Pseudomonas, Stenotrophomonas, Acinetobacter, and Other Nonfermentative Gram-Negative Bacteria and Medically Important Anaerobic Bacteria in Transplant Recipients

  • Kenneth V. I. Rolston
  • Amar SafdarEmail author


Despite the overall decline in the frequency of documented gram-negative infections in transplant recipients receiving antimicrobial prophylaxis, the proportion of these infections caused by nonfermentative gram-negative bacilli (NFGNB) is increasing. Pseudomonas aeruginosa is the most common species of NFGNB isolated from such patients, from both monomicrobial and polymicrobial infections. The spectrum of infection caused by P. aeruginosa is wide, and involvement of multiple organ systems is not uncommon. Resistance to multiple agents expected to have activity against P. aeruginosa has become a significant problem and, to some extent, has spurred the development of novel antimicrobial agents. Other important NFGNB include Stenotrophomonas maltophilia, Acinetobacter species, and, to a lesser extent, Achromobacter species, Alcaligenes species, nonaeruginosa Pseudomonas species, and Chryseobacterium species. As with P. aeruginosa, resistance to multiple agents is a common thread with these organisms as well. Infections with these organisms are associated with substantial morbidity and mortality. Consequently, in addition to appropriate antimicrobial therapy, infection control and antimicrobial stewardship are important tools in combating the development and spread of infections caused by NFGNB. Anaerobic organisms, on the other hand, are isolated much less frequently, generally from mixed or polymicrobial infections. Although they are frequently co-pathogens in this setting, their importance should not be underestimated.


Pseudomonas spp. Stenotrophomonas maltophilia Acinetobacter spp. Nonfermentative gram-negative bacilli Anaerobic bacteria Multiple drug resistance Stem cell transplant Polymicrobial infection Antimicrobial stewardship Infection control 


  1. 1.
    Wisplinghoff H, Seifert H, Wenzel RP, et al. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis. 2003;36:1103–10.CrossRefGoogle Scholar
  2. 2.
    Yadegarynia D, Tarrand J, Raad I, Rolston K. Current spectrum of bacterial infections in patients with cancer. Clin Infect Dis. 2003;37:1144–5.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rolston KV, Bodey GP, Safdar A. Polymicrobial infection in patients with cancer: an underappreciated and underreported entity. Clin Infect Dis. 2007;45:228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52:427–31.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Rangaraj G, Granwehr BP, Jiang Y, et al. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer. 2010;116:967–73.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cattaneo C, Quaresmini G, Casari S, et al. Recent changes in bacterial epidemiology and the emergence of fluoroquinolone-resistant Escherichia coli among patients with haematological malignancies: results of a prospective study on 823 patients at a single institution. J Antimicrob Chemother. 2008;61:721–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mihu CN, Rhomberg PR, Jones RN, et al. Escherichia coli resistance to quinolones at a comprehensive cancer center. Diagn Microbiol Infect Dis. 2010;67:266–9.CrossRefGoogle Scholar
  8. 8.
    Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1–12.CrossRefGoogle Scholar
  9. 9.
    Talbot GH, Bradley J, Edwards JE Jr, et al. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis. 2006;42:657–68.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Klastersky J, Ameye L, Maertens J, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30(Suppl 1):S51–9.CrossRefGoogle Scholar
  11. 11.
    Mikulska M, Del Bono V, Bruzzi P, et al. Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection. 2012;40:271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Oliveira AL, de Souza M, Carvalho-Dias VM, et al. Epidemiology of bacteremia and factors associated with multi-drug-resistant gram-negative bacteremia in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2007;39:775–81.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on gram-positive and resistant bacteria. Clin Infect Dis. 1999;29:490–4.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Elting LS, Bodey GP, Fainstein V. Polymicrobial septicemia in the cancer patient. Medicine (Baltimore). 1986;65:218–25.CrossRefGoogle Scholar
  15. 15.
    Rolston KV, Tarrand JJ. Pseudomonas aeruginosa --still a frequent pathogen in patients with cancer: 11-year experience at a comprehensive cancer center. Clin Infect Dis. 1999;29:463–4.CrossRefGoogle Scholar
  16. 16.
    Safdar A, Rodriguez GH, De Lima MJ, et al. Infections in 100 cord blood transplantations: spectrum of early and late posttransplant infections in adult and pediatric patients 1996-2005. Medicine (Baltimore). 2007;86:324–33.CrossRefGoogle Scholar
  17. 17.
    Rolston KV, Kontoyiannis DP, Yadegarynia D, et al. Nonfermentative gram-negative bacilli in cancer patients: increasing frequency of infection and antimicrobial susceptibility of clinical isolates to fluoroquinolones. Diagn Microbiol Infect Dis. 2005;51:215–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Martino R, Martinez C, Pericas R, et al. Bacteremia due to glucose non-fermenting gram-negative bacilli in patients with hematological neoplasias and solid tumors. Eur J Clin Microbiol Infect Dis. 1996;15:610–5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bodey GP, Ho DH, Elting L. Survey of antibiotic susceptibility among gram-negative bacilli at a cancer hospital. Am J Med. 1988;85:49–51.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Rolston KV, Elting L, Waguespack S, et al. Survey of antibiotic susceptibility among gram-negative bacilli at a cancer center. Chemotherapy. 1996;42:348–53.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Jacobson K, Rolston K, Elting L, et al. Susceptibility surveillance among gram-negative bacilli at a cancer center. Chemotherapy. 1999;45:325–34.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Rolston KKD, Raad I, LeBlanc BJ, et al. Susceptibility surveillance among gram-negative bacilli at a comprehensive cancer center [A-004]. In: Program and abstracts of the 103rd general meeting of American Society of Microbiology. Washington, DC: American Society of Microbiology; 2003.Google Scholar
  23. 23.
    Anaissie E, Fainstein V, Miller P, et al. Pseudomonas putida. Newly recognized pathogen in patients with cancer. Am J Med. 1987;82:1191–4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sanyal SC, Mokaddas EM. The increase in carbapenem use and emergence of Stenotrophomonas maltophilia as an important nosocomial pathogen. J Chemother. 1999;11:28–33.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Aisenberg G, Rolston KV, Dickey BF, et al. Stenotrophomonas maltophilia pneumonia in cancer patients without traditional risk factors for infection, 1997-2004. Eur J Clin Microbiol Infect Dis. 2007;26:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chatzinikolaou I, Abi-Said D, Bodey GP, et al. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Arch Intern Med. 2000;160:501–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:1–45.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Safdar A. Feasibility of aerosolized colistin in the era of escalating drug-resistant Pseudomonas pneumonia: pressing need for validation clinical trials. Intensive Care Med. 2010;36:1110–1.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Barnes SG, Sattler FR, Ballard JO. Perirectal infections in acute leukemia. Improved survival after incision and debridement. Ann Intern Med. 1984;100:515–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Aboufaycal H, Sader HS, Rolston K, et al. blaVIM-2 and blaVIM-7 carbapenemase-producing Pseudomonas aeruginosa isolates detected in a tertiary care medical center in the United States: report from the MYSTIC program. J Clin Microbiol. 2007;45:614–5.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Toleman MA, Rolston K, Jones RN, et al. blaVIM-7, an evolutionarily distinct metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother. 2004;48:329–32.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ohmagari N, Hanna H, Graviss L, et al. Risk factors for infections with multidrug-resistant Pseudomonas aeruginosa in patients with cancer. Cancer. 2005;104:205–12.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tverdek FP, Rolston KV, Chemaly RF. Antimicrobial stewardship in patients with cancer. Pharmacotherapy. 2012;32:722–34.CrossRefGoogle Scholar
  34. 34.
    Safdar A, Rolston KV. Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis. 2007;45:1602–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Safdar A, Rodriguez GH, Balakrishnan M, et al. Changing trends in etiology of bacteremia in patients with cancer. Eur J Clin Microbiol Infect Dis. 2006;25:522–6.CrossRefGoogle Scholar
  36. 36.
    Micozzi A, Venditti M, Monaco M, et al. Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clin Infect Dis. 2000;31:705–11.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Vartivarian SE, Papadakis KA, Anaissie EJ. Stenotrophomonas (Xanthomonas) maltophilia urinary tract infection. A disease that is usually severe and complicated. Arch Intern Med. 1996;156:433–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Papadakis KA, Vartivarian SE, Vassilaki ME, et al. Stenotrophomonas maltophilia meningitis. Report of two cases and review of the literature. J Neurosurg. 1997;87:106–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Araoka H, Fujii T, Izutsu K, et al. Rapidly progressive fatal hemorrhagic pneumonia caused by Stenotrophomonas maltophilia in hematologic malignancy. Transpl Infect Dis. 2012;14:355–63.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Tada K, Kurosawa S, Hiramoto N, et al. Stenotrophomonas maltophilia infection in hematopoietic SCT recipients: high mortality due to pulmonary hemorrhage. Bone Marrow Transplant. 2013;48:74–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Apisarnthanarak A, Fraser VJ, Dunne WM, et al. Stenotrophomonas maltophilia intestinal colonization in hospitalized oncology patients with diarrhea. Clin Infect Dis. 2003;37:1131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Vartivarian S, Anaissie E, Bodey G, et al. A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrob Agents Chemother. 1994;38:624–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Krueger TS, Clark EA, Nix DE. In vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations. Diagn Microbiol Infect Dis. 2001;41:71–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lecso-Bornet M, Pierre J, Sarkis-Karam D, et al. Susceptibility of Xanthomonas maltophilia to six quinolones and study of outer membrane proteins in resistant mutants selected in vitro. Antimicrob Agents Chemother. 1992;36:669–71.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Noskin GA. Tigecycline: a new glycylcycline for treatment of serious infections. Clin Infect Dis. 2005.;41Suppl 5;41:S303–14.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rolston K, Guan Z, Bodey GP, et al. Acinetobacter calcoaceticus septicemia in patients with cancer. South Med J. 1985;78(6):647–51.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chen CY, Tsay W, Tang JL, et al. Epidemiology of bloodstream infections in patients with haematological malignancies with and without neutropenia. Epidemiol Infect. 2010;138:1044–51.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wisplinghoff H, Paulus T, Lugenheim M, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect. 2012;64:282–90.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Velasco E, Byington R, Martins CA, et al. Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections. Eur J Clin Microbiol Infect Dis. 2006;25:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ashour HM, El-Sharif A. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients. J Transl Med. 2009;7:14.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Segal SC, Zaoutis TE, Kagen J, et al. Epidemiology of and risk factors for Acinetobacter species bloodstream infection in children. Pediatr Infect Dis J. 2007;26:920–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gales AC, Jones RN, Forward KR, et al. Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY Antimicrobial Surveillance Program (1997-1999). Clin Infect Dis. 2001;32(Suppl 2):S104–13.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Cayô R, Yañez San Segundo L, Pérez del Molino Bernal IC, et al. Bloodstream infection caused by Acinetobacter junii in a patient with acute lymphoblastic leukaemia after allogenic haematopoietic cell transplantation. J Med Microbiol. 2011;60:375–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Turkoglu M, Mirza E, Tunçcan OG, et al. Acinetobacter baumannii infection in patients with hematologic malignancies in intensive care unit: risk factors and impact on mortality. J Crit Care. 2011;26:460–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Turkoglu M, Dizbay M. Multidrug-resistant Acinetobacter baumannii infection is not an independent risk factor for mortality in critically ill patients with hematologic malignancy. J Crit Care. 2011;26:526–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Queenan AM, Pillar CM, Deane J, et al. Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: results from CAPITAL Surveillance 2010. Diagn Microbiol Infect Dis. 2012;73:267–70.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nørskov-Lauritsen N, Marchandin H, Dowzicky MJ. Antimicrobial susceptibility of tigecycline and comparators against bacterial isolates collected as part of the TEST study in Europe (2004-2007). Int J Antimicrob Agents. 2009;34:121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Vila J, Pachón J. Therapeutic options for Acinetobacter baumannii infections: an update. Expert Opin Pharmacother. 2012;13:2319–36.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kuo SC, Lee YT, Yang SP, et al. Eradication of multidrug-resistant Acinetobacter baumannii from the respiratory tract with inhaled colistin methanesulfonate: a matched case-control study. Clin Microbiol Infect. 2012;18:870–6.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Dalfino L, Puntillo F, Mosca A, et al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? A preliminary study. Clin Infect Dis. 2012;54:1720–6.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yau W, Owen RJ, Poudyal A, et al. Colistin hetero-resistance in multidrug-resistant Acinetobacter baumannii clinical isolates from the Western Pacific region in the SENTRY antimicrobial surveillance programme. J Infect. 2009;58:138–44.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Arroyo LA, Mateos I, González V, et al. In vitro activities of tigecycline, minocycline, and colistin-tigecycline combination against multi- and pandrug-resistant clinical isolates of Acinetobacter baumannii group. Antimicrob Agents Chemother. 2009;53:1295–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sun Y, Cai Y, Liu X, et al. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents. 2013;41:110–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Aisenberg G, Rolston KV, Safdar A. Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989-2003). Cancer. 2004;101:2134–40.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Rolston KV, Messer M. The in-vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 40 antimicrobial agents. J Antimicrob Chemother. 1990;26:857–60.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Yamamoto M, Nagao M, Hotta G, et al. Molecular characterization of IMP-type metallo-β-lactamases among multidrug-resistant Achromobacter xylosoxidans. J Antimicrob Chemother. 2012;67:2110–3.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Saiman L, Chen Y, Gabriel PS, et al. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother. 2002;46:1105–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Mann T, Ben-David D, Zlotkin A, et al. An outbreak of Burkholderia cenocepacia bacteremia in immunocompromised oncology patients. Infection. 2010;38:187–94.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yamagishi Y, Fujita J, Takigawa K, et al. Clinical features of Pseudomonas cepacia pneumonia in an epidemic among immunocompromised patients. Chest. 1993;103:1706–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Heo ST, Kim SJ, Jeong YG. Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haematological malignancy patients with indwelling catheters. J Hosp Infect. 2008;70:241–5.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bloch KC, Nadarajah R, Jacobs R. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine. 1997;76:30–41.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chen FL, Wang GC, Teng SO, et al. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect. 2013;46:425–32.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lin JT, Wang WS, Yen CC, et al. Chryseobacterium indologenes bacteremia in a bone marrow transplant recipient with chronic graft-versus-host disease. Scand J Infect Dis. 2003;35:882–3.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Adachi A, Mori T, Shimizu T, et al. Chryseobacterium meningosepticum septicemia in a recipient of allogeneic cord blood transplantation. Scand J Infect Dis. 2004;36:539–40.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kim KK, Kim MK, Lim JH, et al. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol. 2005;55:1287–93.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hsu MS, Liao CH, Huang YT, et al. Clinical features, antimicrobial susceptibilities, and outcomes of Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) bacteremia at a medical center in Taiwan, 1999-2006. Eur J Clin Microbiol Infect Dis. 2011;30:1271–8.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jacobs A, Chenia HY. Biofilm formation and adherence characteristics of an Elizabethkingia meningoseptica isolate from Oreochromis mossambicus. Eur J Clin Microbiol Infect Dis. 2011;30:1271–8.CrossRefGoogle Scholar
  78. 78.
    González LJ, Vila AJ. Carbapenem resistance in Elizabethkingia meningoseptica is mediated by metallo-β-lactamase BlaB. Antimicrob Agents Chemother. 2012;56:1686–92.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hsueh PR, Hsiue TR, Wu JJ, et al. Flavobacterium indologenes bacteremia: clinical and microbiological characteristics. Clin Infect Dis. 1996;23:550–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Chang JC, Hsueh PR, Wu JJ, et al. Antimicrobial susceptibility of flavobacteria as determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother. 1997;41:1301–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Jiang X, Wang D, Wang Y, et al. Occurrence of antimicrobial resistance genes sul and dfrA12 in hospital environmental isolates of Elizabethkingia meningoseptica. World J Microbiol Biotechnol. 2012;28:3097–102.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Green O, Murray P, Gea-Banacloche JC. Sepsis caused by Elizabethkingia miricola successfully treated with tigecycline and levofloxacin. Diagn Microbiol Infect Dis. 2008;62:430–2.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Simor AE, Ricci J, Lau A, et al. Pseudobacteremia due to Pseudomonas fluorescens. Pediatr Infect Dis. 1985;4:508–12.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Scott J, Boulton FE, Govan JR, et al. A fatal transfusion reaction associated with blood contaminated with Pseudomonas fluorescens. Vox Sang. 1988;54:201–4.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Puckett A, Davison G, Entwistle CC, et al. Post transfusion septicaemia 1980-1989: importance of donor arm cleansing. J Clin Pathol. 1992;45:155–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gershman MD, Kennedy DJ, Noble-Wang J, et al. Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis. 2008;47:1372–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wilkinson FH, Kerr KG. Bottled water as a source of multi-resistant Stenotrophomonas and Pseudomonas species for neutropenic patients. Eur J Cancer Car (Engl). 1998;7:12–4.CrossRefGoogle Scholar
  88. 88.
    Wong V, Levi K, Baddal B, et al. Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit. J Clin Microbiol. 2011;49:2093–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Patel R, Paya C. Infections in solid organ transplant recipients. Clin Microbiol Rev. 1997;10:86–124.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    CDC. Guidelines for preventing opportunistic infections among hematopoietic cell transplant recipients. MMWR Recomm Rep. 2000;49(RR-10):1–125, CE1-7.Google Scholar
  91. 91.
    Boulad F, Sands S, Sklar C. Late complications after bone marrow transplantation in children and adolescents. Curr Probl Pediatr. 1998;28:273–97.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Chawla R. Infections after bone marrow transplantation. 2009.
  93. 93.
    Appelbaum FR. The use of bone marrow and peripheral blood stem cell transplantation in the treatment of cancer. CA Cancer J Clin. 1996;46:142–64.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Thomas ED, Clift RA, Fefer A, et al. Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann Intern Med. 1986;104:155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Van Burik J, Weisdorf D. Infections in recipients of blood and marrow transplantation. In: Mandell GL, Bennet JE, Dolin R, editors. Principals and practice of infectious diseases 5th ed. Philadelphia: Churchill Livingstone; 2000. p. 3136–47.Google Scholar
  96. 96.
    Sable CA, Donowitz GR. Infections in bone marrow transplant recipients. Clin Infect Dis. 1994;18:273–81.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Engels EA, Ellis CA, Supran SE, et al. Early infection in bone marrow transplantation: quantitative study of clinical factors that affect risk. Clin Infect Dis. 1999;28:256–66.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Busca A, Saroglia EM, Giacchino M, et al. Analysis of early infectious complications in pediatric patients undergoing bone marrow transplantation. Support Care Cancer. 1999;7:253–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lark R, Mcneel S, VanderHyde K, et al. Risk factors for anaerobic bloodstream infections on bone marrow transplant recipients. Clin Infect Dis. 2001;35:338–43.CrossRefGoogle Scholar
  100. 100.
    Wyner LM. The evaluation and management of urinary tract infections in recipients of solid organ transplants. Semin Urol. 1994;12:134–9.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Prokurut S, Drabik E, Genda R, et al. Ganciclovir in cytomegalovirus prophylaxis in high risk pediatric renal transplant recipients. Transplant Proc. 1993;25:2577.Google Scholar
  102. 102.
    Couturier M, Slechta E, Goulston C, et al. Leptotrichia bacteremia in patients recovering high dose chemotherapy. J Clin Microbiol. 2012;50:1228–32.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vidal A, Sarria J, Kimbrough RR, et al. Anaerobic bacteremia in a neutropenic patient with oral mucositis. Am J Med Sci. 2000;319:189–90.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    DePauw B, Bowden R, Paya C. Management of the febrile patient in hematopoietic stem cell and solid organ transplant recipients. In: Bowden R, Ljungman P, Paya C, editors. Transplant infection. Philadelphia: Lippincott-Raven; 1998. p. 153–65.Google Scholar
  105. 105.
    Winn WC, Koneman EW. Konemans’s color atlas and textbook of diagnostic microbiology. 6th ed. Philadelphia: Lippincott/The Williams & Wilkins Co.; 2006.Google Scholar
  106. 106.
    Cooreman S, Schuermans C, Van Schaeren J, et al. Bacteremia caused by Leptotrichia trevisanii in a neutropenic patient. Anaerobe. 2011;17:1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Tee W, Midolo P, Janssen PH, et al. Bacteremia due to Leptotrichia Trevisanii sp. Nov. Eur J Clin Microbiol Infect Dis. 2001;20:765–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Patel JB, Clarridge J, Schuster MS, et al. Bacteremia caused by novel isolate resembling Leptotrichia species in a neutropenic patient. J Clin Microbiol. 1999;37:2064–7.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Justesen US, Skov MN, Knudsen E, et al. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from bloodstream infections. J Clin Microbiol. 2008;46:1596–601.CrossRefGoogle Scholar
  110. 110.
    Simmon KE, Mirrett S, Relle LB, et al. Genotypic diversity of anaerobic isolates from bloodstream infections. J Clin Microbiol. 2008;46:1596–601.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Schindel C, Siepman U, Han SR, et al. Persistant legionella infection in a patient after bone marrow transplantation, vol. 38; 2000. p. 4294–5.Google Scholar
  112. 112.
    Beelen DW, Haralambie E, et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host disease after sibling marrow transplantation. Blood. 1992;80:2668–76.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Jones JM, Wilson R, Bealmear PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res. 1971;45:577.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Truit RL, Winter M, Winter S. Application of germfree techniques to the treatment of leukemia in AKR mice by allogeneic bone marrow transplantation. In: Waters H, editor. The handbook of cancer immunology. Volume 5: immunotherapy. New York: Garland STPM; 1978. p. 431.Google Scholar
  115. 115.
    Van Bekkum DW, Roodenburg J, Heidt PJ, et al. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst. 1974;52:401.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Miller TL, Wolin MJ. Methanogens in human and animal intestinal tracts. Syst Appl Microbiol. 1986;7:223–9.CrossRefGoogle Scholar
  117. 117.
    Dermoumi HL, Ansong RAM. Isolation and antimicrobial susceptibility testing of fecal strains of the archaeon Methanobrevibacter smithii. Chemotherapy. 2001;47:177–83.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Beelen DW, Haralambie E, Brandt H, et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host-disease after sibling bone marrow transplantation. Blood. 1192;80:2668.Google Scholar
  119. 119.
    Beelen DW, Elmaagacli A, Muller KD, et al. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host-disease after bone marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trail. Blood. 1999;93:3267–75.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Ansorg R, Rath PM, Runde V, et al. Influence of intestinal decontamination using metronidazole on the detection of methanogenic archaea in bone marrow transplant recipients. Bone Marrow Transplant. 2003;31:117–9.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Paya CV, Hermans PE, Smith TF, et al. Efficacy of ganciclovir in liver and kidney transplant recipients with severe cytomegalovirus infection. Transplantation. 1988;46:229–34.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Stouteanbeek C, Van Saens H, Mirande D, et al. A new technique of infection prevention in the intensive care unit by selective decontamination of the digestive tract. Acta Anaesthesiol Belg. 1983;34:209–21.Google Scholar
  123. 123.
    Van Der Waaij D. Colonization resistance of the digestive tract: clinical consequences and implications. J Antimicrob Chemother. 1982;10:263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Patel R, Cockerill F, Porayko M, et al. Lactobacillemia in liver transplantation patients. Clin Infect Dis. 1994;18:207–12.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Paya CV, Hermans PE, Washington JA, et al. Incidence, distribution, and outcome of episodes of infection in 100 orthotopic liver transplantation. Mayo Clin Proc. 1989;64:555–64.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Gorensek M, Carey WD, Vogt D, et al. A multivariate analysis of risk factors for cytomegalovirus infection in liver transplantation recipients. Gastroenterology. 1990;98:1326–32.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Gorensek MJ, Carey WD, Washington JA, et al. Selective bowel decontamination with quinolones and nystatin reduces gram negative and fungal infections in orthotropic liver transplant recipients. Cleve Clin J Med. 1993;60:139–44.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wolinsky E. Mycobacterial disease other than tuberculosis. Clin Infect Dis. 1990;5:80–9.Google Scholar
  129. 129.
    Zeluff BJ. Fungal Pneumonia in Transplant Recipients. Semin Respir Infect. 1990;5:50–89.Google Scholar
  130. 130.
    George D, Arnow P, Fox A, et al. Bacterial infections a complication of the liver transplantation. Rev Infect Dis. 1991;13:387–96.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Kusne S, Dummer JS, Singh N, et al. Infections after liver transplantation. An analysis of 101 consecutive cases. Medicine. 1988;67:132–43.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Waser M, Maggiorini M, Luthy A, et al. Infectious complications in 100 consecutive heart transplant recipients. Eur J Clin Microbiol Infect Dis. 1994;13:12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Brooks R, Hofflin J, Jamieson S, et al. Infectious complications in heart-lung transplant recipients. Am J Med. 1985;79:412–22.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Krieger J, Senterfit L, Muecke E, et al. Anaerobic bacterium in renal transplantation. Urology. 1978;12:635–40.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Fox BC, Sollinger HW, Belzer FO, et al. A prospective, randomized, double-blind study of trimethoprim-sulfamethoxazole for prophylaxis of infection in renal transplantation: clinical efficacy, absorption of trimethoprim-sulfamethoxazole, effects on the microflora, and the cost-benefit of prophylaxis. Am J Med. 1990;89:255–74.CrossRefGoogle Scholar
  136. 136.
    Maki DG, Fox BC, Kuntz J, et al. A prospective, randomized, double-blind study of trimethoprim-sulfamethoxazole for prophylaxis of infection in renal transplantation: side effects of trimethoprim-sulfamethoxazole, interaction with cyclosporine. J Lab Clin Med. 1992;119:11–24.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Tolkoff-Rubin NE, Cosimi AB, Russell PS, et al. A controlled study of trimethoprim-sulfamethoxazole prophylaxis of urinary tract infection in renal transplant recipients. Rev Infect Dis. 1982;4:614–8.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Infectious Diseases Society of America. The 10 x '20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis. 2010;50(8):1081–3.CrossRefGoogle Scholar
  139. 139.
    Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect. 2017;23:704–12.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Munita JM, Aitken SL, Miller WR, et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2017;65:158–61.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Fraile-Ribot PA, Cabot G, Mulet X, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;73(3):658–63.CrossRefGoogle Scholar
  142. 142.
    Aitken SL, Tarrand JJ, Deshpande LM, et al. High rates of nonsusceptibility to ceftazidime-avibactam and identification of New Delhi metallo-β-lactamase production in Enterobacteriaceae bloodstream infections at a major cancer center. Clin Infect Dis. 2016;63(7):954–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Infectious Diseases, Infection Control & Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of MedicineEl PasoUSA

Personalised recommendations