Advertisement

Blood Interfacing Applications

  • Vasif Hasirci
  • Nesrin Hasirci
Chapter

Abstract

Blood is a type of connective tissue and is the most difficult one to bring an implant in contact with because in addition to being biocompatible, a material has to be hemocompatible to serve as a successful implant. Hemocompatibility is defined as the property of a material not to elicit thrombosis and blood coagulation, loss or damage to platelets and other blood elements, or in short, a biomaterial’s property should not to initiate any adverse effects on blood constituents or functions. A broad series of tests are conducted in situ, in vitro, and in vivo before a material is tested on humans for its hemocompatibility. The main types of adverse effects are thrombosis (blood clotting), damage to blood cells (e.g., hemolysis of erythrocytes), adherence and decrease of blood elements such as platelets, and immune responses initiated through the various complement activation pathways.

References

  1. 1.
    Ratcliffe A (2000) Tissue engineering of vascular grafts. Matrix Biol 19(4):353–357CrossRefGoogle Scholar
  2. 2.
    Zhang J (2016) The application and development of artificial blood vessels. 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016)Google Scholar
  3. 3.
    Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107CrossRefGoogle Scholar
  4. 4.
    Rathore A, Cleary M, Naito Y, Rocco K, Breuer C (2012) Development of tissue engineered vascular grafts and application of nanomedicine. Nanomed Nanobiotechnol 4(3):257–272CrossRefGoogle Scholar
  5. 5.
    Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28:5009–5027CrossRefGoogle Scholar
  6. 6.
    Contreras MA, Quist WC, Logerfo FW (2000) Effect of porosity on small-diameter vascular graft healing. Microsurgery 20(1):15–21CrossRefGoogle Scholar
  7. 7.
    Isaka M et al (2006) Experimental study on stability of a high porosity expanded polytetrafluoroethylene graft in dogs. Ann Thorac Cardiovasc Surg 12:37–41Google Scholar
  8. 8.
    Greisler HP et al (1987) Biomaterial pretreatment with ECGF to augment endothelial cell proliferation. J Vasc Surg 5(2):393–399CrossRefGoogle Scholar
  9. 9.
    Greisler HP, Cziperle DJ, Kim DU et al (1992) Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112(2):244–254Google Scholar
  10. 10.
    Ahmed F et al (2014) Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications. Biomacromolecules 15:1276–1287CrossRefGoogle Scholar
  11. 11.
    Sarkar S, Sales KM, Hamilton G, Seifalian AM (2007) Addressing thrombogenicity. J Biomed Mater Res B Appl Biomater 82(1):100–108CrossRefGoogle Scholar
  12. 12.
    de Valence S et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85:78–86CrossRefGoogle Scholar
  13. 13.
    Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W (2015) Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 44:5680CrossRefGoogle Scholar
  14. 14.
    Tanzi MC, Mantovani D, Petrini P, Guidoin R, Laroche G (1997) Chemical stability of polyether urethanes versus polycarbonate urethanes. J Biomedical Mater Res 36:550–559CrossRefGoogle Scholar
  15. 15.
    He W, Yong T, Ma ZW, Inai R, Teo WE, Ramakrishna S (2006) Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng 12(9):2457–2466CrossRefGoogle Scholar
  16. 16.
    Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10(7–8):1160–1168CrossRefGoogle Scholar
  17. 17.
    Stankus JJ, Guan J, Fujimoto K, Wagner WR (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27(5):735–744CrossRefGoogle Scholar
  18. 18.
    Shin'oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533CrossRefGoogle Scholar
  19. 19.
    This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported licenseGoogle Scholar
  20. 20.
    Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46CrossRefGoogle Scholar
  21. 21.
    Gurvitch R, Cheung A, Ye J, Wood DA, Willson AB, Toggweiler S et al (2011) Transcatheter valve-in-valve implantation for failed surgical bioprosthetic valves. J Am Coll Cardiol 58(21):2196–2209CrossRefGoogle Scholar
  22. 22.
    Mohammadi H, Mequanint K (2011) Prosthetic aortic heart valves: modeling and design. Med Eng Phys 33(2):131–147CrossRefGoogle Scholar
  23. 23.
    Hilbert SL, Ferrans VJ, Tomita Y, Eidbo EE, Jones M (1987) Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. J Thorac Cardiovasc Surg 94(3):419–429Google Scholar
  24. 24.
    Kiraly R, Yozu R, Hillegass D, Harasaki H, Murabayashi S, Snow J et al (1982) Hexsyn trileaflet valve: application to temporary blood pumps. Artif Organs 6(2):190–197CrossRefGoogle Scholar
  25. 25.
    Nistal F, Garcia-Martinez V, Arbe E, Fernandez D, Artinano E, Mazorra F et al (1990) In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J Thorac Cardiovasc Surg 99(6):1074–1081Google Scholar
  26. 26.
    Dabagh M, Abdekhodaie MJ, Khorasani MT (2005) Effects of polydimethylsiloxane grafting on the calcification, physical properties, and biocompatibility of polyurethane in a heart valve. J Appl Polym Sci 98:758–766CrossRefGoogle Scholar
  27. 27.
    INNOVIA LLC. Patent filed 2004, Registration Number 3446421Google Scholar
  28. 28.
    Bezuidenhout D, Williams DF, Zilla P (2015) Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36:6–25CrossRefGoogle Scholar
  29. 29.
    Gallocher SL, Aguirre AF, Kasyanov V, Pinchuk L, Schoephoerster RT (2006) Novel polymer for potential use in a trileaflet heart valve. J Biomed Mater Res B Appl Biomater 79(2):325–334CrossRefGoogle Scholar
  30. 30.
    Kannan RY, Salacinski HJ, Ghanavi JE, Narula A, Odlyha M, Peirovi H et al (2007) Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 119(6):1653–1662CrossRefGoogle Scholar
  31. 31.
    Punshon G, Sales KM, Vara DS, Hamilton G, Seifalian AM (2008) Assessment of the potential of progenitor stem cells extracted from human peripheral blood for seeding a novel vascular graft material. Cell Prolif 41(2):321–335CrossRefGoogle Scholar
  32. 32.
    van Neer PLMJ, Bouakaz A, Vlaanderen E, de Hart J, Van de Vosse FN, van der Steen AFW, de Jong N (2006) Detecting broken struts of a Björk-Shiley heart valve using ultrasound: a feasibility study. Ultrasound Med Biol 32(4):503–512CrossRefGoogle Scholar
  33. 33.
    Shiltman MI (2003) New concepts in polymer scienceGoogle Scholar
  34. 34.
    Cooley DA (2001) The total artificial heart as a bridge to cardiac transplantation. Tex Heart Inst J 28(3):200–202Google Scholar
  35. 35.
    Gray NA, Selzman CH (2006) Current status of the total artificial heart. Am Heart J 152(1):4–10CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Whittaker DR, Fillinger MF (2006) The engineering of endovascular stent technology: a review. Vasc Endovasc Surg 40(2):85–94CrossRefGoogle Scholar
  38. 38.
    Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89(6):651–656CrossRefGoogle Scholar
  39. 39.
    Cloft HJ, Kallmes DF, Lin HB, Li ST, Marx WF, Hudson SB et al (2000) Bovine type I collagen as an endovascular stent-graft material: biocompatibility study in rabbits. Radiology 214(2):557–562CrossRefGoogle Scholar
  40. 40.
    Park SJ, Shim WH, Ho DS, Raizner AE, Park SW, Hong MK et al (2003) A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med 348(16):1537–1545CrossRefGoogle Scholar
  41. 41.
    Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T et al (2005) Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol 16(3):331–338CrossRefGoogle Scholar
  42. 42.
    Claessen BE, Henriques JP, Dangas GD (2010) Clinical studies with sirolimus, zotarolimus, everolimus, and biolimus A9 drug-eluting stent systems. Curr Pharm Des 16(36):4012–4024CrossRefGoogle Scholar
  43. 43.
    Kim K-H et al (2012) Comparison of drug-eluting versus bare-metal stent implantation in ST-elevation myocardial infarction patients with renal insufficiency: results from the national registry in Korea. Int J Cardiol 154(1):71–77CrossRefGoogle Scholar
  44. 44.
    Bangalore S, Gupta N, Guoa Y, Feit F (2014) Trend in the use of drug eluting stents in the United States: insight from over 8.1 million coronary interventions. Int J Cardiol 175:108–119CrossRefGoogle Scholar
  45. 45.
    Federspiel WJ, Henchir KA (2004) Lung, artificial: basic principles and current applications. In: Encyclopedia of biomaterials and biomedical engineering. University of Pittsburgh, Pittsburgh, PA, pp 910–921Google Scholar
  46. 46.
    AAMI, S. A. R. P (1996) Association for the Advancement of medical instrumentation. Volume 2.1 biomedical equipment, part 1, equipment therapy and surgery cardiovascular implants and artificial organs: blood gas exchangers. AAMI 7199:633–648Google Scholar
  47. 47.
    Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MAGoogle Scholar
  48. 48.
    Federspiel WJ, Henchir KA (2004) Lung, artificial: basic principles and current applications. In: Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, Inc., New York.  https://doi.org/10.1081/E-EBBE 120007349CrossRefGoogle Scholar
  49. 49.
    Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors. J Membr Sci 159(1):61–106CrossRefGoogle Scholar
  50. 50.
    This is a file from the Wikimedia Commons. This file is licensed under the Creative Commons Attribution 3.0 Unported licenseGoogle Scholar
  51. 51.
    Yang Z, Matsumoto S, Maeda R (2002) A prototype of ultrasonic micro-degassing device for portable dialysis system. Sensors Actuators 95:274–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vasif Hasirci
    • 1
  • Nesrin Hasirci
    • 2
  1. 1.BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, and Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, and Department of ChemistryMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations