Advertisement

Tuberculosis

  • Cynthia Portal-Celhay
  • Jennifer A. PhilipsEmail author
Chapter

Abstract

This chapter will review the basic biology of Mycobacterium tuberculosis and then focus on the epidemiology, clinical manifestations, and diagnosis in transplant patients. Prevention and treatment will be considered elsewhere. Tuberculosis (TB) remains a leading cause of human mortality in resource-limited settings, in part because it is still a diagnostic and treatment challenge. These challenges are compounded in immunocompromised hosts such as transplant patients because the performance of diagnostic tests is poor, the clinical presentation is often atypical, and treatment is complicated by toxicity and drug-drug interactions. While there have been significant recent advances in our understanding of bacterial pathogenesis and host responses, the picture remains incomplete. Conventional tuberculin skin testing, acid-fast bacilli smear, mycobacterial culture, and antibiotic sensitivity testing are imperfect tools. New molecular techniques improve the speed and certainty with which a diagnosis can be made, but little data exist on their use in the transplant patient. The prevalence of TB is low in the countries that have historically had access to organ transplantation. However, immigration to such countries and the expansion of transplants to countries with higher incidences of TB have made tuberculosis an increasingly important posttransplant complication. When tuberculosis does happen in transplant patients, the morbidity and mortality are substantial.

Keywords

Tuberculosis Mycobacterium tuberculosis Mycobacterium bovis-bacillus Calmette-Guerin (BCG) Latent infection Granuloma Tuberculin skin test (TST) Interferon-γ release assays (IGRAs) 

References

  1. 1.
    Wolf AJ, Linas B, Trevejo-Nuñez GJ, Kincaid E, Tamura T, Takatsu K, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol. 2007;179(4):2509–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Schäfer G, Jacobs M, Wilkinson RJ, Brown GD. Non-opsonic recognition of Mycobacterium tuberculosis by phagocytes. J Innate Immun. 2009;1(3):231–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med. 2009;206(13):2879–88.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, et al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184(6):2756–60.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Armstrong JA, Hart PD. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med. 1971;134(3 Pt 1):713–40.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994;263(5147):678–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol. 2001;2(8):569–77.PubMedCrossRefGoogle Scholar
  8. 8.
    van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell. 2007;129(7):1287–98.PubMedCrossRefGoogle Scholar
  9. 9.
    McDonough KA, Kress Y, Bloom BR. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun. 1993;61(7):2763–73.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150(4):803–15.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe. 2012;11(5):469–80.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sakowski ET, Koster S, Portal Celhay C, Park HS, Shrestha E, Hetzenecker SE, et al. Ubiquilin 1 promotes IFN-gamma-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog. 2015;11(7):e1005076.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 2002;17(6):693–702.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009;136(1):37–49.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008;205(1):105–15.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992;175(4):1111–22.PubMedCrossRefGoogle Scholar
  17. 17.
    MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science. 2003;302(5645):654–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science. 2011;332(6030):717–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity. 2011;34(5):807–19.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bold TD, Banaei N, Wolf AJ, Ernst JD. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. PLoS Pathog. 2011;7(5):e1002063.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Srivastava S, Grace PS, Ernst JD. Antigen export reduces antigen presentation and limits T cell control of M. tuberculosis. Cell Host Microbe. 2016;19(1):44–54.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Banaiee N, Kincaid EZ, Buchwald U, Jacobs WR, Ernst JD. Potent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J Immunol. 2006;176(5):3019–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol. 2010;8(4):296–307.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev. 2010;21(6):455–62.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Seiler P, Aichele P, Bandermann S, Hauser AE, Lu B, Gerard NP, et al. Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol. 2003;33(10):2676–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Blomgran R, Desvignes L, Briken V, Ernst JD. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe. 2012;11(1):81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 2007;3(7):e110.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest. 2007;117(8):2279–88.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000;164(4):2016–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Nandi B, Behar SM. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med. 2011;208(11):2251–62.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466(7309):973–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Adams DO. The granulomatous inflammatory response. A review. Am J Pathol. 1976;84(1):164–92.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12(8):581–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med. 2001;193(3):271–80.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Caruso AM, Serbina N, Klein E, Triebold K, Bloom BR, Flynn JL. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol. 1999;162(9):5407–16.PubMedGoogle Scholar
  38. 38.
    Havlir DV, Barnes PF. Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med. 1999;340(5):367–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Kwan CK, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev. 2011;24(2):351–76.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Silva FA, Matos JO, de Q Mello FC, Nucci M. Risk factors for and attributable mortality from tuberculosis in patients with hematologic malignances. Haematologica. 2005;90(8):1110–5.PubMedGoogle Scholar
  41. 41.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Alcaïs A, Abel L, Casanova JL. Human genetics of infectious diseases: between proof of principle and paradigm. J Clin Invest. 2009;119(9):2506–14.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–21.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science. 2012;337(6102):1684–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S, Shaw PA, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012;367(8):725–34.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S, et al. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med. 2011;3(104):104ra2.CrossRefGoogle Scholar
  48. 48.
    Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet. 2000;355(9204):618–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Grange JM, Davies PD, Brown RC, Woodhead JS, Kardjito T. A study of vitamin D levels in Indonesian patients with untreated pulmonary tuberculosis. Tubercle. 1985;66(3):187–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Talat N, Perry S, Parsonnet J, Dawood G, Hussain R. Vitamin d deficiency and tuberculosis progression. Emerg Infect Dis. 2010;16(5):853–5.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Martineau AR, Leandro AC, Anderson ST, Newton SM, Wilkinson KA, Nicol MP, et al. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur Respir J. 2010;35(5):1106–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2(6):561–72.PubMedCrossRefGoogle Scholar
  54. 54.
    Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol. 1998;161(5):2636–41.PubMedGoogle Scholar
  55. 55.
    Clay H, Volkman HE, Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity. 2008;29(2):283–94.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bekker LG, Moreira AL, Bergtold A, Freeman S, Ryffel B, Kaplan G. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun. 2000;68(12):6954–61.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell. 2010;140(5):717–30.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature. 2009;460(7251):98–102.PubMedCrossRefGoogle Scholar
  59. 59.
    Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001;345(15):1098–104.PubMedCrossRefGoogle Scholar
  60. 60.
    Solovic I, Sester M, Gomez-Reino JJ, Rieder HL, Ehlers S, Milburn HJ, et al. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement. Eur Respir J. 2010;36(5):1185–206.PubMedCrossRefGoogle Scholar
  61. 61.
    Wallis RS, Broder MS, Wong JY, Hanson ME, Beenhouwer DO. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis. 2004;38(9):1261–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Bruns H, Meinken C, Schauenberg P, Harter G, Kern P, Modlin RL, et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest. 2009;119(5):1167–77.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A, et al. Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol. 2010;184(7):3326–30.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Cox JS, Chen B, McNeil M, Jacobs WR Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature. 1999;402(6757):79–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 1999;34(2):257–67.PubMedCrossRefGoogle Scholar
  66. 66.
    Briken V, Porcelli SA, Besra GS, Kremer L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol. 2004;53(2):391–403.PubMedCrossRefGoogle Scholar
  67. 67.
    Matsunaga I, Moody DB. Mincle is a long sought receptor for mycobacterial cord factor. J Exp Med. 2009;206(13):2865–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol. 2004;6(5):423–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, et al. Type VII secretion--mycobacteria show the way. Nat Rev Microbiol. 2007;5(11):883–91.PubMedCrossRefGoogle Scholar
  70. 70.
    Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996;178(5):1274–82.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, ST C. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol. 1999;32(3):643–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol. 2004;12(11):500–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol. 2004;51(2):359–70.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A. 2003;100(21):12420–5.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol. 2002;46(3):709–17.PubMedCrossRefGoogle Scholar
  76. 76.
    Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW, Jimenez C, et al. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol. 2009;73(3):329–40.PubMedCrossRefGoogle Scholar
  77. 77.
    Philips JA. Mycobacterial manipulation of vacuolar sorting. Cell Microbiol. 2008;10(12):2408–15.PubMedCrossRefGoogle Scholar
  78. 78.
    Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A. 2011;108(48):19371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Sun J, Wang X, Lau A, Liao TY, Bucci C, Hmama Z. Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS One. 2010;5(1):e8769.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. J Immunol. 2004;172(10):6272–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Singh N, Paterson DL. Mycobacterium tuberculosis infection in solid-organ transplant recipients: impact and implications for management. Clin Infect Dis. 1998;27(5):1266–77.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Bucher JN, Schoenberg MB. Donor-derived tuberculosis after solid organ transplantation in two patients and a staff member. Infection. 2016;44(3):365–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Aguado JM, Herrero JA, Gavaldá J, Torre-Cisneros J, Blanes M, Rufí G, et al. Clinical presentation and outcome of tuberculosis in kidney, liver, and heart transplant recipients in Spain. Spanish Transplantation Infection Study Group, GESITRA. Transplantation. 1997;63(9):1278–86.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Torre-Cisneros J, Doblas A, Aguado JM, San Juan R, Blanes M, Montejo M, et al. Tuberculosis after solid-organ transplant: incidence, risk factors, and clinical characteristics in the RESITRA (Spanish Network of Infection in Transplantation) cohort. Clin Infect Dis. 2009;48(12):1657–65.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Yoo JW, Jo KW, Kim SH, Lee SO, Kim JJ, Park SK, et al. Incidence, characteristics, and treatment outcomes of mycobacterial diseases in transplant recipients. Transpl Int. 2016;29(5):549–58.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Naqvi A, Rizvi A, Hussain Z, Hafeez S, Hashmi A, Akhtar F, et al. Developing world perspective of posttransplant tuberculosis: morbidity, mortality, and cost implications. Transplant Proc. 2001;33(1-2):1787–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Sakhuja V, Jha V, Varma PP, Joshi K, Chugh KS. The high incidence of tuberculosis among renal transplant recipients in India. Transplantation. 1996;61(2):211–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Yuen KY, Woo PC. Tuberculosis in blood and marrow transplant recipients. Hematol Oncol. 2002;20(2):51–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Cordonnier C, Martino R, Trabasso P, Held TK, Akan H, Ward MS, et al. Mycobacterial infection: a difficult and late diagnosis in stem cell transplant recipients. Clin Infect Dis. 2004;38(9):1229–36.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Russo RL, Dulley FL, Suganuma L, França IL, Yasuda MA, Costa SF. Tuberculosis in hematopoietic stem cell transplant patients: case report and review of the literature. Int J Infect Dis. 2010;14(Suppl 3):e187–91.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ip MS, Yuen KY, Woo PC, Luk WK, Tsang KW, Lam WK, et al. Risk factors for pulmonary tuberculosis in bone marrow transplant recipients. Am J Respir Crit Care Med. 1998;158(4):1173–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Ku SC, Tang JL, Hsueh PR, Luh KT, Yu CJ, Yang PC. Pulmonary tuberculosis in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27(12):1293–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Lopez de Castilla D, Schluger NW. Tuberculosis following solid organ transplantation. Transpl Infect Dis. 2010;12(2):106–12.CrossRefGoogle Scholar
  94. 94.
    Chen CH, Shu KH, Ho HC, Cheng SB, Lin CC, Wei HJ, et al. A nationwide population-based study of the risk of tuberculosis in different solid organ transplantations in Taiwan. Transplant Proc. 2014;46(4):1032–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Muñoz P, Rodríguez C, Bouza E. Mycobacterium tuberculosis infection in recipients of solid organ transplants. Clin Infect Dis. 2005;40(4):581–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Ulubay G, Kupeli E, Duvenci Birben O, Seyfettin EP, Dogrul MI, Ozsancak Ugurlu A, et al. A 10-year experience of tuberculosis in solid-organ transplant recipients. Exp Clin Transplant. 2015;13(Suppl 1):214–8.PubMedGoogle Scholar
  97. 97.
    Hsu MS, Wang JL, Ko WJ, Lee PH, Chou NK, Wang SS, et al. Clinical features and outcome of tuberculosis in solid organ transplant recipients. Am J Med Sci. 2007;334(2):106–10.PubMedCrossRefGoogle Scholar
  98. 98.
    Jereb JA, Burwen DR, Dooley SW, Haas WH, Crawford JT, Geiter LJ, et al. Nosocomial outbreak of tuberculosis in a renal transplant unit: application of a new technique for restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates. J Infect Dis. 1993;168(5):1219–24.PubMedCrossRefGoogle Scholar
  99. 99.
    el-Agroudy AE, Refaie AF, Moussa OM, Ghoneim MA. Tuberculosis in Egyptian kidney transplant recipients: study of clinical course and outcome. J Nephrol. 2003;16(3):404–11.PubMedGoogle Scholar
  100. 100.
    Atasever A, Bacakoglu F, Toz H, Basoglu OK, Duman S, Basak K, et al. Tuberculosis in renal transplant recipients on various immunosuppressive regimens. Nephrol Dial Transplant. 2005;20(4):797–802.PubMedCrossRefGoogle Scholar
  101. 101.
    Bodro M, Sabe N, Santin M, Cruzado JM, Llado L, Gonzalez-Costello J, et al. Clinical features and outcomes of tuberculosis in solid organ transplant recipients. Transplant Proc. 2012;44(9):2686–9.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Olithselvan A, Rajagopala S, Vij M, Shanmugam V, Shanmugam N, Rela M. Tuberculosis in liver transplant recipients: experience of a South Indian liver transplant center. Liver Transpl. 2014;20(8):960–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Lou XF, Wu RH, Xu SZ, Lin XJ. Spinal tuberculosis in post-liver transplantation patients: case reports. Transpl Infect Dis. 2010;12(2):132–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Nelson CA, Zunt JR. Tuberculosis of the central nervous system in immunocompromised patients: HIV infection and solid organ transplant recipients. Clin Infect Dis. 2011;53(9):915–26.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Winthrop KL, Kubak BM, Pegues DA, Hufana C, Costamagna P, Desmond E, et al. Transmission of mycobacterium tuberculosis via lung transplantation. Am J Transplant. 2004;4(9):1529–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Kiuchi T, Inomata Y, Uemoto S, Satomura K, Egawa H, Okajima H, et al. A hepatic graft tuberculosis transmitted from a living-related donor. Transplantation. 1997;63(6):905–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Graham JC, Kearns AM, Magee JG, El-Sheikh MF, Hudson M, Manas D, et al. Tuberculosis transmitted through transplantation. J Infect. 2001;43(4):251–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Schulman LL, Scully B, McGregor CC, Austin JH. Pulmonary tuberculosis after lung transplantation. Chest. 1997;111(5):1459–62.PubMedCrossRefGoogle Scholar
  109. 109.
    Aguado JM, Torre-Cisneros J, Fortún J, Benito N, Meije Y, Doblas A, et al. Tuberculosis in solid-organ transplant recipients: consensus statement of the group for the study of infection in transplant recipients (GESITRA) of the Spanish Society of Infectious Diseases and Clinical Microbiology. Clin Infect Dis. 2009;48(9):1276–84.PubMedCrossRefGoogle Scholar
  110. 110.
    Morris MI, Daly JS, Blumberg E, Kumar D, Sester M, Schluger N, et al. Diagnosis and management of tuberculosis in transplant donors: a donor-derived infections consensus conference report(†). Am J Transplant. 2012;12:2288–300.CrossRefGoogle Scholar
  111. 111.
    Bumbacea D, Arend SM, Eyuboglu F, Fishman JA, Goletti D, Ison MG, et al. The risk of tuberculosis in transplant candidates and recipients: a TBNET consensus statement. Eur Respir J. 2012;40(4):990–1013.CrossRefGoogle Scholar
  112. 112.
    Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: a global perspective. Preface. Bone Marrow Transplant. 2009;44(8):453–5.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society. MMWR Recomm Rep. 2000;49(RR-6):1–51.Google Scholar
  115. 115.
    Mazurek GH, Jereb J, Vernon A, LoBue P, Goldberg S, Castro K, et al. Updated guidelines for using Interferon Gamma Release Assays to detect Mycobacterium tuberculosis infection - United States, 2010. MMWR Recomm Rep. 2010;59(RR-5):1–25.Google Scholar
  116. 116.
    Red book: 2009 report of the Committee on Infectious Disease. 28th ed ed. Pickering LK BC, Kimberlin DW, Long SS, eds, editor. Elk Grove Villiage, IL: American Academy of Pediatrics; 2009.Google Scholar
  117. 117.
    Lindemann M, Dioury Y, Beckebaum S, Cicinnati VR, Gerken G, Broelsch CE, et al. Diagnosis of tuberculosis infection in patients awaiting liver transplantation. Hum Immunol. 2009;70(1):24–8.CrossRefGoogle Scholar
  118. 118.
    Manuel O, Humar A, Preiksaitis J, Doucette K, Shokoples S, Peleg AY, et al. Comparison of quantiferon-TB gold with tuberculin skin test for detecting latent tuberculosis infection prior to liver transplantation. Am J Transplant. 2007;7(12):2797–801.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim SY, Jung GS, Kim SK, Chang J, Kim MS, Kim YS, et al. Comparison of the tuberculin skin test and interferon-γ release assay for the diagnosis of latent tuberculosis infection before kidney transplantation. Infection. 2013;41(1):103–10.CrossRefGoogle Scholar
  120. 120.
    Theodoropoulos N, Lanternier F, Rassiwala J, McNatt G, Preczewski L, DeMayo E, et al. Use of the QuantiFERON-TB Gold interferon-gamma release assay for screening transplant candidates: a single-center retrospective study. Transpl Infect Dis. 2012;14(1):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Sester M, van Leth F, Bruchfeld J, Bumbacea D, Cirillo DM, Dilektasli AG, et al. Risk assessment of tuberculosis in immunocompromised patients. A TBNET study. Am J Respir Crit Care Med. 2014;190(10):1168–76.PubMedCrossRefGoogle Scholar
  122. 122.
    Hadaya K, Bridevaux PO, Roux-Lombard P, Delort A, Saudan P, Martin PY, et al. Contribution of interferon-gamma release assays (IGRAs) to the diagnosis of latent tuberculosis infection after renal transplantation. Transplantation. 2013;95(12):1485–90.PubMedCrossRefGoogle Scholar
  123. 123.
    Moon SM, Lee SO, Choi SH, Kim YS, Woo JH, Yoon DH, et al. Comparison of the QuantiFERON-TB Gold In-Tube test with the tuberculin skin test for detecting latent tuberculosis infection prior to hematopoietic stem cell transplantation. Transpl Infect Dis. 2013;15(1):104–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Qin LL, Wang QR, Wang Q, Yao H, Wen LJ, Wu LL, et al. T-SPOT.TB for detection of tuberculosis infection among hematological malignancy patients and hematopoietic stem cell transplant recipients. Asian Pac J Cancer Prev. 2013;14(12):7415–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Horne DJ, Narita M, Spitters CL, Parimi S, Dodson S, Limaye AP. Challenging issues in tuberculosis in solid organ transplantation. Clin Infect Dis. 2013;57(10):1473–82.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kim SH, Lee SO, Park JB, Park IA, Park SJ, Yun SC, et al. A prospective longitudinal study evaluating the usefulness of a T-cell-based assay for latent tuberculosis infection in kidney transplant recipients. Am J Transplant. 2011;11(9):1927–35.CrossRefGoogle Scholar
  127. 127.
    Huebner RE, Schein MF, Bass JB. The tuberculin skin test. Clin Infect Dis. 1993;17(6):968–75.PubMedCrossRefGoogle Scholar
  128. 128.
    (CDC) CfDCaP. Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep. 2009;58(1):7–10.Google Scholar
  129. 129.
    Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–15.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Tortoli E, Russo C, Piersimoni C, Mazzola E, Dal Monte P, Pascarella M, et al. Clinical validation of Xpert MTB/RIF for the diagnosis of extrapulmonary tuberculosis. Eur Respir J. 2012;40(2):442–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Ao W, Aldous S, Woodruff E, Hicke B, Rea L, Kreiswirth B, et al. Rapid detection of rpoB gene mutations conferring rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol. 2012;50(7):2433–40.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lin SY, Rodwell TC, Victor TC, Rider EC, Pham L, Catanzaro A, et al. Pyrosequencing for rapid detection of extensively drug-resistant Mycobacterium tuberculosis in clinical isolates and clinical specimens. J Clin Microbiol. 2014;52(2):475–82.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Ocheretina O, Shen L, Escuyer VE, Mabou MM, Royal-Mardi G, Collins SE, et al. Whole genome sequencing investigation of a tuberculosis outbreak in Port-au-Prince, Haiti caused by a strain with a “low-level” rpoB mutation L511P - insights into a mechanism of resistance escalation. PLoS One. 2015;10(6):e0129207.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Daum LT, Rodriguez JD, Worthy SA, Ismail NA, Omar SV, Dreyer AW, et al. Next-generation ion torrent sequencing of drug resistance mutations in Mycobacterium tuberculosis strains. J Clin Microbiol. 2012;50(12):3831–7.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Koser CU, Bryant JM, Becq J, Torok ME, Ellington MJ, Marti-Renom MA, et al. Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med. 2013;369(3):290–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Department of Medicine, NYU Langone Medical CenterNYU School of MedicineNew YorkUSA
  2. 2.Division of Infectious Diseases, Department of MedicineWashington University School of MedicineSt. LouisUSA

Personalised recommendations