, Wolffs PF, van den Brule AJ. Comparative study using phenotypic, genotypic, and proteomics methods for identification of coagulase-negative staphylococci. J Clin Microbiol. 2012;50(4):1437–9.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Ferreira L, Sanchez-Juanes F, Guerra IP, Garcia Garcia MI, Sanchez JE, Gonzalez-Buitrago JM, et al. Microorganisms direct identification from blood culture by Maldi-Tof mass spectrometry. Clin Microbiol Infect. 2011;17(4):546–51.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, et al. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010;48(5):1542–8.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    La Scola B, Raoult D. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One. 2009;4(11):e8041.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Yan Y, He Y, Maier T, Quinn C, Shi G, Li H, et al. Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen processing and microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol. 2011;49(7):2528–32.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Schlebusch S, Price GR, Hinds S, Nourse C, Schooneveldt JM, Tilse MH, et al. First outbreak of PVL-positive nonmultiresistant MRSA in a neonatal ICU in Australia: comparison of MALDI-TOF and SNP-plus-binary gene typing. Eur J Clin Microbiol Infect Dis. 2010;29(10):1311–4.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, et al. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol. 2011;301(1):64–8.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Du Z, Yang R, Guo Z, Song Y, Wang J. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002;74(21):5487–91.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, et al. The use of MALDI-TOF MS to identify vancomycin resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012;27:27.Google Scholar
  202. 202.
    Hrabak J, Walkova R, Studentova V, Chudackova E, Bergerova T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(9):3222–7.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Bittar F, Ouchenane Z, Smati F, Raoult D, Rolain JM. MALDI-TOF-MS for rapid detection of staphylococcal Panton-valentine leukocidin. Int J Antimicrob Agents. 2009;34(5):467–70.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49(9):3321–4.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Hrabak J, Studentova V, Walkova R, Zemlickova H, Jakubu V, Chudackova E, et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(7):2441–3.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Kempf M, Bakour S, Flaudrops C, Berrazeg M, Brunel JM, Drissi M, et al. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS One. 2012;7(2):e31676.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J Clin Microbiol. 2012;50(3):927–37.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39(2):206–17.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Sandkovsky U, Kalil AC, Florescu DF. The use and value of procalcitonin in solid organ transplantation. Clin Transpl. 2015;29(8):689–96.CrossRefGoogle Scholar
  210. 210.
    Yu XY, Wang Y, Zhong H, Dou QL, Song YL, Wen H. Diagnostic value of serum procalcitonin in solid organ transplant recipients: a systematic review and meta-analysis. Transplant Proc. 2014;46(1):26–32.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    van Houten CB, de Groot JA, Klein A, Srugo I, Chistyakov I, de Waal W, et al. A host-protein based assay to differentiate between bacterial and viral infections in preschool children (OPPORTUNITY): a double-blind, multicentre, validation study. Lancet Infect Dis. 2017;17(4):431–40.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Kaluzna-Czaplinska J. Current medical research with the application of coupled techniques with mass spectrometry. Med Sci Monit. 2011;17(5):RA117–23.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Gibreel TM, Dodgson AR, Cheesbrough J, Bolton FJ, Fox AJ, Upton M. High metabolic potential may contribute to the success of ST131uropathogenicEscherichia coli. J Clin Microbiol. 2012;18:18.Google Scholar
  214. 214.
    Chambers ST, Bhandari S, Scott-Thomas A, Syhre M. Novel diagnostics: progress toward a breath test for invasive Aspergillus fumigatus. Med Mycol. 2011;49(Suppl 1):S54–61. Epub 2010 Aug 26.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Zechman JM, Aldinger S, Labows JN Jr. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J Chromatogr. 1986;377:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Labows JN, McGinley KJ, Webster GF, Leyden JJ. Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J Clin Microbiol. 1980;12(4):521–6.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Gao P, Korley F, Martin J, Chen BT. Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings. AIHA J (Fairfax, Va). 2002;63(2):135–40.CrossRefGoogle Scholar
  218. 218.
    Syhre M, Scotter JM, Chambers ST. Investigation into the production of 2-Pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med Mycol. 2008;46(3):209–15.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Koo S, Thomas HR, Daniels SD, Lynch RC, Fortier SM, Shea MM, et al. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis. 2014;59(12):1733–40.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Syhre M, Manning L, Phuanukoonnon S, Harino P, Chambers ST. The scent of Mycobacterium tuberculosis--part II breath. Tuberculosis (Edinb). 2009;89(4):263–6.CrossRefGoogle Scholar
  221. 221.
    Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363(22):2091–101.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood. 1998;91(3):756–63.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Ponce DM, Zheng J, Gonzales AM, Lubin M, Heller G, Castro-Malaspina H, et al. Reduced late mortality risk contributes to similar survival after double-unit cord blood transplantation compared with related and unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(9):1316–26.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Confer DL, Abress LK, Navarro W, Madrigal A. Selection of adult unrelated hematopoietic stem cell donors: beyond HLA. Biol Blood Marrow Transplant. 2010;16(1 Suppl):S8–S11.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Pergam SA, Xie H, Sandhu R, Pollack M, Smith J, Stevens-Ayers T, et al. Efficiency and risk factors for CMV transmission in seronegative hematopoietic stem cell recipients. Biol Blood Marrow Transplant. 2012;18(9):1391–400.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Meij P, Jedema I, Zandvliet ML, van der Heiden PL, van de Meent M, van Egmond HM, et al. Effective treatment of refractory CMV reactivation after allogeneic stem cell transplantation with in vitro-generated CMV pp65-specific CD8+ T-cell lines. J Immunother. 2012;35(8):621–8.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009;113(23):5711–9.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Milano F, Pergam SA, Xie H, Leisenring WM, Gutman JA, Riffkin I, et al. Intensive strategy to prevent CMV disease in seropositive umbilical cord blood transplant recipients. Blood. 2011;118(20):5689–96.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Meers S, Lagrou K, Theunissen K, Dierickx D, Delforge M, Devos T, et al. Myeloablative conditioning predisposes patients for toxoplasma gondii reactivation after allogeneic stem cell transplantation. Clin Infect Dis. 2010;50(8):1127–34.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Veltrop-Duits LA, van Vreeswijk T, Heemskerk B, Thijssen JC, El Seady R, Jol-van der Zijde EM, et al. High titers of pre-existing adenovirus serotype-specific neutralizing antibodies in the host predict viral reactivation after allogeneic stem cell transplantation in children. Clin Infect Dis. 2011;52(12):1405–13.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Moon SM, Lee SO, Choi SH, Kim YS, Woo JH, Yoon DH, et al. Comparison of the QuantiFERON-TB gold in-tube test with the tuberculin skin test for detecting latent tuberculosis infection prior to hematopoietic stem cell transplantation. Transpl Infect Dis. 2013;15:104–9. Epub 2012 Jul 23.PubMedCrossRefGoogle Scholar
  232. 232.
    Wirk B, Wingard JR. Strongyloides stercoralis hyperinfection in hematopoietic stem cell transplantation. Transpl Infect Dis. 2009;11(2):143–8.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Bogdanovic G, Ljungman P, Wang F, Dalianis T. Presence of human polyomavirus DNA in the peripheral circulation of bone marrow transplant patients with and without hemorrhagic cystitis. Bone Marrow Transplant. 1996;17(4):573–6.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Boeckh M, Geballe AP. Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest. 2011;121(5):1673–80.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Boeckh M. Complications, diagnosis, management, and prevention of CMV infections: current and future. ASH Education Program Book. 2011;2011:305–9.Google Scholar
  236. 236.
    Kotton CN, Kumar D, Caliendo AM, Asberg A, Chou S, Danziger-Isakov L, et al. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation. 2013;96(4):333–60.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15(10):1143–238.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Green ML, Leisenring W, Stachel D, Pergam SA, Sandmaier BM, Wald A, et al. Efficacy of a viral load-based, risk-adapted, preemptive treatment strategy for prevention of cytomegalovirus disease after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18(11):1687–99.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Hayden RT, Preiksaitis J, Tong Y, Pang X, Sun Y, Tang L, et al. Commutability of the first World Health Organization international standard for human cytomegalovirus. J Clin Microbiol. 2015;53(10):3325–33.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Cottler-Fox M, Lynch M, Deeg HJ, Koss LG. Human polyomavirus: lack of relationship of viruria to prolonged or severe hemorrhagic cystitis after bone marrow transplant. Bone Marrow Transplant. 1989;4(3):279–82.PubMedPubMedCentralGoogle Scholar
  241. 241.
    Hirsch HH. BK virus: opportunity makes a pathogen. Clin Infect Dis. 2005;41(3):354–60.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Burbach M, Birsen R, Denis B, Munier AL, Verine J, de Fontbrune FS, et al. A case of BK virus nephropathy without hemorrhagic cystitis after hematopoietic stem cell transplantation. Ann Hematol. 2016;95(9):1567–8.PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Papanicolaou GA, Lee YJ, Young JW, Seshan SV, Boruchov AM, Chittick G, et al. Brincidofovir for polyomavirus-associated nephropathy after allogeneic hematopoietic stem cell transplantation. Am J Kidney Dis. 2015;65(5):780–4.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Raval M, Gulbis A, Bollard C, Leen A, Chemaly R, Shpall E, et al. Evaluation and management of BK virus-associated nephropathy following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(11):1589–93.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Bedi A, Miller CB, Hanson JL, Goodman S, Ambinder RF, Charache P, et al. Association of BK virus with failure of prophylaxis against hemorrhagic cystitis following bone marrow transplantation. J Clin Oncol. 1995;13(5):1103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Cesaro S, Facchin C, Tridello G, Messina C, Calore E, Biasolo MA, et al. A prospective study of BK-virus-associated haemorrhagic cystitis in paediatric patients undergoing allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant. 2008;41(4):363–70.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Imperiale MJ. The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virology. 2000;267(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Rabenau HF, Preiser W, Franck S, Schwerdtfeger S, Doerr HW. Polyomavirus viruria in bone marrow transplant recipients: lack of correlation with clinical symptoms. Infection. 2002;30(2):91–3.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Tomonari A, Takahashi S, Ooi J, Fukuno K, Takasugi K, Tsukada N, et al. Hemorrhagic cystitis in adults after unrelated cord blood transplantation: a single-institution experience in Japan. Int J Hematol. 2006;84(3):268–71.PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Erard V, Kim HW, Corey L, Limaye A, Huang ML, Myerson D, et al. BK DNA viral load in plasma: evidence for an association with hemorrhagic cystitis in allogeneic hematopoietic cell transplant recipients. Blood. 2005;106(3):1130–2.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Erard V, Storer B, Corey L, Nollkamper J, Huang ML, Limaye A, et al. BK virus infection in hematopoietic stem cell transplant recipients: frequency, risk factors, and association with postengraftment hemorrhagic cystitis. Clin Infect Dis. 2004;39(12):1861–5.PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Lee YJ, Zheng J, Kolitsopoulos Y, Chung D, Amigues I, Son T, et al. Relationship of BK polyoma virus (BKV) in the urine with hemorrhagic cystitis and renal function in recipients of T cell-depleted peripheral blood and cord blood stem cell transplantations. Biol Blood Marrow Transplant. 2014;20(8):1204–10.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Leung AY, Chan MT, Yuen KY, Cheng VC, Chan KH, Wong CL, et al. Ciprofloxacin decreased polyoma BK virus load in patients who underwent allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2005;40(4):528–37.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Leung AY, Suen CK, Lie AK, Liang RH, Yuen KY, Kwong YL. Quantification of polyoma BK viruria in hemorrhagic cystitis complicating bone marrow transplantation. Blood. 2001;98(6):1971–8.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Randhawa PS, Popescu I, Macedo C, Zeevi A, Shapiro R, Vats AN, et al. Detection of CD8+ T cells sensitized to BK virus large T antigen in healthy volunteers and kidney transplant recipients. Hum Immunol. 2006;67(4–5):298–302.PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Andrei G, Snoeck R, Vandeputte M, De Clercq E. Activities of various compounds against murine and primate polyomaviruses. Antimicrob Agents Chemother. 1997;41(3):587–93.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Bridges B, Donegan S, Badros A. Cidofovir bladder instillation for the treatment of BK hemorrhagic cystitis after allogeneic stem cell transplantation. Am J Hematol. 2006;81(7):535–7.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Ferrazzi E, Peracchi M, Biasolo MA, Faggionato O, Stefanelli S, Palu G. Antiviral activity of gyrase inhibitors norfloxacin, coumermycin A1 and nalidixic acid. Biochem Pharmacol. 1988;37(9):1885–6.PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Portolani M, Pietrosemoli P, Cermelli C, Mannini-Palenzona A, Grossi MP, Paolini L, et al. Suppression of BK virus replication and cytopathic effect by inhibitors of prokaryotic DNA gyrase. Antivir Res. 1988;9(3):205–18.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Savona MR, Newton D, Frame D, Levine JE, Mineishi S, Kaul DR. Low-dose cidofovir treatment of BK virus-associated hemorrhagic cystitis in recipients of hematopoietic stem cell transplant. Bone Marrow Transplant. 2007;39(12):783–7.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Walden O, Hartel C, Doehn C, Jocham D. Intravesical cidofovir--instillation therapy for polyomavirus-associated hemorrhagic cystitis after bone marrow transplantation. Urologe A. 2007;46(5):535–7. Intravesikale Cidofovir--Instillationstherapie bei Polyomavirus-assoziierter hamorrhagischer Zystitis nach Knochenmarktransplantation. ger.PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Wong AS, Chan KH, Cheng VC, Yuen KY, Kwong YL, Leung AY. Relationship of pretransplantation polyoma BK virus serologic findings and BK viral reactivation after hematopoietic stem cell transplantation. Clin Infect Dis. 2007;44(6):830–7.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Lee YJ, Palomino-Guilen P, Babady NE, Lamson DM, St George K, Tang YW, et al. Disseminated adenovirus infection in cancer patients presenting with focal pulmonary consolidation. J Clin Microbiol. 2014;52(1):350–3.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Rustia E, Violago L, Jin Z, Foca MD, Kahn JM, Arnold S, et al. Risk factors and utility of a risk-based algorithm for monitoring cytomegalovirus, Epstein-Barr virus, and adenovirus infections in pediatric recipients after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(9):1646–53.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Sive JI, Thomson KJ, Morris EC, Ward KN, Peggs KS. Adenoviremia has limited clinical impact in the majority of patients following alemtuzumab-based allogeneic stem cell transplantation in adults. Clin Infect Dis. 2012;55(10):1362–70.PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Flomenberg P, Babbitt J, Drobyski WR, Ash RC, Carrigan DR, Sedmak GV, et al. Increasing incidence of adenovirus disease in bone marrow transplant recipients. J Infect Dis. 1994;169(4):775–81.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Symeonidis N, Jakubowski A, Pierre-Louis S, Jaffe D, Pamer E, Sepkowitz K, et al. Invasive adenoviral infections in T-cell-depleted allogeneic hematopoietic stem cell transplantation: high mortality in the era of cidofovir. Transpl Infect Dis. 2007;9(2):108–13.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Howard DS, Phillips IG, Reece DE, Munn RK, Henslee-Downey J, Pittard M, et al. Adenovirus infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 1999;29(6):1494–501.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Lynch JP 3rd, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Sem Resp Crit Care Med. 2016;37(4):586–602.CrossRefGoogle Scholar
  270. 270.
    Boeckh M, Gooley TA, Myerson D, Cunningham T, Schoch G, Bowden RA. Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood. 1996;88(10):4063–71.PubMedPubMedCentralGoogle Scholar
  271. 271.
    Zaia JA. Prevention of cytomegalovirus disease in hematopoietic stem cell transplantation. Clin Infect Dis. 2002;35(8):999–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Lindemans CA, Leen AM, Boelens JJ. How I treat adenovirus in hematopoietic stem cell transplant recipients. Blood. 2010;116(25):5476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Matthes-Martin S, Feuchtinger T, Shaw PJ, Engelhard D, Hirsch HH, Cordonnier C, Ljungman P, Fourth European Conference on Infections in Leukemia. European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: summary of ECIL-4 (2011). Transpl Infect Dis. 2012;14(6):555–63.CrossRefGoogle Scholar
  274. 274.
    Williams KM, Agwu AL, Dabb AA, Higman MA, Loeb DM, Valsamakis A, et al. A clinical algorithm identifies high risk pediatric oncology and bone marrow transplant patients likely to benefit from treatment of adenoviral infection. J Pediatr Hematol Oncol. 2009;31(11):825–31.PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Zaia J, Baden L, Boeckh MJ, Chakrabarti S, Einsele H, Ljungman P, et al. Viral disease prevention after hematopoietic cell transplantation. Bone Marrow Transplant. 2009;44(8):471–82.PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Ohrmalm L, Lindblom A, Omar H, Norbeck O, Gustafson I, Lewensohn-Fuchs I, et al. Evaluation of a surveillance strategy for early detection of adenovirus by PCR of peripheral blood in hematopoietic SCT recipients: incidence and outcome. Bone Marrow Transplant. 2011;46(2):267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Ganzenmueller T, Buchholz S, Harste G, Dammann E, Trenschel R, Heim A. High lethality of human adenovirus disease in adult allogeneic stem cell transplant recipients with high adenoviral blood load. J Clin Virol. 2011;52(1):55–9.PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Walls T, Hawrami K, Ushiro-Lumb I, Shingadia D, Saha V, Shankar AG. Adenovirus infection after pediatric bone marrow transplantation: is treatment always necessary? Clin Infect Dis. 2005;40(9):1244–9.PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Lion T, Kosulin K, Landlinger C, Rauch M, Preuner S, Jugovic D, et al. Monitoring of adenovirus load in stool by real-time PCR permits early detection of impending invasive infection in patients after allogeneic stem cell transplantation. Leukemia. 2010;24(4):706–14.PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Schilham MW, Claas EC, van Zaane W, Heemskerk B, Vossen JM, Lankester AC, et al. High levels of adenovirus DNA in serum correlate with fatal outcome of adenovirus infection in children after allogeneic stem-cell transplantation. Clin Infect Dis. 2002;35(5):526–32.PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Grimley MS, Marsh RA, Bleesing JJ, Mehta PA, Jodele SA, Myers KM, et al. Cmx001 as therapy for severe adenovirus infections in immunocompromised pediatric patients: single experience in 5 patients. Biol Blood Marrow Transplant. 2012;18(2):S315.CrossRefGoogle Scholar
  282. 282.
    Florescu DF, Pergam SA, Neely MN, Qiu F, Johnston C, Way S, et al. Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients. Biol Blood Marrow Transplant. 2012;18(5):731–8.PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Grimley MS, Chemaly RF, Englund JA, Kurtzberg J, Chittick G, Brundage TM, et al. Brincidofovir for asymptomatic adenovirus viremia in pediatric and adult allogeneic hematopoietic cell transplant recipients: a randomized placebo-controlled phase II trial. Biol Blood Marrow Transplant. 2017;23(3):512–21.PubMedCrossRefPubMedCentralGoogle Scholar
  284. 284.
    Caserta MT, Dewhurst S. Dazed and confused by HHV-6. Blood. 2011;117(19):5016–8.PubMedCrossRefPubMedCentralGoogle Scholar
  285. 285.
    Yamane A, Mori T, Suzuki S, Mihara A, Yamazaki R, Aisa Y, et al. Risk factors for developing human herpesvirus 6 (HHV-6) reactivation after allogeneic hematopoietic stem cell transplantation and its association with central nervous system disorders. Biol Blood Marrow Transplant. 2007;13(1):100–6.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Olson AL, Dahi PB, Zheng J, Devlin SM, Lubin M, Gonzales AM, et al. Frequent human herpesvirus-6 viremia but low incidence of encephalitis in double-unit cord blood recipients transplanted without antithymocyte globulin. Biol Blood Marrow Transplant. 2014;20(6):787–93.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Zerr DM, Boeckh M, Delaney C, Martin PJ, Xie H, Adler AL, et al. HHV-6 reactivation and associated sequelae after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18(11):1700–8.PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Zerr DM, Fann JR, Breiger D, Boeckh M, Adler AL, Xie H, et al. HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients. Blood. 2011;117(19):5243–9.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Hill JA, Koo S, Guzman Suarez BB, Ho VT, Cutler C, Koreth J, et al. Cord-blood hematopoietic stem cell transplant confers an increased risk for human Herpesvirus-6-associated acute limbic encephalitis: a cohort analysis. Biol Blood Marrow Transplant. 2012;18(11):1638–48.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Betts BC, Young JA, Ustun C, Cao Q, Weisdorf DJ. Human herpesvirus 6 infection after hematopoietic cell transplantation: is routine surveillance necessary? Biol Blood Marrow Transplant. 2011;17(10):1562–8.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Ogata M, Satou T, Kawano R, Goto K, Ikewaki J, Kohno K, et al. Plasma HHV-6 viral load-guided preemptive therapy against HHV-6 encephalopathy after allogeneic stem cell transplantation: a prospective evaluation. Bone Marrow Transplant. 2008;41(3):279–85.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Ishiyama K, Katagiri T, Hoshino T, Yoshida T, Yamaguchi M, Nakao S. Preemptive therapy of human herpesvirus-6 encephalitis with foscarnet sodium for high-risk patients after hematopoietic SCT. Bone Marrow Transplant. 2011;46(6):863–9.PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Milano F, Campbell AP, Guthrie KA, Kuypers J, Englund JA, Corey L, et al. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients. Blood. 2010;115(10):2088–94.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Campbell AP, Chien JW, Kuypers J, Englund JA, Wald A, Guthrie KA, et al. Respiratory virus pneumonia after hematopoietic cell transplantation (HCT): associations between viral load in bronchoalveolar lavage samples, viral RNA detection in serum samples, and clinical outcomes of HCT. J Infect Dis. 2010;201(9):1404–13.PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Seo S, Renaud C, Kuypers JM, Chiu CY, Huang ML, Samayoa E, et al. Idiopathic pneumonia syndrome after hematopoietic cell transplantation: evidence of occult infectious etiologies. Blood. 2015;125(24):3789–97.PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Waghmare A, Pergam SA, Jerome KR, Englund JA, Boeckh M, Kuypers J. Clinical disease due to enterovirus D68 in adult hematologic malignancy patients and hematopoietic cell transplant recipients. Blood. 2015;125(11):1724–9.PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Dokos C, Masjosthusmann K, Rellensmann G, Werner C, Schuler-Luttmann S, Muller KM, et al. Fatal human metapneumovirus infection following allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis. 2013;15(3):E97–E101.PubMedCrossRefPubMedCentralGoogle Scholar
  298. 298.
    Englund JA, Boeckh M, Kuypers J, Nichols WG, Hackman RC, Morrow RA, et al. Brief communication: fatal human metapneumovirus infection in stem-cell transplant recipients. Ann Int Med. 2006;144(5):344–9.PubMedCrossRefPubMedCentralGoogle Scholar
  299. 299.
    Schenk T, Strahm B, Kontny U, Hufnagel M, Neumann-Haefelin D, Falcone V. Disseminated bocavirus infection after stem cell transplant. Emerg Infect Dis. 2007;13(9):1425–7.PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Kuypers J, Campbell AP, Guthrie KA, Wright NL, Englund JA, Corey L, et al. WU and KI polyomaviruses in respiratory samples from allogeneic hematopoietic cell transplant recipients. Emerg Infect Dis. 2012;18(10):1580–8.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Perfect JR, Cox GM, Lee JY, Kauffman CA, de Repentigny L, Chapman SW, et al. The impact of culture isolation of aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis. 2001;33(11):1824–33.PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Wald A, Leisenring W, van Burik JA, Bowden RA. Epidemiology of aspergillus infections in a large cohort of patients undergoing bone marrow transplantation. J Infect Dis. 1997;175(6):1459–66.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Tarrand JJ, Lichterfeld M, Warraich I, Luna M, Han XY, May GS, et al. Diagnosis of invasive septate mold infections. A correlation of microbiological culture and histologic or cytologic examination. Am J Clin Pathol. 2003;119(6):854–8.PubMedCrossRefPubMedCentralGoogle Scholar
  304. 304.
    Cornely OA. Galactomannan testing during mold-active prophylaxis. Clin Infect Dis. 2014;59(12):1703–4.PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Duarte RF, Sanchez-Ortega I, Cuesta I, Arnan M, Patino B, Fernandez de Sevilla A, et al. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin Infect Dis. 2014;59(12):1696–702.PubMedCrossRefPubMedCentralGoogle Scholar
  306. 306.
    Affolter K, Tamm M, Jahn K, Halter J, Passweg J, Hirsch HH, et al. Galactomannan in bronchoalveolar lavage for diagnosing invasive fungal disease. Am J Resp Crit Care Med. 2014;190(3):309–17.PubMedPubMedCentralGoogle Scholar
  307. 307.
    Safdar A, Singhal S, Mehta J. Clinical significance of non-Candida fungal blood isolation in patients undergoing high-risk allogeneic hematopoietic stem cell transplantation (1993–2001). Cancer. 2004;100(11):2456–61.PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Choi SM, Xie H, Campbell AP, Kuypers J, Leisenring W, Boudreault AA, et al. Influenza viral RNA detection in blood as a marker to predict disease severity in hematopoietic cell transplant recipients. J Infect Dis. 2012;206(12):1872–7.PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    El Chaer F, Shah DP, Chemaly RF. How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood. 2016;128(23):2624–36.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Chou S. Approach to drug-resistant cytomegalovirus in transplant recipients. Curr Opin Infect Dis. 2015;28(4):293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Hakki M, Chou S. The biology of cytomegalovirus drug resistance. Curr Opin Infect Dis. 2011;24(6):605–11.PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Iioka F, Sada R, Maesako Y, Nakamura F, Ohno H. Outbreak of pandemic 2009 influenza a/H1N1 infection in the hematology ward: fatal clinical outcome of hematopoietic stem cell transplant recipients and emergence of the H275Y neuraminidase mutation. Int J Hematol. 2012;96(3):364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  313. 313.
    Renaud C, Pergam SA, Polyak C, Jain R, Kuypers J, Englund JA, et al. Early emergence of an H275Y mutation in a hematopoietic cell transplant recipient treated with intravenous peramivir. Transpl Infect Dis. 2010;12(6):513–7.PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Koo S, Bryar JM, Baden LR, Marty FM. Prognostic features of galactomannan antigenemia in galactomannan-positive invasive aspergillosis. J Clin Microbiol. 2010;48(4):1255–60.PubMedPubMedCentralCrossRefGoogle Scholar
  315. 315.
    Bergeron A, Porcher R, Menotti J, Poirot JL, Chagnon K, Vekhoff A, et al. Prospective evaluation of clinical and biological markers to predict the outcome of invasive pulmonary aspergillosis in hematological patients. J Clin Microbiol. 2012;50(3):823–30.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. Esther Babady
    • 1
  • Yeon Joo Lee
    • 2
    • 3
  • Genovefa Papanicolaou
    • 2
    • 3
  • Yi-Wei Tang
    • 3
    • 4
    Email author
  1. 1.Department of Laboratory Medicine, Clinical Microbiology ServiceMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Internal Medicine, Infectious Diseases ServiceMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Weill Cornell Medical College, Cornell UniversityNew YorkUSA
  4. 4.Department of Laboratory Medicine, Clinical Microbiology ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations