Enterovirus Infection in Immunocompromised Hosts

  • Joanna M. D. SchaenmanEmail author
  • Dora Y. Ho
  • Lindsey R. Baden
  • Amar Safdar


The Enteroviridae are single-stranded RNA viruses in the Picornaviridae family notable for their ability to cause a wide range of diseases, with more severe disease manifestations in the immunocompromised host. Humans are the reservoir for Enteroviridae, and person-to-person transmission occurs via the fecal-oral or respiratory route. Intact innate immune response including NK cells and macrophages plays an important role during the initial phase of infection followed by T- and B-cell adaptive immunity, which is central in effective viral clearance. Enteroviral infections peak in the summer and fall months. Poliovirus classically causes a paralytic poliomyelitis with weakness and paralysis. Other enteroviral diseases include upper respiratory infections, HFMD, herpangina, myositis, myocarditis, aseptic meningitis, encephalitis, as well as a flaccid paralysis similar to poliovirus infection. Patients with B-cell immune defects including agammaglobulinemia are susceptible to chronic enterovirus infections including chronic meningoencephalitis. Patients undergoing HSCT may develop potentially life-threatening gastroenteritis and viral pneumonitis. No antiviral therapy is currently available; IVIG therapy is suggested for patients with enteroviral myocarditis and encephalitis. A comprehensive review of enteroviral illness is presented in the transplant population.


Poliovirus Non-poliovirus Enterovirus Immunocompromised hosts Coxsackievirus Enterovirus 71 


  1. 1.
    Mueller S, Wimmer E, Cello J. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res. 2005;111:175–93.CrossRefGoogle Scholar
  2. 2.
    Oberste MS, Maher K, Flemister MR, Marchetti G, Kilpatrick DR, Pallansch MA. Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol. 2000;38:1170–4.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Oberste MS. Comparative genomics of the coxsackie B viruses and related enteroviruses. Curr Top Microbiol Immunol. 2008;323:33–47.Google Scholar
  4. 4.
    Hogle JM. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol. 2002;56:677–702.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Palmenberg A, Neubauer D, Skern T. Genome organization and encoded proteins. In: Ehrenfeld E, Domingo E, Roos RP, editors. The picornaviruses. Washington, DC: ASM Press; 2010. p. 3–17.CrossRefGoogle Scholar
  6. 6.
    Wimmer E, Nomoto A. Molecular biology and cell-free synthesis of poliovirus. Biologicals. 1993;21:349–56.CrossRefGoogle Scholar
  7. 7.
    Cameron CE, Suk OH, Moustafa IM. Expanding knowledge of P3 proteins in the poliovirus lifecycle. Future Microbiol. 2010;5:867–81.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Domingo E, Perales C, Agudo R, Arias A, Escarmis C, Ferrer-Orta C. Mutation, quasispecies, and lethal mutagenesis. In: Ehrenfeld E, Domingo E, Roos RP, editors. The picornaviruses. Washington, DC: ASM Press; 2010. p. 197–211.CrossRefGoogle Scholar
  9. 9.
    Kadurugamuwa JL, Shaheen E. Inactivation of human enterovirus 71 and coxsackie virus A16 and hand, foot, and mouth disease. Am J Infect Control. 2011;39:788–9.CrossRefGoogle Scholar
  10. 10.
    Maillard J-Y. Virus susceptibility to biocides: an understanding. Rev Med Microbiol. 2001;12:63–74.CrossRefGoogle Scholar
  11. 11.
    Racaniello VR. One hundred years of poliovirus pathogenesis. Virology. 2006;344:9–16.CrossRefGoogle Scholar
  12. 12.
    Mahy BWJ. Coxsackie B viruses: an introduction. Curr Top Microbiol Immunol. 2008;323:vii–xiii.Google Scholar
  13. 13.
    Pallansch M, Roos R. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 840–93.Google Scholar
  14. 14.
    Khetsuriani N, Lamonte-Fowlkes A, Oberst S, Pallansch MA, Centers for Disease Control and Prevention. Enterovirus surveillance--United States, 1970–2005. MMWR Surveill Summ. 2006;55:1–20.Google Scholar
  15. 15.
    Muir P, Kämmerer U, Korn K, et al. Molecular typing of enteroviruses: current status and future requirements. The European Union concerted action on virus meningitis and encephalitis. Clin Microbiol Rev. 1998;11:202–27.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lo C-W, Wu K-G, Lin M-C, et al. Application of a molecular method for the classification of human enteroviruses and its correlation with clinical manifestations. J Microbiol Immunol Infect. 2010;43:354–9.CrossRefGoogle Scholar
  17. 17.
    Oberste MS. Complete genome sequences of all members of the species human enterovirus A. J Gen Virol. 2004;85:1597–607.CrossRefGoogle Scholar
  18. 18.
    Lukashev AN. Role of recombination in evolution of enteroviruses. Rev Med Virol. 2005;15:157–67.CrossRefGoogle Scholar
  19. 19.
    Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010;9:1097–105.CrossRefGoogle Scholar
  20. 20.
    Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10:778–90.CrossRefGoogle Scholar
  21. 21.
    Xu J, Qian Y, Wang S, et al. EV71: an emerging infectious disease vaccine target in the Far East? Vaccine. 2010;28:3516–21.CrossRefGoogle Scholar
  22. 22.
    Lee BE, Davies HD. Aseptic meningitis. Curr Opin Infect Dis. 2007;20:272–7.CrossRefGoogle Scholar
  23. 23.
    Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334:249–52.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    He Y, Bowman VD, Mueller S, et al. Interaction of the poliovirus receptor with poliovirus. Proc Natl Acad Sci U S A. 2000;97:79–84.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shafren DR, Dorahy DJ, Greive SJ, Burns GF, Barry RD. Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. J Virol. 1997;71:785–9.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Freimuth P, Philipson L, Carson SD. The coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol. 2008;323:67–87.Google Scholar
  27. 27.
    Xiao C, Bator CM, Bowman VD, et al. Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. J Virol. 2001;75:2444–51.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yajima T, Knowlton KU. Viral myocarditis: from the perspective of the virus. Circulation. 2009;119:2615–24.CrossRefGoogle Scholar
  29. 29.
    Lee T-C, Guo H-R, H-JJ S, Yang Y-C, Chang H-L, Chen K-T. Diseases caused by enterovirus 71 infection. Pediatr Infect Dis J. 2009;28:904–10.CrossRefGoogle Scholar
  30. 30.
    Wang SM, Lei HY, Su LY, et al. Cerebrospinal fluid cytokines in enterovirus 71 brain stem encephalitis and echovirus meningitis infections of varying severity. Clin Microbiol Infect. 2007;13:677–82.CrossRefGoogle Scholar
  31. 31.
    Knowlton KU. CVB infection and mechanisms of viral cardiomyopathy. Curr Top Microbiol Immunol. 2008;323:315–35.Google Scholar
  32. 32.
    Chapman NM, Kim KS. Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol. 2008;323:275–92.Google Scholar
  33. 33.
    Ida-Hosonuma M, Iwasaki T, Yoshikawa T, et al. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol. 2005;79:4460–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Abe Y, Fujii K, Nagata N, et al. The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice. J Virol. 2011;86:185–94.CrossRefGoogle Scholar
  35. 35.
    Richer MJ, Lavallée DJ, Shanina I, Horwitz MS. Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PLoS One. 2009;4:e4127.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Huber S. Host immune responses to coxsackievirus B3. Curr Top Microbiol Immunol. 2008;323:199–221.Google Scholar
  37. 37.
    Kemball CC, Fujinami RS, Whitton JL. Adaptive immune responses. In: Ehrenfeld E, Domingo E, Roos RP, editors. The picornaviruses. Washington, DC: ASM Press; 2010. p. 303–19.CrossRefGoogle Scholar
  38. 38.
    McKinney RE, Katz SL, Wilfert CM. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev Infect Dis. 1987;9:334–56.CrossRefGoogle Scholar
  39. 39.
    Mena I, Perry CM, Harkins S, Rodriguez F, Gebhard J, Whitton JL. The role of B lymphocytes in coxsackievirus B3 infection. Am J Pathol. 2010;155:1205–15.CrossRefGoogle Scholar
  40. 40.
    Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology. 2011;411:288–305.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schnurr DP, Schmidt NJ. Coxsackievirus B3 persistence and myocarditis in NFR nu/nu and +/nu mice. Med Microbiol Immunol. 1984;173:1–7.CrossRefGoogle Scholar
  42. 42.
    Jubelt B, Ropka SL, Goldfarb SJ, Janavs JL. Anti-thymocyte serum delays clearance of poliovirus from the mouse central nervous system. J Neuroimmunol. 1989;22:223–32.CrossRefGoogle Scholar
  43. 43.
    Gebhard JR, Perry CM, Harkins S, et al. Coxsackievirus B3-induced myocarditis. Am J Pathol. 1998;153:417–28.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Shi Y, Fukuoka M, Li G, et al. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor-coxsackie-adenovirus receptor pathway. Circulation. 2010;121:2624–34.CrossRefGoogle Scholar
  45. 45.
    Tam PE. Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease. Viral Immunol. 2006;19:133–46.CrossRefGoogle Scholar
  46. 46.
    Tracy S, Drescher KM, Jackson JD, Kim K, Kono K. Enteroviruses, type 1 diabetes and hygiene: a complex relationship. Rev Med Virol. 2010;20:106–16.CrossRefGoogle Scholar
  47. 47.
    Centers for Disease Control and Prevention (CDC). Nonpolio enterovirus and human parechovirus surveillance – United States, 2006–2008. MMWR Morb Mortal Wkly Rep. 2010;59:1577–80.Google Scholar
  48. 48.
    Faustini A, Fano V, Muscillo M, et al. An outbreak of aseptic meningitis due to echovirus 30 associated with attending school and swimming in pools. Int J Infect Dis. 2006;10:291–7.CrossRefGoogle Scholar
  49. 49.
    Mulder DW. Clinical observations on acute poliomyelitis. Ann N Y Acad Sci. 1995;753:1–10.CrossRefGoogle Scholar
  50. 50.
    Kew O. Reaching the last one per cent: progress and challenges in global polio eradication. Curr Opin Virol. 2012;2:188–98.CrossRefGoogle Scholar
  51. 51.
    World Health Organization. Resurgence of wild poliovirus type 1 transmission and effect of importation into polio-free countries, 2002–2005. Wkly Epidemiol Rec. 2006;81:63–8.Google Scholar
  52. 52.
    Gulland A. World could be declared free of polio by 2018. BMJ. 2011;346:f2373.CrossRefGoogle Scholar
  53. 53.
    Kew O. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science. 2002;296:356–9.CrossRefGoogle Scholar
  54. 54.
    Wassilak S, Pate MA, Wannemuehler K, et al. Outbreak of type 2 vaccine-derived poliovirus in Nigeria: emergence and widespread circulation in an underimmunized population. J Infect Dis. 2011;203:898–909.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Committee on Infectious Diseases. Poliovirus. Pediatrics. 2011;128:805–8.CrossRefGoogle Scholar
  56. 56.
    Centers for Disease Control and Prevention (CDC). Update on vaccine-derived polioviruses--worldwide, July 2009–March 2011. MMWR Morb Mortal Wkly Rep. 2011;60:846–50.Google Scholar
  57. 57.
    Modlin JF. Poliovirus. In: Mandell GL, Bennett JE, Dolin R, editors. Principle and practice of infectious diseases. Philadelphia: Elsevier Churchill Livingstone; 2005. p. 2141–8.Google Scholar
  58. 58.
    Nathanson N, Kew OM. From emergence to eradication: the epidemiology of poliomyelitis deconstructed. Am J Epidemiol. 2010;172:1213–29.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Huang C, Chatterjee NK, Grady LJ. Diagnosis of viral infections of the central nervous system. N Engl J Med. 1999;340:483–4.CrossRefGoogle Scholar
  60. 60.
    Frantzidou F, Kamaria F, Dumaidi K, Skoura L, Antoniadis A, Papa A. Aseptic meningitis and encephalitis because of herpesviruses and enteroviruses in an immunocompetent adult population. Eur J Neurol. 2008;15:995–7.CrossRefGoogle Scholar
  61. 61.
    Franzen-Röhl E, Larsson K, Skoog E, et al. High diagnostic yield by CSF-PCR for entero- and herpes simplex viruses and TBEV serology in adults with acute aseptic meningitis in Stockholm. Scand J Infect Dis. 2008;40:914–21.CrossRefGoogle Scholar
  62. 62.
    Huttunen P, Lappalainen M, Salo E, et al. Differential diagnosis of acute central nervous system infections in children using modern microbiological methods. Acta Paediatr. 2009;98:1300–6.CrossRefGoogle Scholar
  63. 63.
    Centers for Disease Control and Prevention (CDC). Notes from the field: severe hand, foot, and mouth disease associated with coxsackievirus A6 – Alabama, Connecticut, California, and Nevada, November 2011–February 2012. MMWR Morb Mortal Wkly Rep. 2012;61:213–4.Google Scholar
  64. 64.
    Chong C-Y, Chan K-P, Shah V, et al. Hand, foot and mouth disease in Singapore: a comparison of fatal and non-fatal cases. Acta Paediatr. 2007;92:1163–9.CrossRefGoogle Scholar
  65. 65.
    Centers for Disease Control and Prevention (CDC). Notes from the field: acute hemorrhagic conjunctivitis outbreaks caused by coxsackievirus A24v – Uganda and southern Sudan, 2010. MMWR Morb Mortal Wkly Rep. 2010;59:1024.Google Scholar
  66. 66.
    Huang W-T, Lee P-I, Chang L-Y, et al. Epidemic pleurodynia caused by coxsackievirus B3 at a medical center in Northern Taiwan. J Microbiol Immunol Infect. 2010;43:515–8.CrossRefGoogle Scholar
  67. 67.
    Weber MA, Ashworth MT, Risdon RA, Malone M, Burch M, Sebire NJ. Clinicopathological features of paediatric deaths due to myocarditis: an autopsy series. Arch Dis Child. 2008;93:594–8.CrossRefGoogle Scholar
  68. 68.
    Kereiakes DJ, Parmley WW. Myocarditis and cardiomyopathy. Am Heart J. 1984;108:1318–26.CrossRefGoogle Scholar
  69. 69.
    Friman G, Wesslén L, Fohlman J, Karjalainen J, Rolf C. The epidemiology of infectious myocarditis, lymphocytic myocarditis and dilated cardiomyopathy. Eur Heart J. 1995;16(Suppl O):36–41.CrossRefGoogle Scholar
  70. 70.
    Bowles NE, Ni J, Kearney DL, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. J Am Coll Cardiol. 2003;42:466–72.CrossRefGoogle Scholar
  71. 71.
    Li Y, Bourlet T, Andreoletti L, et al. Enteroviral capsid protein VP1 is present in myocardial tissues from some patients with myocarditis or dilated cardiomyopathy. Circulation. 2000;101:231–4.CrossRefGoogle Scholar
  72. 72.
    Misbah SA, Spickett GP, Ryba PC, et al. Chronic enteroviral meningoencephalitis in agammaglobulinemia: case report and literature review. J Clin Immunol. 1992;12:266–70.CrossRefGoogle Scholar
  73. 73.
    Centers for Disease Control and Prevention (CDC). Prolonged poliovirus excretion in an immunodeficient person with vaccine-associated paralytic poliomyelitis. MMWR Morb Mortal Wkly Rep. 1997;46:641–3.Google Scholar
  74. 74.
    MacLennan C, Dunn G, Huissoon AP, et al. Failure to clear persistent vaccine-derived neurovirulent poliovirus infection in an immunodeficient man. Lancet. 2004;363:1509–13.CrossRefGoogle Scholar
  75. 75.
    Kew OM, Sutter RW, Nottay BK, et al. Prolonged replication of a type 1 vaccine-derived poliovirus in an immunodeficient patient. J Clin Microbiol. 1998;36:2893–9.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Inaba H, Hori H, Ito M, et al. Polio vaccine virus-associated meningoencephalitis in an infant with transient hypogammaglobulinemia. Scand J Infect Dis. 2001;33:630–1.CrossRefGoogle Scholar
  77. 77.
    Frange P, Michon J, Fromantin I, et al. Enterovirus 71 meningoencephalitis during chemotherapy in a child with metastatic osteosarcoma. J Pediatr Hematol Oncol. 2007;29:566–8.CrossRefGoogle Scholar
  78. 78.
    Chakrabarti S, Osman H, Collingham KE, Fegan CD, Milligan DW. Enterovirus infections following T-cell depleted allogeneic transplants in adults. Bone Marrow Transplant. 2003;33:425–30.CrossRefGoogle Scholar
  79. 79.
    Moschovi MA, Katsibardi K, Theodoridou M, et al. Enteroviral infections in children with malignant disease: a 5-year study in a single institution. J Infect. 2007;54:387–92.CrossRefGoogle Scholar
  80. 80.
    Faulkner CF, Godbolt AM, DeAmbrosis B, Triscott J. Hand, foot and mouth disease in an immunocompromised adult treated with acyclovir. Australas J Dermatol. 2003;44:203–6.CrossRefGoogle Scholar
  81. 81.
    Roch N, Salameire D, Gressin R, et al. Fatal adenoviral and enteroviral infections and an Epstein-Barr virus positive large B-cell lymphoma after alemtuzumab treatment in a patient with refractory Sézary syndrome. Scand J Infect Dis. 2008;40:343–6.CrossRefGoogle Scholar
  82. 82.
    Tan P-L, Verneris MR, Charnas LR, Reck SJ, van Burik J-AH, Blazar BR. Outcome of CNS and pulmonary enteroviral infections after hematopoietic cell transplantation. Pediatr Blood Cancer. 2005;45:74–5.CrossRefGoogle Scholar
  83. 83.
    Galama JM, de Leeuw N, Wittebol S, Peters H, Melchers WJ. Prolonged enteroviral infection in a patient who developed pericarditis and heart failure after bone marrow transplantation. Clin Infect Dis. 1996;22:1004–8.CrossRefGoogle Scholar
  84. 84.
    Fischmeister G, Wiesbauer P, Holzmann HM, Peters C, Eibl M, Gadner H. Enteroviral meningoencephalitis in immunocompromised children after matched unrelated donor-bone marrow transplantation. Pediatr Hematol Oncol. 2000;17:393–9.CrossRefGoogle Scholar
  85. 85.
    Servais S, Caers J, Warling O, et al. Enteroviral meningoencephalitis as complication of Rituximab therapy in a patient treated for diffuse large B-cell lymphoma. Br J Haematol. 2010;150:379–81.CrossRefGoogle Scholar
  86. 86.
    Ahmed R, Buckland M, Davies L, et al. Enterovirus 71 meningoencephalitis complicating rituximab therapy. J Neurol Sci. 2011;305:149–51.CrossRefGoogle Scholar
  87. 87.
    Polidori M, Tagliaferri E, Tascini C, Andreotti G, Flammini S, Menichetti F. Myelitis due to enterovirus in patient on interferon therapy for chronic hepatitis B: case report. Clin Immunol. 2010;137:176–7.CrossRefGoogle Scholar
  88. 88.
    Parody R, Rabella N, Martino R, et al. Upper and lower respiratory tract infections by human enterovirus and rhinovirus in adult patients with hematological malignancies. Am J Hematol. 2007;82:807–11.CrossRefGoogle Scholar
  89. 89.
    González Y, Martino R, Badell I, et al. Pulmonary enterovirus infections in stem cell transplant recipients. Bone Marrow Transplant. 1999;23:511–3.CrossRefGoogle Scholar
  90. 90.
    Liu M, Worley S, Arrigain S, et al. Respiratory viral infections within one year after pediatric lung transplant. Transpl Infect Dis. 2009;11:304–12.CrossRefGoogle Scholar
  91. 91.
    Vu DL, Bridevaux PO, Aubert JD, Soccal PM, Kaiser L. Respiratory viruses in lung transplant recipients: a critical review and pooled analysis of clinical studies. Am J Transplant. 2011;11:1071–8.CrossRefGoogle Scholar
  92. 92.
    Yolken RH, Bishop CA, Townsend TR, et al. Infectious gastroenteritis in bone-marrow-transplant recipients. N Engl J Med. 1982;306:1010–2.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chakrabarti S, Collingham KE, Stevens RH, Pillay D, Fegan CD, Milligan DW. Isolation of viruses from stools in stem cell transplant recipients: a prospective surveillance study. Bone Marrow Transplant. 2000;25:277–82.CrossRefGoogle Scholar
  94. 94.
    Katsibardi K, Moschovi MA, Theodoridou M, et al. Enterovirus-associated hemophagocytic syndrome in children with malignancy: report of three cases and review of the literature. Eur J Pediatr. 2007;167:97–102.CrossRefGoogle Scholar
  95. 95.
    Donoso Mantke O, Meyer R, Prösch S, et al. High prevalence of cardiotropic viruses in myocardial tissue from explanted hearts of heart transplant recipients and heart donors: a 3-year retrospective study from a German patients’ pool. J Heart Lung Transplant. 2005;24:1632–8.CrossRefGoogle Scholar
  96. 96.
    Shirali GS, Ni J, Chinnock RE, et al. Association of viral genome with graft loss in children after cardiac transplantation. N Engl J Med. 2001;344:1498–503.CrossRefGoogle Scholar
  97. 97.
    Shah SS, Hodinka RL, Turnquist JL, Elliott MR, Coffin SE. Cerebrospinal fluid mononuclear cell predominance is not related to symptom duration in children with enteroviral meningitis. J Pediatr. 2006;148:118–21.CrossRefGoogle Scholar
  98. 98.
    Terletskaia-Ladwig E, Meier S, Hahn R, Leinmuller M, Schneider F, Enders M. A convenient rapid culture assay for the detection of enteroviruses in clinical samples: comparison with conventional cell culture and RT-PCR. J Med Microbiol. 2008;57:1000–6.CrossRefGoogle Scholar
  99. 99.
    Stellrecht KA, Harding I, Woron AM, Lepow ML, Venezia RA. The impact of an enteroviral RT-PCR assay on the diagnosis of aseptic meningitis and patient management. J Clin Virol. 2002;25(Suppl 1):S19–26.CrossRefGoogle Scholar
  100. 100.
    Hwang S, Kang B, Hong J, et al. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71. J Med Virol. 2013;85:1274–9.CrossRefGoogle Scholar
  101. 101.
    Kornreich L, Dagan O, Grunebaum M. MRI in acute poliomyelitis. Neuroradiology. 1996;38:371–2.CrossRefGoogle Scholar
  102. 102.
    Jang S, Suh S-I, Ha SM, et al. Enterovirus 71-related encephalomyelitis: usual and unusual magnetic resonance imaging findings. Neuroradiology. 2011;54:239–45.CrossRefGoogle Scholar
  103. 103.
    Liang Z-L, Mao Q-Y, Wang Y-P, et al. Progress on the research and development of inactivated EV71 whole-virus vaccines. Hum Vaccin Immunother. 2013;9(8):1701–5.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Zhu F-C, Meng F-Y, Li J-X, et al. Efficacy, safety, and immunology of an inactivated alum-adjuvant enterovirus 71 vaccine in children in China: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2013;381:2024–32.CrossRefGoogle Scholar
  105. 105.
    Li Y-P, Liang Z-L, Xia J-L, et al. Immunogenicity, safety, and immune persistence of a novel inactivated human enterovirus 71 (EV71) vaccine: a phase II, randomized, double-blind, placebo-controlled trial. J Infect Dis. 2014;209(1):46–55.CrossRefGoogle Scholar
  106. 106.
    Robinson J, Hartling L, Vandermeer B, Klassen TP. Intravenous immunoglobulin for presumed viral myocarditis in children and adults. Cochrane Database Syst Rev. 2005;(1):CD004370; updated 2015 May 20;(5):CD004370.Google Scholar
  107. 107.
    McNamara DM, Holubkov R, Starling RC, et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation. 2001;103:2254–9.CrossRefGoogle Scholar
  108. 108.
    Geller TJ, Condie D. A case of protracted coxsackie virus meningoencephalitis in a marginally immunodeficient child treated successfully with intravenous immunoglobulin. J Neurol Sci. 1995;129:131–3.CrossRefGoogle Scholar
  109. 109.
    Bhatt GC, Sankar J, Kushwaha KP. Use of intravenous immunoglobulin compared with standard therapy is associated with improved clinical outcomes in children with acute encephalitis syndrome complicated by myocarditis. Pediatr Cardiol. 2012;33(8):1370–6.CrossRefGoogle Scholar
  110. 110.
    Wang S-M, Lei H-Y, Huang M-C, et al. Modulation of cytokine production by intravenous immunoglobulin in patients with enterovirus 71-associated brainstem encephalitis. J Clin Virol. 2006;37:47–52.CrossRefGoogle Scholar
  111. 111.
    Wang S-M, Lei H-Y, Huang M-C, et al. Therapeutic efficacy of milrinone in the management of enterovirus 71-induced pulmonary edema. Pediatr Pulmonol. 2005;39:219–23.CrossRefGoogle Scholar
  112. 112.
    Webster ADB. Pleconaril – an advance in the treatment of enteroviral infection in immuno-compromised patients. J Clin Virol. 2005;32:1–6.CrossRefGoogle Scholar
  113. 113.
    Rotbart HA, Webster AD, Pleconaril Treatment Registry Group. Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin Infect Dis. 2001;32:228–35.CrossRefGoogle Scholar
  114. 114.
    Thibaut HJ, De Palma AM, Neyts J. Combating enterovirus replication: state-of-the-art on antiviral research. Biochem Pharmacol. 2012;83:185–92.CrossRefGoogle Scholar
  115. 115.
    National Institute of Allergy and Infectious Diseases. Pleconaril enteroviral sepsis syndrome. Available at: Accessed 20 May 2012.
  116. 116.
    Schönhofer-Merl S, Wessely R. RNA interference to treat enteroviral disease: current status and clinical perspectives. Curr Mol Med. 2010;10:550–64.Google Scholar
  117. 117.
    Tan P-L, Verneris MR, Charnas LR, Reck SJ, van Burik J-AH, Blazar BR. Outcome of CNS and pulmonary enteroviral infections after hematopoietic cell transplantation. Pediatr Blood Cancer. 2005;45:74–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joanna M. D. Schaenman
    • 1
    Email author
  • Dora Y. Ho
    • 2
  • Lindsey R. Baden
    • 3
  • Amar Safdar
    • 4
  1. 1.Division of Infectious DiseasesDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Division of Infectious Diseases and Geographic MedicineStanford University School of MedicineStanfordUSA
  3. 3.Division of Infectious DiseasesBrigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA
  4. 4.Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of MedicineEl PasoUSA

Personalised recommendations