Epstein-Barr Virus Infection and Posttransplant Lymphoproliferative Disease

  • Benjamin E. Gewurz
  • Elizabeth Moulton
  • Amy Bessnow
  • David M. WeinstockEmail author
  • Sheila Bond


Epstein-Barr virus (EBV) is an oncogenic herpesvirus with a worldwide seroprevalence of >90%. Like all members of the herpesvirus family, EBV establishes infection that persists for the lifetime of the host. In most healthy patients, both primary EBV infection and lifelong latent infection are benign. However, in an immunocompromised host, such as a transplant recipient, either primary infection or reactivation of latent infection can lead to severe disease. The most significant EBV-associated illness that occurs following solid-organ or hematopoietic stem cell transplantation is posttransplant lymphoproliferative disease (PTLD). In this chapter, we provide an overview of the virus, its life cycle, host immune control, diagnostic testing, and efforts at vaccine development. Particular focus is given to the clinical features, diagnosis, and management of EBV-associated PTLD.


Epstein-Barr virus Herpesvirus Posttransplant lymphoproliferative disease (PTLD) Acyclovir Ganciclovir Rituximab Adoptive immunotherapy 



Acute infectious mononucleosis


Activating protein-1


Antithymocyte globulin


B-cell receptor


Chromatin immunoprecipitation-sequencing


Class II, major histocompatibility complex, transactivator


Central nervous system


Complete response


Computed tomography


Cytotoxic lymphocytes




Diffuse large B-cell lymphoma


Donor lymphocyte infusion


Deoxyribonucleic acid


Early antigen


Epstein-Barr virus-encoded ribonucleic acid


Epstein-Barr virus nuclear antigen


Epstein-Barr virus


Enzyme-linked immunosorbent assays


Germinal center


Glycoprotein 350


Graft versus host disease


Histone deacetylation inhibitors


Human immunodeficiency virus


Hodgkin lymphoma


Human leukocyte antigen


Hematopoietic stem cell transplantation


Half maximal inhibitory concentration




Interleukin 10


Lymphoblastoid cell line


Latent membrane protein


Major histocompatibility complex




National Institutes of Health


Natural killer


Nasopharyngeal carcinoma


Objective response rate


Polymerase chain reaction


Positron emission tomography


Partial response


Posttransplant lymphoproliferative disease




Reduction of immunosuppression


Ribonucleic acid


Response rate




Solid-organ transplantation


Transporter associated with antigen processing


Umbilical cord blood transplantation


Viral capsid antigen


Varicella zoster virus


World Health Organization


X-linked lymphoproliferative disease


  1. 1.
    Henle G, Henle W, Clifford P, Diehl V, Kafuko GW, Kirya BG, et al. Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst. 1969;43(5):1147–57.PubMedGoogle Scholar
  2. 2.
    Kieff E, Rickinson AB. Epstein-Barr virus and its replication. In: Field BN, Knipe DM, Howley PM, editors. Field’s virology. 5th ed. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 2603–54.Google Scholar
  3. 3.
    Cohen J. Virology and molecular biology of Epstein-Barr virus. In: Tselis A, Jenson HB, editors. Epstein-Barr Virus. New York: Taylor and Francis; 2006. p. 21–38.Google Scholar
  4. 4.
    Yao QY, Rickinson AB, Epstein MA. A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int J Cancer. 1985;35(1):35–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Hadinoto V, Shapiro M, Greenough TC, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. On the dynamics of acute EBV infection and the pathogenesis of infectious mononucleosis. Blood. 2008;111(3):1420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Straus SE, Cohen JI, Tosato G, Meier J. NIH conference. Epstein-Barr virus infections: biology, pathogenesis, and management. Ann Intern Med. 1993;118(1):45–58.PubMedCrossRefGoogle Scholar
  7. 7.
    Rickinson AB, Kieff E. Epstein-Barr virus. In: Field BN, Knipe DM, Howley PM, editors. Field’s virology. 5th ed. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 2655–700.Google Scholar
  8. 8.
    Luka J, Kallin B, Klein G. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology. 1979;94(1):228–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res. 2007;97:81–109.PubMedCrossRefGoogle Scholar
  10. 10.
    Kalla M, Hammerschmidt W. Human B cells on their route to latent infection--early but transient expression of lytic genes of Epstein-Barr virus. Eur J Cell Biol. 2012;91(1):65–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Concha M, Wang X, Cao S, Baddoo M, Fewell C, Lin Z, et al. Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq. J Virol. 2012;86(3):1458–67.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity. 1998;9(3):395–404.PubMedCrossRefGoogle Scholar
  13. 13.
    Wagner HJ, Bein G, Bitsch A, Kirchner H. Detection and quantification of latently infected B lymphocytes in Epstein-Barr virus-seropositive, healthy individuals by polymerase chain reaction. J Clin Microbiol. 1992;30(11):2826–9.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.PubMedCrossRefGoogle Scholar
  15. 15.
    Babcock GJ, Thorley-Lawson DA. Tonsillar memory B cells, latently infected with Epstein-Barr virus, express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc Natl Acad Sci U S A. 2000;97(22):12250–5.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Auwaerter PG. Infectious mononucleosis in middle age. JAMA. 1999;281(5):454–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol. 2015;33:787–821.PubMedCrossRefGoogle Scholar
  18. 18.
    Kutok JL, Wang F. Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol. 2006;1:375–404.PubMedCrossRefGoogle Scholar
  19. 19.
    Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol. 1997;15:405–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Castillo JJ, Beltran BE, Miranda RN, Paydas S, Winer ES, Butera JN. Epstein-barr virus-positive diffuse large B-cell lymphoma of the elderly: what we know so far. Oncologist. 2011;16(1):87–96.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL, et al. B cell receptor signal strength determines B cell fate. Nat Immunol. 2004;5(3):317–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350(13):1328–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Minamitani T, Yasui T, Ma Y, Zhou H, Okuzaki D, Tsai CY, et al. Evasion of affinity-based selection in germinal centers by Epstein-Barr virus LMP2A. Proc Natl Acad Sci U S A. 2015;112(37):11612–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Joseph AM, Babcock GJ, Thorley-Lawson DA. Cells expressing the Epstein-Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J Virol. 2000;74(21):9964–71.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Klein E. The complexity of the Epstein-Barr virus infection in humans. Pathol Oncol Res. 1998;4(1):3–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A. 2004;101(1):239–44.CrossRefGoogle Scholar
  27. 27.
    Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol. 1997;71(7):4882–91.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Yin Y, Manoury B, Fahraeus R. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science. 2003;301(5638):1371–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol. 2007;597:173–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Ersing I, Bernhardt K, Gewurz BE. NF-kappaB and IRF7 pathway activation by Epstein-Barr virus latent membrane protein 1. Viruses. 2013;5(6):1587–606.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kieser A, Sterz KR. The Latent Membrane Protein 1 (LMP1). Curr Top Microbiol Immunol. 2015;391:119–49.PubMedGoogle Scholar
  32. 32.
    Rastelli J, Homig-Holzel C, Seagal J, Muller W, Hermann AC, Rajewsky K, et al. LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1. Blood. 2008;111(3):1448–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3 Pt 2):831–40.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N, et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science. 1999;286(5438):300–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Thornburg NJ, Kulwichit W, Edwards RH, Shair KH, Bendt KM, Raab-Traub N. LMP1 signaling and activation of NF-kappaB in LMP1 transgenic mice. Oncogene. 2006;25(2):288–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang B, Kracker S, Yasuda T, Casola S, Vanneman M, Homig-Holzel C, et al. Immune surveillance and therapy of lymphomas driven by Epstein-Barr virus protein LMP1 in a mouse model. Cell. 2012;148(4):739–51.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9(3):405–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110(10):3715–21.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, et al. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995;2(2):155–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shair KH, Bendt KM, Edwards RH, Nielsen JN, Moore DT, Raab-Traub N. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) and LMP2A function cooperatively to promote carcinoma development in a mouse carcinogenesis model. J Virol. 2012;86(9):5352–65.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Alfieri C, Birkenbach M, Kieff E. Early events in Epstein-Barr virus infection of human B lymphocytes. Virology. 1991;181(2):595–608.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999;73(5):4481–4.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Grossman SR, Johannsen E, Tong X, Yalamanchili R, Kieff E. The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci U S A. 1994;91(16):7568–72.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Henkel T, Ling PD, Hayward SD, Peterson MG. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science. 1994;265(5168):92–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhao B, Zou J, Wang H, Johannsen E, Peng CW, Quackenbush J, et al. Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A. 2011;108(36):14902–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Maruo S, Zhao B, Johannsen E, Kieff E, Zou J, Takada K. Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc Natl Acad Sci U S A. 2011;108(5):1919–24.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Saha A, Bamidele A, Murakami M, Robertson ES. EBNA3C attenuates the function of p53 through interaction with inhibitor of growth family proteins 4 and 5. J Virol. 2011;85(5):2079–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Knight JS, Sharma N, Robertson ES. Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A. 2005;102(51):18562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zhou H, Schmidt SC, Jiang S, Willox B, Bernhardt K, Liang J, et al. Epstein-Barr virus oncoprotein super-enhancers control B cell growth. Cell Host Microbe. 2015;17(2):205–16.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Altmann M, Hammerschmidt W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 2005;3(12):e404.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Forte E, Luftig MA. The role of microRNAs in Epstein-Barr virus latency and lytic reactivation. Microbes Infect. 2011;13(14–15):1156–67.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Xia T, O’Hara A, Araujo I, Barreto J, Carvalho E, Sapucaia JB, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res. 2008;68(5):1436–42.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Feederle R, Haar J, Bernhardt K, Linnstaedt SD, Bannert H, Lips H, et al. The members of an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J Virol. 2011;85(19):9801–10.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bernhardt K, Haar J, Tsai MH, Poirey R, Feederle R, Delecluse HJ. A viral microRNA cluster regulates the expression of PTEN, p27 and of a bcl-2 homolog. PLoS Pathog. 2016;12(1):e1005405.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    McGeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus Res. 2006;117(1):90–104.PubMedCrossRefGoogle Scholar
  57. 57.
    Ehlers B, Spiess K, Leendertz F, Peeters M, Boesch C, Gatherer D, et al. Lymphocryptovirus phylogeny and the origins of Epstein-Barr virus. J Gen Virol. 2010;91(Pt 3):630–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Azzi T, Lunemann A, Murer A, Ueda S, Beziat V, Malmberg KJ, et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood. 2014;124(16):2533–43.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Williams H, McAulay K, Macsween KF, Gallacher NJ, Higgins CD, Harrison N, et al. The immune response to primary EBV infection: a role for natural killer cells. Br J Haematol. 2005;129(2):266–74.PubMedCrossRefGoogle Scholar
  60. 60.
    Balfour HH Jr, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207(1):80–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Djaoud Z, Guethlein LA, Horowitz A, Azzi T, Nemat-Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: one using NK cells and the other NK cells and gammadelta T cells. J Exp Med. 2017;214(6):1827–41.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep. 2013;5(6):1489–98.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe. 2009;5(4):376–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE. X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol. 2011;152(1):13–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Detre C, Keszei M, Garrido-Mesa N, Kis-Toth K, Castro W, Agyemang AF, et al. SAP expression in invariant NKT cells is required for cognate help to support B-cell responses. Blood. 2012;120(1):122–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Long HM, Taylor GS, Rickinson AB. Immune defence against EBV and EBV-associated disease. Curr Opin Immunol. 2011;23(2):258–64.PubMedCrossRefGoogle Scholar
  67. 67.
    Meazza R, Falco M, Marcenaro S, Loiacono F, Canevali P, Bellora F, et al. Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients. Eur J Immunol. 2017;47(6):1051–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, et al. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest. 2012;122(10):3769–80.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest. 2012;122(3):821–32.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9(9):510–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hislop AD. Early virological and immunological events in Epstein-Barr virus infection. Curr Opin Virol. 2015;15:75–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Silins SL, Sherritt MA, Silleri JM, Cross SM, Elliott SL, Bharadwaj M, et al. Asymptomatic primary Epstein-Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood. 2001;98(13):3739–44.PubMedCrossRefGoogle Scholar
  73. 73.
    Hislop AD, Ressing ME, van Leeuwen D, Pudney VA, Horst D, Koppers-Lalic D, et al. A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. J Exp Med. 2007;204(8):1863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Horst D, van Leeuwen D, Croft NP, Garstka MA, Hislop AD, Kremmer E, et al. Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J Immunol. 2009;182(4):2313–24.PubMedCrossRefGoogle Scholar
  75. 75.
    Zuo J, Thomas W, van Leeuwen D, Middeldorp JM, Wiertz EJ, Ressing ME, et al. The DNase of gammaherpesviruses impairs recognition by virus-specific CD8+ T cells through an additional host shutoff function. J Virol. 2008;82(5):2385–93.PubMedCrossRefGoogle Scholar
  76. 76.
    Zuo J, Quinn LL, Tamblyn J, Thomas WA, Feederle R, Delecluse HJ, et al. The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J Virol. 2011;85(4):1604–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA, Ressing ME, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog. 2009;5(1):e1000255.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113(42):E6467–E75.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J Exp Med. 2016;213(10):2065–80.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Diekmann J, Adamopoulou E, Beck O, Rauser G, Lurati S, Tenzer S, et al. Processing of two latent membrane protein 1 MHC class I epitopes requires tripeptidyl peptidase II involvement. J Immunol. 2009;183(3):1587–97.PubMedCrossRefGoogle Scholar
  81. 81.
    Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A. 1997;94(23):12616–21.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995;375(6533):685–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Orlova N, Wang F, Fogg MH. Persistent infection drives the development of CD8+ T cells specific for late lytic infection antigens in lymphocryptovirus-infected macaques and Epstein-Barr virus-infected humans. J Virol. 2011;85(23):12821–4.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Long HM, Leese AM, Chagoury OL, Connerty SR, Quarcoopome J, Quinn LL, et al. Cytotoxic CD4+ T cell responses to EBV contrast with CD8 responses in breadth of lytic cycle antigen choice and in lytic cycle recognition. J Immunol. 2011;187(1):92–101.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nikiforow S, Bottomly K, Miller G, Munz C. Cytolytic CD4(+)-T-cell clones reactive to EBNA1 inhibit Epstein-Barr virus-induced B-cell proliferation. J Virol. 2003;77(22):12088–104.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):1038–44.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zuo J, Thomas WA, Haigh TA, Fitzsimmons L, Long HM, Hislop AD, et al. Epstein-Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2. PLoS Pathog. 2011;7(12):e1002455.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Li D, Qian L, Chen C, Shi M, Yu M, Hu M, et al. Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. J Immunol. 2009;182(4):1799–809.PubMedCrossRefGoogle Scholar
  89. 89.
    Mullen MM, Haan KM, Longnecker R, Jardetzky TS. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol Cell. 2002;9(2):375–85.PubMedCrossRefGoogle Scholar
  90. 90.
    Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, et al. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol. 2008;18(6):397–408.PubMedCrossRefGoogle Scholar
  91. 91.
    Garzelli C, Taub FE, Scharff JE, Prabhakar BS, Ginsberg-Fellner F, Notkins AL. Epstein-Barr virus-transformed lymphocytes produce monoclonal autoantibodies that react with antigens in multiple organs. J Virol. 1984;52(2):722–5.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Thorley-Lawson DA, Geilinger K. Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity. Proc Natl Acad Sci U S A. 1980;77(9):5307–11.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Tanner J, Whang Y, Sample J, Sears A, Kieff E. Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. J Virol. 1988;62(12):4452–64.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Thorley-Lawson DA, Poodry CA. Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol. 1982;43(2):730–6.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Panikkar A, Smith C, Hislop A, Tellam N, Dasari V, Hogquist KA, et al. Impaired Epstein-Barr virus-specific neutralizing antibody response during acute infectious mononucleosis is coincident with global B-cell dysfunction. J Virol. 2015;89(17):9137–41.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Andiman WA. Epidemiology of primary Epstein-Barr virus infection and infectious mononucleosis. In: Tselis A, Jenson HB, editors. Epstein-Barr Virus. New York City: Taylor & Francis; 2006. p. 39–59.Google Scholar
  97. 97.
    Balfour HH Jr, Sifakis F, Sliman JA, Knight JA, Schmeling DO, Thomas W. Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6-19 years in the United States and factors affecting its acquisition. J Infect Dis. 2013;208(8):1286–93.PubMedCrossRefGoogle Scholar
  98. 98.
    Niederman JC, Evans AS, Subrahmanyan L, McCollum RW. Prevalence, incidence and persistence of EB virus antibody in young adults. N Engl J Med. 1970;282(7):361–5.PubMedCrossRefGoogle Scholar
  99. 99.
    McKinnon GT, Pringle RC. A serological study of antibody to Epstein-Barr virus in an Australian population. Med J Aust. 1974;2(7):243–6.PubMedGoogle Scholar
  100. 100.
    Hallee TJ, Evans AS, Niederman JC, Brooks CM, Voegtly jH. Infectious mononucleosis at the United States Military Academy. A prospective study of a single class over four years. Yale J Biol Med. 1974;47(3):182–95.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Balfour HH Jr, Holman CJ, Hokanson KM, Lelonek MM, Giesbrecht JE, White DR, et al. A prospective clinical study of Epstein-Barr virus and host interactions during acute infectious mononucleosis. J Infect Dis. 2005;192(9):1505–12.PubMedCrossRefGoogle Scholar
  102. 102.
    Glaser R, Strain EC, Tarr KL, Holliday JE, Donnerberg RL, Kiecolt-Glaser JK. Changes in Epstein-Barr virus antibody titers associated with aging. Proc Soc Exp Biol Med. 1985;179(3):352–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Sumaya CV, Henle W, Henle G, Smith MH, LeBlanc D. Seroepidemiologic study of Epstein-Barr virus infections in a rural community. J Infect Dis. 1975;131(4):403–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Henle G, Henle W. Observations on childhood infections with the Epstein-Barr virus. J Infect Dis. 1970;121(3):303–10.PubMedCrossRefGoogle Scholar
  105. 105.
    Brodsky AL, Heath CW Jr. Infectious mononucleosis: epidemiologic patterns at United States colleges and universities. Am J Epidemiol. 1972;96(2):87–93.PubMedCrossRefGoogle Scholar
  106. 106.
    Chang RS, Rosen L, Kapikian AZ. Epstein-Barr virus infections in a nursery. Am J Epidemiol. 1981;113(1):22–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Sixbey JW, Lemon SM, Pagano JS. A second site for Epstein-Barr virus shedding: the uterine cervix. Lancet. 1986;2(8516):1122–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Naher H, Gissmann L, Freese UK, Petzoldt D, Helfrich S. Subclinical Epstein-Barr virus infection of both the male and female genital tract--indication for sexual transmission. J Invest Dermatol. 1992;98(5):791–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Morris SR, Zhao M, Smith DM, Vargas MV, Little SJ, Gianella S. Longitudinal viral dynamics in Semen during early HIV infection. Clin Infect Dis. 2017;64(4):428–34.PubMedGoogle Scholar
  110. 110.
    Lisco A, Munawwar A, Introini A, Vanpouille C, Saba E, Feng X, et al. Semen of HIV-1-infected individuals: local shedding of herpesviruses and reprogrammed cytokine network. J Infect Dis. 2012;205(1):97–105.PubMedCrossRefGoogle Scholar
  111. 111.
    Crawford DH, Swerdlow AJ, Higgins C, McAulay K, Harrison N, Williams H, et al. Sexual history and Epstein-Barr virus infection. J Infect Dis. 2002;186(6):731–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Alfieri C, Tanner J, Carpentier L, Perpete C, Savoie A, Paradis K, et al. Epstein-Barr virus transmission from a blood donor to an organ transplant recipient with recovery of the same virus strain from the recipient’s blood and oropharynx. Blood. 1996;87(2):812–7.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Qu L, Xu S, Rowe D, Triulzi D. Efficacy of Epstein-Barr virus removal by leukoreduction of red blood cells. Transfusion. 2005;45(4):591–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Qu L, Triulzi DJ, Rowe DT, Griffin DL, Donnenberg AD. Stability of lymphocytes and Epstein-Barr virus during red blood cell storage. Vox Sang. 2007;92(2):125–9.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Trottier H, Delage G, Hu J, Robitaille N, Buteau C, Tucci M, et al. Detection of Epstein-Barr virus in leucoreduced blood products. Vox Sang. 2016;110(2):199–201.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Finn L, Reyes J, Bueno J, Yunis E. Epstein-Barr virus infections in children after transplantation of the small intestine. Am J Surg Pathol. 1998;22(3):299–309.PubMedCrossRefGoogle Scholar
  117. 117.
    Correia S, Palser A, Elgueta Karstegl C, Middeldorp JM, Ramayanti O, Cohen JI, et al. Natural variation of Epstein-Barr virus genes, proteins, and primary MicroRNA. J Virol. 2017;91(15). pii: e00375–17.Google Scholar
  118. 118.
    Rickinson AB, Young LS, Rowe M. Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol. 1987;61(5):1310–7.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Yao QY, Croom-Carter DS, Tierney RJ, Habeshaw G, Wilde JT, Hill FG, et al. Epidemiology of infection with Epstein-Barr virus types 1 and 2: lessons from the study of a T-cell-immunocompromised hemophilic cohort. J Virol. 1998;72(5):4352–63.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Sculley TB, Apolloni A, Hurren L, Moss DJ, Cooper DA. Coinfection with A- and B-type Epstein-Barr virus in human immunodeficiency virus-positive subjects. J Infect Dis. 1990;162(3):643–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Ibrahim HA, Menasce LP, Pomplun S, Burke M, Bower M, Naresh KN. Epstein-Barr virus (EBV) genotypes among human immunodeficiency virus (HIV)-related B-cell lymphomas and B-cell post-transplant lymphoproliferative disorders (B-PTLD)--late-onset lymphomas, especially in the HIV setting, are associated with type-B-EBV. Eur J Haematol. 2010;85(3):227–30.PubMedCrossRefGoogle Scholar
  122. 122.
    Frank D, Cesarman E, Liu YF, Michler RE, Knowles DM. Posttransplantation lymphoproliferative disorders frequently contain type A and not type B Epstein-Barr virus. Blood. 1995;85(5):1396–403.PubMedGoogle Scholar
  123. 123.
    Jenson HB. Virologic diagnosis, viral monitoring, and treatment of Epstein-Barr virus infectious mononucleosis. Curr Infect Dis Rep. 2004;6(3):200–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Duverlie G, Driencourt M, Roussel C, Orfila J. Heterophile IgM, IgA, and IgE antibodies in infectious mononucleosis. J Med Virol. 1989;28(1):38–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Bruu AL, Hjetland R, Holter E, Mortensen L, Natas O, Petterson W, et al. Evaluation of 12 commercial tests for detection of Epstein-Barr virus-specific and heterophile antibodies. Clin Diagn Lab Immunol. 2000;7(3):451–6.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Luzuriaga K, Sullivan JL. Infectious mononucleosis. N Engl J Med. 2010;362(21):1993–2000.PubMedCrossRefGoogle Scholar
  127. 127.
    Horwitz CA, Henle W, Henle G, Penn G, Hoffman N, Ward PC. Persistent falsely positive rapid tests for infectious mononucleosis. Report of five cases with four--six-year follow-up data. Am J Clin Pathol. 1979;72(5):807–11.PubMedCrossRefGoogle Scholar
  128. 128.
    Evans AS, Niederman JC, Cenabre LC, West B, Richards VA. A prospective evaluation of heterophile and Epstein-Barr virus-specific IgM antibody tests in clinical and subclinical infectious mononucleosis: Specificity and sensitivity of the tests and persistence of antibody. J Infect Dis. 1975;132(5):546–54.PubMedCrossRefGoogle Scholar
  129. 129.
    Pitetti RD, Laus S, Wadowsky RM. Clinical evaluation of a quantitative real time polymerase chain reaction assay for diagnosis of primary Epstein-Barr virus infection in children. Pediatr Infect Dis J. 2003;22(8):736–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Sumaya CV, Ench Y. Epstein-Barr virus infectious mononucleosis in children. II. Heterophile antibody and viral-specific responses. Pediatrics. 1985;75(6):1011–9.PubMedPubMedCentralGoogle Scholar
  131. 131.
    van Essen GG, Lieverse AG, Sprenger HG, Schirm J, Weits J. False-positive Paul-Bunnell test in HIV seroconversion. Lancet. 1988;2(8613):747–8.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Hendry BM, Longmore JM. Systemic lupus erythematosus presenting as infectious mononucleosis with a false positive monospot test. Lancet. 1982;1(8269):455.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Schumacher HR, Austin RM, Stass SA. False-positive serology in infectious mononucleosis. Lancet. 1979;1(8118):722.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Fisher BA, Bhalara S. False-positive result provided by rapid heterophile antibody test in a case of acute infection with hepatitis E virus. J Clin Microbiol. 2004;42(9):4411.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Tselis A, Merline JR, Storch GA. Epstein-Barr virus disease - serologic and virologic diagnosis. In: Tselis A, Jenson HB, editors. Epstein-Barr virus. New York: Taylor and Francis, LLC; 2006. p. 125–46.CrossRefGoogle Scholar
  136. 136.
    Horwitz CA, Henle W, Henle G, Rudnick H, Latts E. Long-term serological follow-up of patients for Epstein-Barr virus after recovery from infectious mononucleosis. J Infect Dis. 1985;151(6):1150–3.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Bauer G. Simplicity through complexity: immunoblot with recombinant antigens as the new gold standard in Epstein-Barr virus serology. Clin Lab. 2001;47(5–6):223–30.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Robertson P, Beynon S, Whybin R, Brennan C, Vollmer-Conna U, Hickie I, et al. Measurement of EBV-IgG anti-VCA avidity aids the early and reliable diagnosis of primary EBV infection. J Med Virol. 2003;70(4):617–23.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Semenova T, Lupo J, Alain S, Perrin-Confort G, Grossi L, Dimier J, et al. Multicenter evaluation of whole-blood Epstein-Barr viral load standardization using the WHO International Standard. J Clin Microbiol. 2016;54(7):1746–50.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Fryer JF, Heath AB, Wilkinson DE, Minor PD, Collaborative Study G. A collaborative study to establish the 1st WHO International Standard for Epstein-Barr virus for nucleic acid amplification techniques. Biologicals. 2016;44(5):423–33.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Fafi-Kremer S, Brengel-Pesce K, Bargues G, Bourgeat MJ, Genoulaz O, Seigneurin JM, et al. Assessment of automated DNA extraction coupled with real-time PCR for measuring Epstein-Barr virus load in whole blood, peripheral mononuclear cells and plasma. J Clin Virol. 2004;30(2):157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Tsai DE, Douglas L, Andreadis C, Vogl DT, Arnoldi S, Kotloff R, et al. EBV PCR in the diagnosis and monitoring of posttransplant lymphoproliferative disorder: results of a two-arm prospective trial. Am J Transplant. 2008;8(5):1016–24.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Stevens SJ, Pronk I, Middeldorp JM. Toward standardization of Epstein-Barr virus DNA load monitoring: unfractionated whole blood as preferred clinical specimen. J Clin Microbiol. 2001;39(4):1211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Wagner HJ, Wessel M, Jabs W, Smets F, Fischer L, Offner G, et al. Patients at risk for development of posttransplant lymphoproliferative disorder: plasma versus peripheral blood mononuclear cells as material for quantification of Epstein-Barr viral load by using real-time quantitative polymerase chain reaction. Transplantation. 2001;72(6):1012–9.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Kanakry JA, Hegde AM, Durand CM, Massie AB, Greer AE, Ambinder RF, et al. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood. 2016;127(16):2007–17.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Gulley ML, Tang W. Using Epstein-Barr viral load assays to diagnose, monitor, and prevent posttransplant lymphoproliferative disorder. Clin Microbiol Rev. 2010;23(2):350–66.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ruf S, Behnke-Hall K, Gruhn B, Bauer J, Horn M, Beck J, et al. Comparison of six different specimen types for Epstein-Barr viral load quantification in peripheral blood of pediatric patients after heart transplantation or after allogeneic hematopoietic stem cell transplantation. J Clin Virol. 2012;53(3):186–94.PubMedCrossRefGoogle Scholar
  148. 148.
    Stevens SJ, Verschuuren EA, Pronk I, van Der Bij W, Harmsen MC, The TH, et al. Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood. 2001;97(5):1165–71.PubMedCrossRefGoogle Scholar
  149. 149.
    Bakker NA, Verschuuren EA, Veeger NJ, van der Bij W, van Imhoff GW, Kallenberg CG, et al. Quantification of Epstein-Barr virus-DNA load in lung transplant recipients: a comparison of plasma versus whole blood. J Heart Lung Transplant. 2008;27(1):7–10.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Fellner MD, Durand KA, Solernou V, Bosaleh A, Balbarrey Z, Garcia de Davila MT, et al. Epstein-Barr virus load in transplant patients: Early detection of post-transplant lymphoproliferative disorders. Rev Argent Microbiol. 2016;48(2):110–8.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Shimizu H, Saitoh T, Koya H, Yuzuriha A, Hoshino T, Hatsumi N, et al. Discrepancy in EBV-DNA load between peripheral blood and cerebrospinal fluid in a patient with isolated CNS post-transplant lymphoproliferative disorder. Int J Hematol. 2011;94(5):495–8.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Boersma MN, van der Zanden A, Laverman GD, Sanders JS, de Vries PA. Epstein-Barr virus-positive post-transplant lymphoproliferative disorder of the central nervous system, after renal transplantation with a discrepancy in viral load between peripheral blood and cerebrospinal fluid. Transpl Int. 2012;25(11):e113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Sampaio MS, Cho YW, Qazi Y, Bunnapradist S, Hutchinson IV, Shah T. Posttransplant malignancies in solid organ adult recipients: an analysis of the U.S. National Transplant Database. Transplantation. 2012;94(10):990–8.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Hocker B, Fickenscher H, Delecluse HJ, Bohm S, Kusters U, Schnitzler P, et al. Epidemiology and morbidity of Epstein-Barr virus infection in pediatric renal transplant recipients: a multicenter, prospective study. Clin Infect Dis. 2013;56(1):84–92.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Cleper R, Ben Shalom E, Landau D, Weissman I, Krause I, Konen O, et al. Post-transplantation lymphoproliferative disorder in pediatric kidney-transplant recipients - a national study. Pediatr Transplant. 2012;16(6):619–26.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Pinho-Apezzato ML, Tannuri U, Tannuri AC, Mello ES, Lima F, Gibelli NE, et al. Multiple clinical presentations of lymphoproliferative disorders in pediatric liver transplant recipients: a single-center experience. Transplant Proc. 2010;42(5):1763–8.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Wiederkehr JC, Coelho IM, Avilla SG, e Silva EM, Schuller S, Ouno DD, et al. Prevalence of posttransplantation lymphoproliferative disease in pediatric liver transplant recipients. Transplant Proc. 2010;42(2):521–2.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Uribe M, Hunter B, Alba A, Calabran L, Flores L, Soto P, et al. Posttransplant lymphoproliferative disorder in pediatric liver transplantation. Transplant Proc. 2009;41(6):2679–81.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Chinnock R, Webber SA, Dipchand AI, Brown RN, George JF. A 16-year multi-institutional study of the role of age and EBV status on PTLD incidence among pediatric heart transplant recipients. Am J Transplant. 2012;12(11):3061–8.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Wilde GE, Moore DJ, Bellah RD. Posttransplantation lymphoproliferative disorder in pediatric recipients of solid organ transplants: timing and location of disease. AJR Am J Roentgenol. 2005;185(5):1335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Curtis RE, Travis LB, Rowlings PA, Socie G, Kingma DW, Banks PM, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94(7):2208–16.PubMedPubMedCentralGoogle Scholar
  162. 162.
    van Esser JW, van der Holt B, Meijer E, Niesters HG, Trenschel R, Thijsen SF, et al. Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell--depleted SCT. Blood. 2001;98(4):972–8.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Cohen JM, Cooper N, Chakrabarti S, Thomson K, Samarasinghe S, Cubitt D, et al. EBV-related disease following haematopoietic stem cell transplantation with reduced intensity conditioning. Leuk Lymphoma. 2007;48(2):256–69.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Blaes AH, Cao Q, Wagner JE, Young JA, Weisdorf DJ, Brunstein CG. Monitoring and preemptive rituximab therapy for Epstein-Barr virus reactivation after antithymocyte globulin containing nonmyeloablative conditioning for umbilical cord blood transplantation. Biol Blood Marrow Transplant. 2010;16(2):287–91.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Brunstein CG, Weisdorf DJ, DeFor T, Barker JN, Tolar J, van Burik JA, et al. Marked increased risk of Epstein-Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood. 2006;108(8):2874–80.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Peric Z, Cahu X, Chevallier P, Brissot E, Malard F, Guillaume T, et al. Features of EBV reactivation after reduced intensity conditioning unrelated umbilical cord blood transplantation. Bone Marrow Transplant. 2012;47(2):251–7.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Gandhi MK. Epstein-Barr virus-associated lymphomas. Expert Rev Anti-Infect Ther. 2006;4(1):77–89.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Quinlan SC, Pfeiffer RM, Morton LM, Engels EA. Risk factors for early-onset and late-onset post-transplant lymphoproliferative disorder in kidney recipients in the United States. Am J Hematol. 2011;86(2):206–9.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Hatton O, Martinez OM, Esquivel CO. Emerging therapeutic strategies for Epstein-Barr virus+ post-transplant lymphoproliferative disorder. Pediatr Transplant. 2012;16(3):220–9.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Dotti G, Fiocchi R, Motta T, Mammana C, Gotti E, Riva S, et al. Lymphomas occurring late after solid-organ transplantation: influence of treatment on the clinical outcome. Transplantation. 2002;74(8):1095–102.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Moss DJ, Rickinson AB, Pope JH. Long-term T-cell-mediated immunity to Epstein-Barr virus in man. III. Activation of cytotoxic T cells in virus-infected leukocyte cultures. Int J Cancer. 1979;23(5):618–25.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Moss DJ, Rickinson AB, Pope JH. Long-term T-cell-mediated immunity to Epstein-Barr virus in man. I. Complete regression of virus-induced transformation in cultures of seropositive donor leukocytes. Int J Cancer. 1978;22(6):662–8.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Rickinson AB, Moss DJ, Pope JH, Ahlberg N. Long-term T-cell-mediated immunity to Epstein-Barr virus in man. IV. Development of T-cell memory in convalescent infectious mononucleosis patients. Int J Cancer. 1980;25(1):59–65.PubMedCrossRefGoogle Scholar
  174. 174.
    Kuzushima K, Hoshino Y, Fujii K, Yokoyama N, Fujita M, Kiyono T, et al. Rapid determination of Epstein-Barr virus-specific CD8(+) T-cell frequencies by flow cytometry. Blood. 1999;94(9):3094–100.PubMedGoogle Scholar
  175. 175.
    Haque T, Crawford DH. Role of donor versus recipient type Epstein-Barr virus in post-transplant lymphoproliferative disorders. Springer Semin Immunopathol. 1998;20(3–4):375–87.PubMedCrossRefGoogle Scholar
  176. 176.
    Young L, Alfieri C, Hennessy K, Evans H, O’Hara C, Anderson KC, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med. 1989;321(16):1080–5.PubMedCrossRefGoogle Scholar
  177. 177.
    Gratama JW, Zutter MM, Minarovits J, Oosterveer MA, Thomas ED, Klein G, et al. Expression of Epstein-Barr virus-encoded growth-transformation-associated proteins in lymphoproliferations of bone-marrow transplant recipients. Int J Cancer. 1991;47(2):188–92.PubMedCrossRefGoogle Scholar
  178. 178.
    Oudejans JJ, Jiwa M, van den Brule AJ, Grasser FA, Horstman A, Vos W, et al. Detection of heterogeneous Epstein-Barr virus gene expression patterns within individual post-transplantation lymphoproliferative disorders. Am J Pathol. 1995;147(4):923–33.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Olagne J, Caillard S, Gaub MP, Chenard MP, Moulin B. Post-transplant lymphoproliferative disorders: determination of donor/recipient origin in a large cohort of kidney recipients. Am J Transplant. 2011;11(6):1260–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Dharnidharka VR, Lamb KE, Gregg JA, Meier-Kriesche HU. Associations between EBV serostatus and organ transplant type in PTLD risk: an analysis of the SRTR National Registry Data in the United States. Am J Transplant. 2012;12(4):976–83.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Sturm-O’Brien AK, Hicks MJ, Giannoni CM, Sulek M, Friedman EM. Tonsillectomy in post-transplant lymphoproliferative disease in children. Laryngoscope. 2010;120(3):608–11.PubMedCrossRefGoogle Scholar
  182. 182.
    Jain A, Nalesnik M, Reyes J, Pokharna R, Mazariegos G, Green M, et al. Posttransplant lymphoproliferative disorders in liver transplantation: a 20-year experience. Ann Surg. 2002;236(4):429–36; discussion 36-7.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Gao SZ, Chaparro SV, Perlroth M, Montoya JG, Miller JL, DiMiceli S, et al. Post-transplantation lymphoproliferative disease in heart and heart-lung transplant recipients: 30-year experience at Stanford University. J Heart Lung Transplant. 2003;22(5):505–14.PubMedCrossRefGoogle Scholar
  184. 184.
    Gottschalk S, Rooney CM, Heslop HE. Post-transplant lymphoproliferative disorders. Annu Rev Med. 2005;56:29–44.PubMedCrossRefGoogle Scholar
  185. 185.
    Swinnen LJ, Costanzo-Nordin MR, Fisher SG, O’Sullivan EJ, Johnson MR, Heroux AL, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med. 1990;323(25):1723–8.PubMedCrossRefGoogle Scholar
  186. 186.
    McDonald RA, Smith JM, Ho M, Lindblad R, Ikle D, Grimm P, et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant. 2008;8(5):984–9.PubMedCrossRefGoogle Scholar
  187. 187.
    Bustami RT, Ojo AO, Wolfe RA, Merion RM, Bennett WM, McDiarmid SV, et al. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am J Transplant. 2004;4(1):87–93.PubMedCrossRefGoogle Scholar
  188. 188.
    Opelz G, Dohler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant. 2004;4(2):222–30.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Opelz G, Naujokat C, Daniel V, Terness P, Dohler B. Disassociation between risk of graft loss and risk of non-Hodgkin lymphoma with induction agents in renal transplant recipients. Transplantation. 2006;81(9):1227–33.PubMedCrossRefGoogle Scholar
  190. 190.
    Grinyo J, Charpentier B, Pestana JM, Vanrenterghem Y, Vincenti F, Reyes-Acevedo R, et al. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation. 2010;90(12):1521–7.PubMedCrossRefGoogle Scholar
  191. 191.
    Pestana JO, Grinyo JM, Vanrenterghem Y, Becker T, Campistol JM, Florman S, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012;12(3):630–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Wekerle T, Grinyo JM. Belatacept: from rational design to clinical application. Transpl Int. 2012;25(2):139–50.PubMedCrossRefGoogle Scholar
  193. 193.
    Cohen J, Gandhi M, Naik P, Cubitt D, Rao K, Thaker U, et al. Increased incidence of EBV-related disease following paediatric stem cell transplantation with reduced-intensity conditioning. Br J Haematol. 2005;129(2):229–39.PubMedCrossRefGoogle Scholar
  194. 194.
    Hale G, Waldmann H. Risks of developing Epstein-Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. CAMPATH Users. Blood. 1998;91(8):3079–83.PubMedGoogle Scholar
  195. 195.
    Barker JN, Martin PL, Coad JE, DeFor T, Trigg ME, Kurtzberg J, et al. Low incidence of Epstein-Barr virus-associated posttransplantation lymphoproliferative disorders in 272 unrelated-donor umbilical cord blood transplant recipients. Biol Blood Marrow Transplant. 2001;7(7):395–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Izadi M, Taheri S. Allograft involvement by lymphoproliferative disorders after lung transplantation: report from the PTLD. Int survey. Prog Transplant. 2011;21(4):353–9.PubMedGoogle Scholar
  197. 197.
    Bakker NA, van Imhoff GW, Verschuuren EA, van Son WJ. Presentation and early detection of post-transplant lymphoproliferative disorder after solid organ transplantation. Transpl Int. 2007;20(3):207–18.PubMedCrossRefGoogle Scholar
  198. 198.
    Penn I, Porat G. Central nervous system lymphomas in organ allograft recipients. Transplantation. 1995;59(2):240–4.PubMedCrossRefGoogle Scholar
  199. 199.
    Dolcetti R. B lymphocytes and Epstein-Barr virus: the lesson of post-transplant lymphoproliferative disorders. Autoimmun Rev. 2007;7(2):96–101.PubMedCrossRefGoogle Scholar
  200. 200.
    Styczynski J, Reusser P, Einsele H, de la Camara R, Cordonnier C, Ward KN, et al. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant. 2009;43(10):757–70.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    European best practice guidelines for renal transplantation. Section IV: Long-term management of the transplant recipient. IV.6.3. Cancer risk after renal transplantation. Solid organ cancers: prevention and treatment. Nephrol Dial Transplant. 2002;17 Suppl 4:32, 4–6.Google Scholar
  202. 202.
    Center. CCsHM. Evidence based clinical practice guideline for management of EBV-associated post-transplant lymphoproliferative disease (PTLD) in solid organ transplant. 2011.Google Scholar
  203. 203.
    Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56.PubMedCrossRefGoogle Scholar
  204. 204.
    Parker A, Bowles K, Bradley JA, Emery V, Featherstone C, Gupte G, et al. Diagnosis of post-transplant lymphoproliferative disorder in solid organ transplant recipients - BCSH and BTS Guidelines. Br J Haematol. 2010;149(5):675–92.PubMedCrossRefGoogle Scholar
  205. 205.
    Chadban SJ, Barraclough KA, Campbell SB, Clark CJ, Coates PT, Cohney SJ, et al. KHA-CARI guideline: KHA-CARI adaptation of the KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. Nephrology (Carlton). 2012;17(3):204–14.CrossRefGoogle Scholar
  206. 206.
    Allen UD, Preiksaitis JK, Practice ASTIDCo. Epstein-Barr virus and posttransplant lymphoproliferative disorder in solid organ transplantation. Am J Transplant. 2013;13(Suppl 4):107–20.PubMedCrossRefGoogle Scholar
  207. 207.
    Network NCC. NCCN Clinical Practice Guidelines in Oncology: B-Cell Lymphomas, V 1.2017 [Available from:
  208. 208.
    Oertel S, Trappe RU, Zeidler K, Babel N, Reinke P, Hummel M, et al. Epstein-Barr viral load in whole blood of adults with posttransplant lymphoproliferative disorder after solid organ transplantation does not correlate with clinical course. Ann Hematol. 2006;85(7):478–84.PubMedCrossRefGoogle Scholar
  209. 209.
    Benden C, Aurora P, Burch M, Cubitt D, Lloyd C, Whitmore P, et al. Monitoring of Epstein-Barr viral load in pediatric heart and lung transplant recipients by real-time polymerase chain reaction. J Heart Lung Transplant. 2005;24(12):2103–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Gartner BC, Fischinger J, Schafer H, Einsele H, Roemer K, Muller-Lantzsch N. Epstein-Barr viral load as a tool to diagnose and monitor post-transplant lymphoproliferative disease. Recent Results Cancer Res. 2002;159:49–54.PubMedCrossRefGoogle Scholar
  211. 211.
    Omar H, Hagglund H, Gustafsson-Jernberg A, LeBlanc K, Mattsson J, Remberger M, et al. Targeted monitoring of patients at high risk of post-transplant lymphoproliferative disease by quantitative Epstein-Barr virus polymerase chain reaction. Transpl Infect Dis. 2009;11(5):393–9.PubMedCrossRefGoogle Scholar
  212. 212.
    Aalto SM, Juvonen E, Tarkkanen J, Volin L, Ruutu T, Mattila PS, et al. Lymphoproliferative disease after allogeneic stem cell transplantation--pre-emptive diagnosis by quantification of Epstein-Barr virus DNA in serum. J Clin Virol. 2003;28(3):275–83.PubMedCrossRefGoogle Scholar
  213. 213.
    Wheless SA, Gulley ML, Raab-Traub N, McNeillie P, Neuringer IP, Ford HJ, et al. Post-transplantation lymphoproliferative disease: Epstein-Barr virus DNA levels, HLA-A3, and survival. Am J Respir Crit Care Med. 2008;178(10):1060–5.PubMedCrossRefGoogle Scholar
  214. 214.
    D’Antiga L, Del Rizzo M, Mengoli C, Cillo U, Guariso G, Zancan L. Sustained Epstein-Barr virus detection in paediatric liver transplantation. Insights into the occurrence of late PTLD. Liver Transpl. 2007;13(3):343–8.PubMedCrossRefGoogle Scholar
  215. 215.
    Bingler MA, Feingold B, Miller SA, Quivers E, Michaels MG, Green M, et al. Chronic high Epstein-Barr viral load state and risk for late-onset posttransplant lymphoproliferative disease/lymphoma in children. Am J Transplant. 2008;8(2):442–5.PubMedCrossRefGoogle Scholar
  216. 216.
    Green M, Soltys K, Rowe DT, Webber SA, Mazareigos G. Chronic high Epstein-Barr viral load carriage in pediatric liver transplant recipients. Pediatr Transplant. 2009;13(3):319–23.PubMedCrossRefGoogle Scholar
  217. 217.
    Wagner HJ, Cheng YC, Huls MH, Gee AP, Kuehnle I, Krance RA, et al. Prompt versus preemptive intervention for EBV lymphoproliferative disease. Blood. 2004;103(10):3979–81.PubMedCrossRefGoogle Scholar
  218. 218.
    Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1–155.Google Scholar
  219. 219.
    Imadome K, Fukuda A, Kawano F, Imai Y, Ichikawa S, Mochizuki M, et al. Effective control of Epstein-Barr virus infection following pediatric liver transplantation by monitoring of viral DNA load and lymphocyte surface markers. Pediatr Transplant. 2012;16(7):748–57.PubMedCrossRefGoogle Scholar
  220. 220.
    Gotoh K, Ito Y, Ohta R, Iwata S, Nishiyama Y, Nakamura T, et al. Immunologic and virologic analyses in pediatric liver transplant recipients with chronic high Epstein-Barr virus loads. J Infect Dis. 2010;202(3):461–9.PubMedCrossRefGoogle Scholar
  221. 221.
    Zawilinska B, Kosinska A, Lenart M, Kopec J, Piatkowska-Jakubas B, Skotnicki A, et al. Detection of specific lytic and latent transcripts can help to predict the status of Epstein-Barr virus infection in transplant recipients with high virus load. Acta Biochim Pol. 2008;55(4):693–9.PubMedGoogle Scholar
  222. 222.
    Lee TC, Goss JA, Rooney CM, Heslop HE, Barshes NR, Caldwell YM, et al. Quantification of a low cellular immune response to aid in identification of pediatric liver transplant recipients at high-risk for EBV infection. Clin Transpl. 2006;20(6):689–94.CrossRefGoogle Scholar
  223. 223.
    Lee TC, Savoldo B, Barshes NR, Rooney CM, Heslop HE, Gee AP, et al. Use of cytokine polymorphisms and Epstein-Barr virus viral load to predict development of post-transplant lymphoproliferative disorder in paediatric liver transplant recipients. Clin Transpl. 2006;20(3):389–93.CrossRefGoogle Scholar
  224. 224.
    D’Aveni M, Aissi-Rothe L, Venard V, Salmon A, Falenga A, Decot V, et al. The clinical value of concomitant Epstein Barr virus (EBV)-DNA load and specific immune reconstitution monitoring after allogeneic hematopoietic stem cell transplantation. Transpl Immunol. 2011;24(4):224–32.PubMedCrossRefGoogle Scholar
  225. 225.
    Bhaduri-McIntosh S, Rotenberg MJ, Gardner B, Robert M, Miller G. Repertoire and frequency of immune cells reactive to Epstein-Barr virus-derived autologous lymphoblastoid cell lines. Blood. 2008;111(3):1334–43.PubMedCrossRefGoogle Scholar
  226. 226.
    Faraci M, Caviglia I, Morreale G, Lanino E, Cuzzubbo D, Giardino S, et al. Viral-load and B-lymphocyte monitoring of EBV reactivation after allogeneic hemopoietic SCT in children. Bone Marrow Transplant. 2010;45(6):1052–5.PubMedCrossRefGoogle Scholar
  227. 227.
    Macedo C, Webber SA, Donnenberg AD, Popescu I, Hua Y, Green M, et al. EBV-specific CD8+ T cells from asymptomatic pediatric thoracic transplant patients carrying chronic high EBV loads display contrasting features: activated phenotype and exhausted function. J Immunol. 2011;186(10):5854–62.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Hinrichs C, Wendland S, Zimmermann H, Eurich D, Neuhaus R, Schlattmann P, et al. IL-6 and IL-10 in post-transplant lymphoproliferative disorders development and maintenance: a longitudinal study of cytokine plasma levels and T-cell subsets in 38 patients undergoing treatment. Transpl Int. 2011;24(9):892–903.PubMedCrossRefGoogle Scholar
  229. 229.
    Baiocchi OC, Colleoni GW, Caballero OL, Vettore AL, Bulgarelli A, Dalbone MA, et al. Epstein-Barr viral load, interleukin-6 and interleukin-10 levels in post-transplant lymphoproliferative disease: a nested case-control study in a renal transplant cohort. Leuk Lymphoma. 2005;46(4):533–9.PubMedCrossRefGoogle Scholar
  230. 230.
    Barton M, Wasfy S, Hebert D, Dipchand A, Fecteau A, Grant D, et al. Exploring beyond viral load testing for EBV lymphoproliferation: role of serum IL-6 and IgE assays as adjunctive tests. Pediatr Transplant. 2010;14(7):852–8.PubMedCrossRefGoogle Scholar
  231. 231.
    Clave E, Agbalika F, Bajzik V, Peffault de Latour R, Trillard M, Rabian C, et al. Epstein-Barr virus (EBV) reactivation in allogeneic stem-cell transplantation: relationship between viral load, EBV-specific T-cell reconstitution and rituximab therapy. Transplantation. 2004;77(1):76–84.PubMedCrossRefGoogle Scholar
  232. 232.
    Annels NE, Kalpoe JS, Bredius RG, Claas EC, Kroes AC, Hislop AD, et al. Management of Epstein-Barr virus (EBV) reactivation after allogeneic stem cell transplantation by simultaneous analysis of EBV DNA load and EBV-specific T cell reconstitution. Clin Infect Dis. 2006;42(12):1743–8.PubMedCrossRefGoogle Scholar
  233. 233.
    Sebelin-Wulf K, Nguyen TD, Oertel S, Papp-Vary M, Trappe RU, Schulzki A, et al. Quantitative analysis of EBV-specific CD4/CD8 T cell numbers, absolute CD4/CD8 T cell numbers and EBV load in solid organ transplant recipients with PLTD. Transpl Immunol. 2007;17(3):203–10.PubMedCrossRefGoogle Scholar
  234. 234.
    Smets F, Latinne D, Bazin H, Reding R, Otte JB, Buts JP, et al. Ratio between Epstein-Barr viral load and anti-Epstein-Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease. Transplantation. 2002;73(10):1603–10.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Meij P, van Esser JW, Niesters HG, van Baarle D, Miedema F, Blake N, et al. Impaired recovery of Epstein-Barr virus (EBV)--specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease. Blood. 2003;101(11):4290–7.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Meng Q, Hagemeier SR, Fingeroth JD, Gershburg E, Pagano JS, Kenney SC. The Epstein-Barr virus (EBV)-encoded protein kinase, EBV-PK, but not the thymidine kinase (EBV-TK), is required for ganciclovir and acyclovir inhibition of lytic viral production. J Virol. 2010;84(9):4534–42.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Kuo PC, Dafoe DC, Alfrey EJ, Sibley RK, Scandling JD. Posttransplant lymphoproliferative disorders and Epstein-Barr virus prophylaxis. Transplantation. 1995;59(1):135–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Davis CL, Harrison KL, McVicar JP, Forg PJ, Bronner MP, Marsh CL. Antiviral prophylaxis and the Epstein Barr virus-related post-transplant lymphoproliferative disorder. Clin Transpl. 1995;9(1):53–9.Google Scholar
  239. 239.
    Darenkov IA, Marcarelli MA, Basadonna GP, Friedman AL, Lorber KM, Howe JG, et al. Reduced incidence of Epstein-Barr virus-associated posttransplant lymphoproliferative disorder using preemptive antiviral therapy. Transplantation. 1997;64(6):848–52.PubMedCrossRefGoogle Scholar
  240. 240.
    McDiarmid SV, Jordan S, Kim GS, Toyoda M, Goss JA, Vargas JH, et al. Prevention and preemptive therapy of posttransplant lymphoproliferative disease in pediatric liver recipients. Transplantation. 1998;66(12):1604–11.PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Birkeland SA, Andersen HK, Hamilton-Dutoit SJ. Preventing acute rejection, Epstein-Barr virus infection, and posttransplant lymphoproliferative disorders after kidney transplantation: use of aciclovir and mycophenolate mofetil in a steroid-free immunosuppressive protocol. Transplantation. 1999;67(9):1209–14.PubMedCrossRefGoogle Scholar
  242. 242.
    Green M, Kaufmann M, Wilson J, Reyes J. Comparison of intravenous ganciclovir followed by oral acyclovir with intravenous ganciclovir alone for prevention of cytomegalovirus and Epstein-Barr virus disease after liver transplantation in children. Clin Infect Dis. 1997;25(6):1344–9.PubMedCrossRefGoogle Scholar
  243. 243.
    Funch DP, Walker AM, Schneider G, Ziyadeh NJ, Pescovitz MD. Ganciclovir and acyclovir reduce the risk of post-transplant lymphoproliferative disorder in renal transplant recipients. Am J Transplant. 2005;5(12):2894–900.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Schnute ME, Anderson DJ, Brideau RJ, Ciske FL, Collier SA, Cudahy MM, et al. 2-Aryl-2-hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno[2,3-b]pyridines as broad-spectrum inhibitors of human herpesvirus polymerases. Bioorg Med Chem Lett. 2007;17(12):3349–53.PubMedCrossRefGoogle Scholar
  245. 245.
    Matthews T, Boehme R. Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis. 1988;10(Suppl 3):S490–4.PubMedCrossRefGoogle Scholar
  246. 246.
    Hocker B, Bohm S, Fickenscher H, Kusters U, Schnitzler P, Pohl M, et al. (Val-)Ganciclovir prophylaxis reduces Epstein-Barr virus primary infection in pediatric renal transplantation. Transpl Int. 2012;25(7):723–31.PubMedCrossRefGoogle Scholar
  247. 247.
    AlDabbagh MA, Gitman MR, Kumar D, Humar A, Rotstein C, Husain S. The role of antiviral prophylaxis for the prevention of Epstein-Barr virus-associated posttransplant lymphoproliferative disease in solid organ transplant recipients: a systematic review. Am J Transplant. 2017;17(3):770–81.PubMedCrossRefGoogle Scholar
  248. 248.
    van Esser JW, Niesters HG, van der Holt B, Meijer E, Osterhaus AD, Gratama JW, et al. Prevention of Epstein-Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood. 2002;99(12):4364–9.PubMedCrossRefGoogle Scholar
  249. 249.
    Worth A, Conyers R, Cohen J, Jagani M, Chiesa R, Rao K, et al. Pre-emptive rituximab based on viraemia and T cell reconstitution: a highly effective strategy for the prevention of Epstein-Barr virus-associated lymphoproliferative disease following stem cell transplantation. Br J Haematol. 2011;155(3):377–85.PubMedCrossRefGoogle Scholar
  250. 250.
    Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92(5):1549–55.PubMedPubMedCentralGoogle Scholar
  252. 252.
    Gustafsson A, Levitsky V, Zou JZ, Frisan T, Dalianis T, Ljungman P, et al. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood. 2000;95(3):807–14.PubMedPubMedCentralGoogle Scholar
  253. 253.
    Comoli P, Basso S, Zecca M, Pagliara D, Baldanti F, Bernardo ME, et al. Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant. 2007;7(6):1648–55.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Gulley ML, Tang W. Laboratory assays for Epstein-Barr virus-related disease. J Mol Diagn. 2008;10(4):279–92.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Swerdlow SH, Campo E, Harris NL, et al. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008.Google Scholar
  256. 256.
    Dockrell DH, Strickler JG, Paya CV. Epstein-Barr virus-induced T cell lymphoma in solid organ transplant recipients. Clin Infect Dis. 1998;26(1):180–2.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Hoshida Y, Li T, Dong Z, Tomita Y, Yamauchi A, Hanai J, et al. Lymphoproliferative disorders in renal transplant patients in Japan. Int J Cancer. 2001;91(6):869–75.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Pitman SD, Huang Q, Zuppan CW, Rowsell EH, Cao JD, Berdeja JG, et al. Hodgkin lymphoma-like posttransplant lymphoproliferative disorder (HL-like PTLD) simulates monomorphic B-cell PTLD both clinically and pathologically. Am J Surg Pathol. 2006;30(4):470–6.PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Vakiani E, Basso K, Klein U, Mansukhani MM, Narayan G, Smith PM, et al. Genetic and phenotypic analysis of B-cell post-transplant lymphoproliferative disorders provides insights into disease biology. Hematol Oncol. 2008;26(4):199–211.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Tsai DE, Hardy CL, Tomaszewski JE, Kotloff RM, Oltoff KM, Somer BG, et al. Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adult patients. Transplantation. 2001;71(8):1076–88.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Paya CV, Fung JJ, Nalesnik MA, Kieff E, Green M, Gores G, et al. Epstein-Barr virus-induced posttransplant lymphoproliferative disorders. ASTS/ASTP EBV-PTLD Task Force and The Mayo Clinic Organized International Consensus Development Meeting. Transplantation. 1999;68(10):1517–25.PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Reshef R, Vardhanabhuti S, Luskin MR, Heitjan DF, Hadjiliadis D, Goral S, et al. Reduction of immunosuppression as initial therapy for posttransplantation lymphoproliferative disorder( bigstar). Am J Transplant. 2011;11(2):336–47.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Swinnen LJ, LeBlanc M, Grogan TM, Gordon LI, Stiff PJ, Miller AM, et al. Prospective study of sequential reduction in immunosuppression, interferon alpha-2B, and chemotherapy for posttransplantation lymphoproliferative disorder. Transplantation. 2008;86(2):215–22.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Lin JC, Smith MC, Pagano JS. Activation of latent Epstein-Barr virus genomes: selective stimulation of synthesis of chromosomal proteins by a tumor promoter. J Virol. 1983;45(3):985–91.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Feng WH, Hong G, Delecluse HJ, Kenney SC. Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol. 2004;78(4):1893–902.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Perrine SP, Hermine O, Small T, Suarez F, O’Reilly R, Boulad F, et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood. 2007;109(6):2571–8.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Oertel SH, Verschuuren E, Reinke P, Zeidler K, Papp-Vary M, Babel N, et al. Effect of anti-CD 20 antibody rituximab in patients with post-transplant lymphoproliferative disorder (PTLD). Am J Transplant. 2005;5(12):2901–6.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Jain AB, Marcos A, Pokharna R, Shapiro R, Fontes PA, Marsh W, et al. Rituximab (chimeric anti-CD20 antibody) for posttransplant lymphoproliferative disorder after solid organ transplantation in adults: long-term experience from a single center. Transplantation. 2005;80(12):1692–8.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Milpied N, Vasseur B, Parquet N, Garnier JL, Antoine C, Quartier P, et al. Humanized anti-CD20 monoclonal antibody (Rituximab) in post transplant B-lymphoproliferative disorder: a retrospective analysis on 32 patients. Ann Oncol. 2000;11(Suppl 1):113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Blaes AH, Peterson BA, Bartlett N, Dunn DL, Morrison VA. Rituximab therapy is effective for posttransplant lymphoproliferative disorders after solid organ transplantation: results of a phase II trial. Cancer. 2005;104(8):1661–7.PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Choquet S, Leblond V, Herbrecht R, Socie G, Stoppa AM, Vandenberghe P, et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood. 2006;107(8):3053–7.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Trappe R, Oertel S, Leblond V, Mollee P, Sender M, Reinke P, et al. Sequential treatment with rituximab followed by CHOP chemotherapy in adult B-cell post-transplant lymphoproliferative disorder (PTLD): the prospective international multicentre phase 2 PTLD-1 trial. Lancet Oncol. 2012;13(2):196–206.PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Trappe R, Riess H, Babel N, Hummel M, Lehmkuhl H, Jonas S, et al. Salvage chemotherapy for refractory and relapsed posttransplant lymphoproliferative disorders (PTLD) after treatment with single-agent rituximab. Transplantation. 2007;83(7):912–8.PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Choquet S, Trappe R, Leblond V, Jager U, Davi F, Oertel S. CHOP-21 for the treatment of post-transplant lymphoproliferative disorders (PTLD) following solid organ transplantation. Haematologica. 2007;92(2):273–4.PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Zimmermann H, Reinke P, Neuhaus R, Lehmkuhl H, Oertel S, Atta J, et al. Burkitt post-transplantation lymphoma in adult solid organ transplant recipients: Sequential immunochemotherapy with rituximab (R) followed by cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or R-CHOP is safe and effective in an analysis of 8 patients. Cancer. 2012;118(19):4715–24.PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma. N Engl J Med. 1994;331(10):679–80.PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    O’Reilly RJ, Small TN, Papadopoulos E, Lucas K, Lacerda J, Koulova L. Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev. 1997;157:195–216.PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Heslop HE. How I treat EBV lymphoproliferation. Blood. 2009;114(19):4002–8.PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31.PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Haque T, McAulay KA, Kelly D, Crawford DH. Allogeneic T-cell therapy for Epstein-Barr virus-positive posttransplant lymphoproliferative disease: long-term follow-up. Transplantation. 2010;90(1):93–4.PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Doubrovina E, Oflaz-Sozmen B, Prockop SE, Kernan NA, Abramson S, Teruya-Feldstein J, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Epstein MA, Achong BG. The EB virus. Annu Rev Microbiol. 1973;27:413–36.PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med. 2011;3(107):107fs7.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Tibbetts SA, Loh J, Van Berkel V, McClellan JS, Jacoby MA, Kapadia SB, et al. Establishment and maintenance of gammaherpesvirus latency are independent of infective dose and route of infection. J Virol. 2003;77(13):7696–701.PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Hjalgrim H, Rostgaard K, Johnson PC, Lake A, Shield L, Little AM, et al. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc Natl Acad Sci U S A. 2010;107(14):6400–5.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Nemerow GR, Mold C, Schwend VK, Tollefson V, Cooper NR. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol. 1987;61(5):1416–20.PubMedPubMedCentralGoogle Scholar
  287. 287.
    Tanner J, Weis J, Fearon D, Whang Y, Kieff E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell. 1987;50(2):203–13.PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Borza CM, Hutt-Fletcher LM. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med. 2002;8(6):594–9.PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Hoffman GJ, Lazarowitz SG, Hayward SD. Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein-Barr virus identifies a membrane antigen and a neutralizing antigen. Proc Natl Acad Sci U S A. 1980;77(5):2979–83.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Lowe RS, Keller PM, Keech BJ, Davison AJ, Whang Y, Morgan AJ, et al. Varicella-zoster virus as a live vector for the expression of foreign genes. Proc Natl Acad Sci U S A. 1987;84(11):3896–900.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Sokal EM, Hoppenbrouwers K, Vandermeulen C, Moutschen M, Leonard P, Moreels A, et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis. 2007;196(12):1749–53.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Rees L, Tizard EJ, Morgan AJ, Cubitt WD, Finerty S, Oyewole-Eletu TA, et al. A phase I trial of epstein-barr virus gp350 vaccine for children with chronic kidney disease awaiting transplantation. Transplantation. 2009;88(8):1025–9.PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JR, Baxa U, et al. Rational design of an Epstein-Barr virus vaccine targeting the receptor-binding site. Cell. 2015;162(5):1090–100.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Wilson AD, Lovgren-Bengtsson K, Villacres-Ericsson M, Morein B, Morgan AJ. The major Epstein-Barr virus (EBV) envelope glycoprotein gp340 when incorporated into Iscoms primes cytotoxic T-cell responses directed against EBV lymphoblastoid cell lines. Vaccine. 1999;17(9–10):1282–90.PubMedCrossRefGoogle Scholar
  295. 295.
    Elliott SL, Suhrbier A, Miles JJ, Lawrence G, Pye SJ, Le TT, et al. Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis. J Virol. 2008;82(3):1448–57.PubMedCrossRefGoogle Scholar
  296. 296.
    Smith C, Cooper L, Burgess M, Rist M, Webb N, Lambley E, et al. Functional reversion of antigen-specific CD8+ T cells from patients with Hodgkin lymphoma following in vitro stimulation with recombinant polyepitope. J Immunol. 2006;177(7):4897–906.PubMedCrossRefGoogle Scholar
  297. 297.
    Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, et al. Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res. 2012;72(5):1116–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Benjamin E. Gewurz
    • 1
  • Elizabeth Moulton
    • 2
  • Amy Bessnow
    • 3
  • David M. Weinstock
    • 3
    Email author
  • Sheila Bond
    • 1
  1. 1.Brigham and Women’s Hospital, Division of Infectious DiseasesBostonUSA
  2. 2.Baylor College of Medicine, Department of Pediatrics, Infectious DiseasesHoustonUSA
  3. 3.Dana-Farber Cancer Institute, Division of Medical OncologyBostonUSA

Personalised recommendations