Intravascular Catheter and Implantable Device Infections in Transplant Patients

  • Nasia SafdarEmail author
  • Cybele Lara R. Abad
  • Dennis G. Maki


The use of intravascular devices for administration of drugs, fluids, blood products, and nutritional support is essential in patients undergoing transplantation procedures. These intravascular devices have a significant potential to produce iatrogenic disease, such as bloodstream infection originating from colonization of the indwelling intravascular devices. Over two-thirds of all healthcare-associated bacteremia originate from devices used for vascular access. Patients undergoing hematopoietic stem cell transplantation, who have inherently compromised immune function because of their cancer and are further incapacitated due to the preparatory pretransplant conditioning regimen or graft-versus-host disease, are particularly prone to device-related infections. In this chapter, a comprehensive review of epidemiology, disease pathogenesis, clinical presentation, treatment, and prevention of intravascular device-related infections is presented.


Catheter infection Bloodstream infection Prevention 


  1. 1.
    Raad I, Hachem R, Hanna H, et al. Sources and outcome of bloodstream infections in cancer patients: the role of central venous catheters. Eur J Clin Microbiol Infect Dis. 2007;26(8):549–56.PubMedCrossRefGoogle Scholar
  2. 2.
    Hachem R, Raad I. Prevention and management of long-term catheter related infections in cancer patients. Cancer Investig. 2002;20(7–8):1105–13.CrossRefGoogle Scholar
  3. 3.
    Longuet P, Douard MC, Arlet G, Molina JM, Benoit C, Leport C. Venous access port – related bacteremia in patients with acquired immunodeficiency syndrome or cancer: the reservoir as a diagnostic and therapeutic tool. Clin Infect Dis. 2001;32(12):1776–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Safdar N, Maki DG. Antibiotic resistance and prevention of CVC-associated BSIs, catheter-associated urinary tract infection and Clostridium difficile. In: Jarvis W, editor. Bennett and Brachman’s hospital infections. Philadelphia: Williams and Wilkins; 2007. p. 395–416.Google Scholar
  5. 5.
    Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis. 2007;7(10):645–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Lukenbill J, Rybicki L, Sekeres MA, et al. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2013;19(5):720–4.PubMedCrossRefGoogle Scholar
  7. 7.
    O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol. 2002;23(12):759–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Siempos II, Kopterides P, Tsangaris I, Dimopoulou I, Armaganidis AE. Impact of catheter-related bloodstream infections on the mortality of critically ill patients: a meta-analysis. Crit Care Med. 2009;37(7):2283–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 1994;271(20):1598–601.PubMedCrossRefGoogle Scholar
  10. 10.
    Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81(9):1159–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Hockenhull JC, Dwan K, Boland A, et al. The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation. Health Technol Assess. 2008;12(12):iii–v, xi–xii, 1–154.PubMedCrossRefGoogle Scholar
  12. 12.
    Raad II. Commentary: zero tolerance for catheter-related bloodstream infections: the unnegotiable objective. Infect Control Hosp Epidemiol. 2008;29(10):951–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–32.CrossRefGoogle Scholar
  14. 14.
    Pronovost PJ, Berenholtz SM, Needham DM. Translating evidence into practice: a model for large scale knowledge translation. BMJ. 2008;337:a1714.PubMedCrossRefGoogle Scholar
  15. 15.
    Pronovost PJ, Goeschel CA, Colantuoni E, et al. Sustaining reductions in catheter related bloodstream infections in Michigan intensive care units: observational study. BMJ. 2010;340:c309.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Reduction in central line-associated bloodstream infections among patients in intensive care units – Pennsylvania, April 2001–March 2005. MMWR Morb Mortal Wkly Rep. 2005;54(40):1013–6.Google Scholar
  17. 17.
    Frankel HL, Crede WB, Topal JE, Roumanis SA, Devlin MW, Foley AB. Use of corporate Six Sigma performance-improvement strategies to reduce incidence of catheter-related bloodstream infections in a surgical ICU. J Am Coll Surg. 2005;201(3):349–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Gastmeier P, Geffers C. Prevention of catheter-related bloodstream infections: analysis of studies published between 2002 and 2005. J Hosp Infect. 2006;64(4):326–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeffries HE, Mason W, Brewer M, et al. Prevention of central venous catheter-associated bloodstream infections in pediatric intensive care units: a performance improvement collaborative. Infect Control Hosp Epidemiol. 2009;30(7):645–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Lobo RD, Levin AS, Oliveira MS, et al. Evaluation of interventions to reduce catheter-associated bloodstream infection: continuous tailored education versus one basic lecture. Am J Infect Control. 2010;38(6):440–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller RS, Norris PR, Jenkins JM, et al. Systems initiatives reduce healthcare-associated infections: a study of 22,928 device days in a single trauma unit. J Trauma. 2010;68(1):23–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Render ML, Brungs S, Kotagal U, et al. Evidence-based practice to reduce central line infections. Jt Comm J Qual Patient Saf. 2006;32(5):253–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Rosenthal VD, Guzman S, Pezzotto SM, Crnich CJ. Effect of an infection control program using education and performance feedback on rates of intravascular device-associated bloodstream infections in intensive care units in Argentina. Am J Infect Control. 2003;31(7):405–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Zuschneid I, Schwab F, Geffers C, Ruden H, Gastmeier P. Reducing central venous catheter-associated primary bloodstream infections in intensive care units is possible: data from the German nosocomial infection surveillance system. Infect Control Hosp Epidemiol. 2003;24(7):501–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Edwards JR, Peterson KD, Andrus ML, Dudeck MA, Pollock DA, Horan TC. National Healthcare Safety Network (NHSN) report, data summary for 2006 through 2007, issued November 2008. Am J Infect Control. 2008;36(9):609–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Edwards JR, Peterson KD, Andrus ML, et al. National Healthcare Safety Network (NHSN) report, data summary for 2006, issued June 2007. Am J Infect Control. 2007;35(5):290–301.PubMedCrossRefGoogle Scholar
  27. 27.
    Edwards JR, Peterson KD, Mu Y, et al. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control. 2009;37(10):783–805.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Digiorgio MJ, Fatica C, Oden M, et al. Development of a modified surveillance definition of central line-associated bloodstream infections for patients with hematologic malignancies. Infect Control Hosp Epidemiol. 2012;33(9):865–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Maki DG, Goldman DA, Rhame FS. Infection control in intravenous therapy. Ann Intern Med. 1973;79(6):867–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Maki D, Mermel L. Infections due to infusion therapy. CINA-AGINCOURT. 1999;15:71–95. Google Scholar
  31. 31.
    Douard MC, Clementi E, Arlet G, et al. Negative catheter-tip culture and diagnosis of catheter-related bacteremia. Nutrition. 1994;10(5):397–404.PubMedGoogle Scholar
  32. 32.
    Nouwen JL, Wielenga JJ, van Overhagen H, et al. Hickman catheter-related infections in neutropenic patients: insertion in the operating theater versus insertion in the radiology suite. J Clin Oncol. 1999;17(4):1304.PubMedCrossRefGoogle Scholar
  33. 33.
    Livesley MA, Tebbs SE, Moss HA, Faroqui MH, Lambert PA, Elliott TS. Use of pulsed field gel electrophoresis to determine the source of microbial contamination of central venous catheters. Eur J Clin Microbiol Infect Dis. 1998;17(2):108–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Darouiche RO, Raad II, Heard SO, et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med. 1999;340(1):1–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med. 1997;127(4):257–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Garland JS, Alex CP, Sevallius JM, et al. Cohort study of the pathogenesis and molecular epidemiology of catheter-related bloodstream infection in neonates with peripherally inserted central venous catheters. Infect Control Hosp Epidemiol. 2008;29(3):243–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Safdar N, Maki DG. The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med. 2004;30(1):62–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Marrie TJ, Costerton JW. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J Clin Microbiol. 1984;19(5):687–93.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Cooper GL, Schiller AL, Hopkins CC. Possible role of capillary action in pathogenesis of experimental catheter-associated dermal tunnel infections. J Clin Microbiol. 1988;26(1):8–12.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Sitges-Serra A, Linares J, Garau J. Catheter sepsis: the clue is the hub. Surgery. 1985;97(3):355–7.PubMedGoogle Scholar
  41. 41.
    Maki DG, Jarrett F, Sarafin HW. A semiquantitative culture method for identification of catheter-related infection in the burn patient. J Surg Res. 1977;22(5):513–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Crnich CJ, Maki DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis. 2002;34(9):1232–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Yokoe DS, Mermel LA, Anderson DJ, et al. A compendium of strategies to prevent healthcare-associated infections in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(Suppl 1):S12–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Bjornson HS, Colley R, Bower RH, Duty VP, Schwartz-Fulton JT, Fischer JE. Association between microorganism growth at the catheter insertion site and colonization of the catheter in patients receiving total parenteral nutrition. Surgery. 1982;92(4):720–7.PubMedGoogle Scholar
  45. 45.
    Sitges-Serra A, Puig P, Linares J, et al. Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. JPEN J Parenter Enteral Nutr. 1984;8(6):668–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168(2):400–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–17.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Trick WE, Fridkin SK, Edwards JR, Hajjeh RA, Gaynes RP. Secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989–1999. Clin Infect Dis. 2002;35(5):627–30.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lorente L, Jimenez A, Santana M, et al. Microorganisms responsible for intravascular catheter-related bloodstream infection according to the catheter site. Crit Care Med. 2007;35(10):2424–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Sipsas NV, Lewis RE, Tarrand J, et al. Candidemia in patients with hematologic malignancies in the era of new antifungal agents (2001–2007): stable incidence but changing epidemiology of a still frequently lethal infection. Cancer. 2009;115(20):4745–52.PubMedCrossRefGoogle Scholar
  51. 51.
    See I, Iwamoto M, Allen-Bridson K, Horan T, Magill SS, Thompson ND. Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol. 2013;34(8):769–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Safdar N, Fine JP, Maki DG. Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med. 2005;142(6):451–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Raad I, Hanna H, Boktour M, et al. Management of central venous catheters in patients with cancer and candidemia. Clin Infect Dis. 2004;38(8):1119–27.PubMedCrossRefGoogle Scholar
  54. 54.
    Jones PG, Hopfer RL, Elting L, Jackson JA, Fainstein V, Bodey GP. Semiquantitative cultures of intravascular catheters from cancer patients. Diagn Microbiol Infect Dis. 1986;4(4):299–306.PubMedCrossRefGoogle Scholar
  55. 55.
    Douard MC, Arlet G, Leverger G, et al. Quantitative blood cultures for diagnosis and management of catheter-related sepsis in pediatric hematology and oncology patients. Intensive Care Med. 1991;17(1):30–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Douard MC, Arlet G, Longuet P, et al. Diagnosis of venous access port-related infections. Clin Infect Dis. 1999;29(5):1197–202.PubMedCrossRefGoogle Scholar
  57. 57.
    Franklin JA, Gaur AH, Shenep JL, Hu XJ, Flynn PM. In situ diagnosis of central venous catheter-related bloodstream infection without peripheral blood culture. Pediatr Infect Dis J. 2004;23(7):614–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Malgrange VB, Escande MC, Theobald S. Validity of earlier positivity of central venous blood cultures in comparison with peripheral blood cultures for diagnosing catheter-related bacteremia in cancer patients. J Clin Microbiol. 2001;39(1):274–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gaur AH, Flynn PM, Giannini MA, Shenep JL, Hayden RT. Difference in time to detection: a simple method to differentiate catheter-related from non-catheter-related bloodstream infection in immunocompromised pediatric patients. Clin Infect Dis. 2003;37(4):469–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Seifert H, Cornely O, Seggewiss K, et al. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J Clin Microbiol. 2003;41(1):118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Krause R, Auner HW, Gorkiewicz G, et al. Detection of catheter-related bloodstream infections by the differential-time-to-positivity method and gram stain-acridine orange leukocyte cytospin test in neutropenic patients after hematopoietic stem cell transplantation. J Clin Microbiol. 2004;42(10):4835–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Farina C, Bonanomi E, Benetti G, Fumagalli R, Goglio A. Acridine orange leukocyte cytospin test for central venous catheter – related bloodstream infection: a pediatric experience. Diagn Microbiol Infect Dis. 2005;52(4):337–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Abdelkefi A, Achour W, Torjman L, et al. Detection of catheter-related bloodstream infections by the Gram stain-acridine orange leukocyte cytospin test in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2006;37(6):595–9.PubMedCrossRefGoogle Scholar
  64. 64.
    O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e162–93.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep. 2002;51(RR-10):1–29.PubMedGoogle Scholar
  66. 66.
    Crnich CJ, Maki DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. II. Long-term devices. Clin Infect Dis. 2002;34(10):1362–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Safdar N, Maki DG. Use of vancomycin-containing lock or flush solutions for prevention of bloodstream infection associated with central venous access devices: a meta-analysis of prospective, randomized trials. Clin Infect Dis. 2006;43(4):474–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Yahav D, Rozen-Zvi B, Gafter-Gvili A, Leibovici L, Gafter U, Paul M. Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta-analysis of randomized, controlled trials. Clin Infect Dis. 2008;47(1):83–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Sanders J, Pithie A, Ganly P, et al. A prospective double-blind randomized trial comparing intraluminal ethanol with heparinized saline for the prevention of catheter-associated bloodstream infection in immunosuppressed haematology patients. J Antimicrob Chemother. 2008;62(4):809–15.PubMedCrossRefGoogle Scholar
  70. 70.
    Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA. 1999;281(3):261–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Ramritu P, Halton K, Collignon P, et al. A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. Am J Infect Control. 2008;36(2):104–17.CrossRefGoogle Scholar
  72. 72.
    Hockenhull JC, Dwan KM, Smith GW, et al. The clinical effectiveness of central venous catheters treated with anti-infective agents in preventing catheter-related bloodstream infections: a systematic review. Crit Care Med. 2009;37(2):702–12.PubMedCrossRefGoogle Scholar
  73. 73.
    Maki D, Mermel L, Kluger D, et al. The efficacy of a chlorhexidine impregnated sponge (Biopatch) for the prevention of intravascular catheter-related infection-a prospective randomized controlled multicenter study. Abstr Intersci Conf Antimicrob Agents Chemother. 2000;40:422–4. (abstr 1430).Google Scholar
  74. 74.
    Ho KM, Litton E. Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother. 2006;58(2):281–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Timsit JF, Schwebel C, Bouadma L, Geffroy A, Garrouste-Orgeas M, Pease S, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301(12):1231–41.CrossRefGoogle Scholar
  76. 76.
    Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med. 2002;136(11):792–801.PubMedCrossRefGoogle Scholar
  77. 77.
    Maki DG, Ringer M, Alvarado CJ. Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet. 1991;338(8763):339–43.PubMedCrossRefGoogle Scholar
  78. 78.
    Tacconelli E, Carmeli Y, Aizer A, Ferreira G, Foreman MG, D’Agata EM. Mupirocin prophylaxis to prevent Staphylococcus aureus infection in patients undergoing dialysis: a meta-analysis. Clin Infect Dis. 2003;37(12):1629–38.PubMedCrossRefGoogle Scholar
  79. 79.
    Safdar N, Crnich CJ, Maki DG. The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respir Care. 2005;50(6):725–39; discussion 739–741.PubMedGoogle Scholar
  80. 80.
    Clemence MA, Walker D, Farr BM. Central venous catheter practices: results of a survey. Am J Infect Control. 1995;23(1):5–12.PubMedCrossRefGoogle Scholar
  81. 81.
    Wertheim HF, Vos MC, Ott A, et al. Mupirocin prophylaxis against nosocomial Staphylococcus aureus infections in nonsurgical patients: a randomized study. Ann Intern Med. 2004;140(6):419–25.PubMedCrossRefGoogle Scholar
  82. 82.
    Babu T, Rekasius V, Parada JP, Schreckenberger P, Challapalli M. Mupirocin resistance among methicillin-resistant Staphylococcus aureus-colonized patients at admission to a tertiary care medical center. J Clin Microbiol. 2009;47(7):2279–80.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Orrett FA. The emergence of mupirocin resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in Trinidad: a first report. Jpn J Infect Dis. 2008;61(2):107–10.PubMedGoogle Scholar
  84. 84.
    Perkins D, Hogue JS, Fairchok M, Braun L, Viscount HB. Mupirocin resistance screening of methicillin-resistant Staphylococcus aureus isolates at Madigan Army Medical Center. Mil Med. 2008;173(6):604–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Rossney A, O’Connell S. Emerging high-level mupirocin resistance among MRSA isolates in Ireland. Euro Surveill. 2008;13(14). pii=8084. Available online:
  86. 86.
    Graber CJ, Schwartz BS. Failure of decolonization in patients with infections due to mupirocin-resistant strains of community-associated methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2008;29(3):284; author reply 284–285PubMedCrossRefGoogle Scholar
  87. 87.
    Cavdar C, Saglam F, Sifil A, et al. Effect of once-a-week vs thrice-a-week application of mupirocin on methicillin and mupirocin resistance in peritoneal dialysis patients: three years of experience. Ren Fail. 2008;30(4):417–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Johnson DW, van Eps C, Mudge DW, Wiggins KJ, Armstrong K, Hawley CM, et al. Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. J Am Soc Nephrol. 2005;16(5):1456–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Raad II, Hohn DC, Gilbreath BJ, et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol. 1994;15(4 Pt 1):231–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Mermel LA, McCormick RD, Springman SR, Maki DG. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med. 1991;91(3B):197S–205S.PubMedCrossRefGoogle Scholar
  91. 91.
    Goetz AM, Wagener MM, Miller JM, Muder RR. Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect Control Hosp Epidemiol. 1998;19(11):842–5.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Joynt GM, Kew J, Gomersall CD, Leung VY, Liu EK. Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients. Chest. 2000;117(1):178–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Merrer J, De Jonghe B, Golliot F, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Richet H, Hubert B, Nitemberg G, et al. Prospective multicenter study of vascular-catheter-related complications and risk factors for positive central-catheter cultures in intensive care unit patients. J Clin Microbiol. 1990;28(11):2520–5.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Parienti JJ, Thirion M, Megarbane B, et al. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA. 2008;299(20):2413–22.PubMedCrossRefGoogle Scholar
  96. 96.
    Gowardman JR, Robertson IK, Parkes S, Rickard CM. Influence of insertion site on central venous catheter colonization and bloodstream infection rates. Intensive Care Med. 2008;34(6):1038–45.PubMedCrossRefGoogle Scholar
  97. 97.
    Randolph AG, Cook DJ, Gonzales CA, Pribble CG. Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med. 1996;24(12):2053–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Karakitsos D, Labropoulos N, De Groot E, et al. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care. 2006;10(6):R162.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB. Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med. 2009;169(15):1420–3.CrossRefGoogle Scholar
  100. 100.
    Timsit JF, Cheval C, Gachot B, et al. Usefulness of a strategy based on bronchoscopy with direct examination of bronchoalveolar lavage fluid in the initial antibiotic therapy of suspected ventilator-associated pneumonia. Intensive Care Med. 2001;27(4):640–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Ruschulte H, Franke M, Gastmeier P, et al. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol. 2009;88(3):267–72.CrossRefGoogle Scholar
  102. 102.
    O’Horo JC, Silva GL, Munoz-Price LS, Safdar N. The efficacy of daily bathing with chlorhexidine for reducing healthcare-associated bloodstream infections: a meta-analysis. Infect Control Hosp Epidemiol. 2012;33(3):257–67.PubMedCrossRefGoogle Scholar
  103. 103.
    Climo MW, Wong ES. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013;368(6):533–42.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lowe CF, Lloyd-Smith E, Sidhu, Ritchie G, Sharma A, Jang W, et al. Reduction in hospital-associated methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus with daily chlorhexidine gluconate bathing for medical inpatients. Am J Infect Control. 2017;45(3):255–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Climo MW, Wong ES. Daily chlorhexidine bathing and hospital-acquired infection. N Engl J Med. 2013;368(24):2332.PubMedGoogle Scholar
  106. 106.
    Casey AL, Mermel LA, Nightingale P, Elliott TS. Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8(12):763–76.PubMedCrossRefGoogle Scholar
  107. 107.
    Loertzer H, Soukup J, Hamza A, et al. Use of catheters with the AgION antimicrobial system in kidney transplant recipients to reduce infection risk. Transplant Proc. 2006;38(3):707–10.PubMedCrossRefGoogle Scholar
  108. 108.
    Worth LJ, Slavin MA, Heath S, Szer J, Grigg AP. Ethanol versus heparin locks for the prevention of central venous catheter-associated bloodstream infections: a randomized trial in adult haematology patients with Hickman devices. J Hosp Infect. 2014;88(1):48–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Zacharioudakis IM, Zervou FN, Arvanitis M, Ziakas PD, Mermel LA, Mylonakis E. Antimicrobial lock solutions as a method to prevent central line-associated bloodstream infections: a meta-analysis of randomized controlled trials. Clin Infect Dis. 2014;59(12):1741–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Bookstaver PB, Williamson JC, Tucker BK, Raad II, Sherertz RJ. Activity of novel antibiotic lock solutions in a model against isolates of catheter-related bloodstream infections. Ann Pharmacother. 2009;43(2):210–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Mendelson MH, Short LJ, Schechter CB, et al. Study of a needleless intermittent intravenous-access system for peripheral infusions: analysis of staff, patient, and institutional outcomes. Infect Control Hosp Epidemiol. 1998;19(6):401–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Skolnick R, LaRocca J, Barba D, Paicius L. Evaluation and implementation of a needleless intravenous system: making needlesticks a needless problem. Am J Infect Control. 1993;21(1):39–41.PubMedCrossRefGoogle Scholar
  113. 113.
    Gartner K. Impact of a needleless intravenous system in a university hospital. J Healthc Mater Manag. 1993;11(8):44–6, 48–49.Google Scholar
  114. 114.
    Lawrence D. HAI – a high visibility problem: recent studies show that hospitals with low HAI rates rely heavily on IT, but the jury is still out on where a CIO should begin. Healthc Inform. 2008;25(12):22, 24.PubMedGoogle Scholar
  115. 115.
    Jarvis WR, Murphy C, Hall KK, et al. Health care-associated bloodstream infections associated with negative- or positive-pressure or displacement mechanical valve needleless connectors. Clin Infect Dis. 2009;49(12):1821–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Do AN, Ray BJ, Banerjee SN, Illian AF, Barnett BJ, Pham MH, et al. Bloodstream infection associated with needleless device use and the importance of infection-control practices in the home health care setting. J Infect Dis. 1999;179(2):442–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Cookson ST, Ihrig M, O’Mara EM, et al. Increased bloodstream infection rates in surgical patients associated with variation from recommended use and care following implementation of a needleless device. Infect Control Hosp Epidemiol. 1998;19(1):23–7.PubMedCrossRefGoogle Scholar
  118. 118.
    McDonald LC, Banerjee SN, Jarvis WR. Line-associated bloodstream infections in pediatric intensive-care-unit patients associated with a needleless device and intermittent intravenous therapy. Infect Control Hosp Epidemiol. 1998;19(10):772–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Kellerman S, Shay DK, Howard J, et al. Bloodstream infections in home infusion patients: the influence of race and needleless intravascular access devices. J Pediatr. 1996;129(5):711–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Rupp ME, Sholtz LA, Jourdan DR, et al. Outbreak of bloodstream infection temporally associated with the use of an intravascular needleless valve. Clin Infect Dis. 2007;44(11):1408–14.PubMedCrossRefGoogle Scholar
  121. 121.
    Maragakis LL, Bradley KL, Song X, et al. Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol. 2006;27(1):67–70.PubMedCrossRefGoogle Scholar
  122. 122.
    Casey AL, Worthington T, Lambert PA, Quinn D, Faroqui MH, Elliott TS. A randomized, prospective clinical trial to assess the potential infection risk associated with the PosiFlow needleless connector. J Hosp Infect. 2003;54(4):288–93.PubMedCrossRefGoogle Scholar
  123. 123.
    Menyhay SZ, Maki DG. Disinfection of needleless catheter connectors and access ports with alcohol may not prevent microbial entry: the promise of a novel antiseptic-barrier cap. Infect Control Hosp Epidemiol. 2006;27(1):23–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Maki DG. In vitro studies of a novel antimicrobial luer-activated needleless connector for prevention of catheter-related bloodstream infection. Clin Infect Dis. 2010;50(12):1580–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Menyhay SZ, Maki DG. Preventing central venous catheter-associated bloodstream infections: development of an antiseptic barrier cap for needleless connectors. Am J Infect Control. 2008;36(10):S174 e15.CrossRefGoogle Scholar
  126. 126.
    Schears GJ. Summary of product trials for 10,164 patients: comparing an intravenous stabilizing device to tape. J Infus Nurs. 2006;29(4):225–31.PubMedCrossRefGoogle Scholar
  127. 127.
    Yamamoto AJ, Solomon JA, Soulen MC, et al. Sutureless securement device reduces complications of peripherally inserted central venous catheters. J Vasc Interv Radiol. 2002;13(1):77–81.PubMedCrossRefGoogle Scholar
  128. 128.
    Frey AM, Schears GJ. Why are we stuck on tape and suture? A review of catheter securement devices. J Infus Nurs. 2006;29(1):34–8.PubMedCrossRefGoogle Scholar
  129. 129.
    van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359–67.PubMedCrossRefGoogle Scholar
  130. 130.
    Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.PubMedCrossRefGoogle Scholar
  131. 131.
    Finfer S, Chittock DR, Su SY, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.PubMedCrossRefGoogle Scholar
  132. 132.
    Griesdale DE, de Souza RJ, van Dam RM, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Haraden C. What is a bundle? 2006. 09/07/2006. Available from:
  134. 134.
    Bhutta A, Gilliam C, Honeycutt M, et al. Reduction of bloodstream infections associated with catheters in paediatric intensive care unit: stepwise approach. BMJ. 2007;334(7589):362–5.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Costello JM, Morrow DF, Graham DA, Potter-Bynoe G, Sandora TJ, Laussen PC. Systematic intervention to reduce central line-associated bloodstream infection rates in a pediatric cardiac intensive care unit. Pediatrics. 2008;121(5):915–23.PubMedCrossRefGoogle Scholar
  136. 136.
    Blot K, Bergs J, Vogelaers D, Blot S, Vandijck D. Prevention of central line-associated bloodstream infections through quality improvement interventions: a systematic review and meta-analysis. Clin Infect Dis. 2014;59(1):96–105.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nasia Safdar
    • 1
    Email author
  • Cybele Lara R. Abad
    • 2
  • Dennis G. Maki
    • 1
  1. 1.Section of Infectious Diseases, Department of MedicineUniversity of Wisconsin-Madison, School of Medicine and Public Health, and the William S. Middleton Memorial Veterans HospitalMadisonUSA
  2. 2.Section of Infectious Diseases, Department of MedicineUniversity of the Philippines Manila, Philippine General HospitalManilaPhilippines

Personalised recommendations