Advertisement

Calibration

  • Thomas J. Santner
  • Brian J. Williams
  • William I. Notz
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

Ideally, every computer simulator should be calibrated using observations from the physical system that is modeled by the simulator. Roughly, calibration uses data from dual simulator and physical system platforms to estimate, with uncertainty, the unknown values of the calibration inputs that govern the physical system (and which can be set in the simulator).

References

  1. Bastos LS, O’Hagan A (2009) Diagnostics for Gaussian process emulators. Technometrics 51(4):425–438MathSciNetCrossRefGoogle Scholar
  2. Bayarri MJ, Berger JO, Paulo R, Sacks J, Cafeo JA, Cavendish J, Lin CH, Tu J (2007) A framework for validation of computer models. Technometrics 49(2):138–154MathSciNetCrossRefGoogle Scholar
  3. Bliznyuk N, Ruppert D, Shoemaker C, Regis R, Wild S, Mugunthan P (2008) Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation. J Comput Graph Stat 17:270–294MathSciNetCrossRefGoogle Scholar
  4. Brynjarsdóttir J, O’Hagan A (2014) Learning about physical parameters: the importance of model discrepancy. Inverse Prob 30:114007 (24pp)MathSciNetCrossRefGoogle Scholar
  5. Conti S, O’Hagan A (2010) Bayesian emulation of complex multi-output and dynamic computer models. J Stat Plann Inf 140(3):640–651MathSciNetCrossRefGoogle Scholar
  6. Cox DD, Park JS, Singer CE (2001) A statistical method for tuning a computer code to a data base. Comput Stat Data Anal 37(1):77–92MathSciNetCrossRefGoogle Scholar
  7. Francom D, Sansó B, Kupresanin A, Johannesson G (2018) Sensitivity analysis and emulation for functional data using Bayesian adaptive splines. Stat Sinica 28(2):791–816MathSciNetzbMATHGoogle Scholar
  8. Fricker TE, Oakley JE, Urban NM (2013) Multivariate Gaussian process emulators with nonseparable covariance structures. Technometrics 55:47–56MathSciNetCrossRefGoogle Scholar
  9. Graves TL (2011) Automatic step size selection in random walk Metropolis algorithms. Technical report LA-UR-11-01936, Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  10. Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16(4):339–354MathSciNetCrossRefGoogle Scholar
  11. Han G, Santner TJ, Rawlinson JJ (2009b) Simultaneous determination of tuning and calibration parameters for computer experiments. Technometrics 51(4):464–474MathSciNetCrossRefGoogle Scholar
  12. Higdon D, Kennedy M, Cavendish J, Cafeo J, Ryne R (2004) Combining field data and computer simulations for calibration and prediction. SIAM J Sci Comput 26:448–466MathSciNetCrossRefGoogle Scholar
  13. Higdon D, Gattiker J, Williams B, Rightley M (2008) Computer model calibration using high dimensional output. J Am Stat Assoc 103:570–583MathSciNetCrossRefGoogle Scholar
  14. Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models (with discussion). J R Stat Soc Ser B 63:425–464MathSciNetCrossRefGoogle Scholar
  15. Overstall AM, Woods DC (2016) Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model. J R Stat Soc Ser C 65(4):483–505MathSciNetCrossRefGoogle Scholar
  16. Paulo R, García-Donato G, Palomo J (2012) Calibration of computer models with multivariate output. Comput Stat Data Anal 56:3959–3974MathSciNetCrossRefGoogle Scholar
  17. Plumlee M (2017) Bayesian calibration of inexact computer models. J Am Stat Assoc 112(519):1274–1285MathSciNetCrossRefGoogle Scholar
  18. Pratola M, Higdon D (2016) Bayesian additive regression tree calibration of complex high-dimensional computer models. Technometrics 58(2):166–179MathSciNetCrossRefGoogle Scholar
  19. Roberts GO, Rosenthal JS (2007) Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J Appl Probab 44:458–475MathSciNetCrossRefGoogle Scholar
  20. Rougier J (2007) Lightweight emulators for multivariate deterministic functions. Department of Mathematics, University of BristolGoogle Scholar
  21. Stewart GW (1993) On the early history of the singular value decomposition. SIAM Rev 35(4):551–566MathSciNetCrossRefGoogle Scholar
  22. Storlie CB, Lane WA, Ryan EM, Gattiker JR, Higdon DM (2015) Calibration of computational models with categorical parameters and correlated outputs via Bayesian smoothing spline ANOVA. J Am Stat Assoc 110(509):68–82MathSciNetCrossRefGoogle Scholar
  23. Tuo R, Wu CFJ (2016) A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties. SIAM/ASA Int J Uncertain Quantif 4(1):767–795MathSciNetCrossRefGoogle Scholar
  24. Villarreal-Marroquín MG, Chen PH, Mulyana R, Santner TJ, Dean AM, Castro JM (2017) Multiobjective optimization of injection molding using a calibrated predictor based on physical and simulated data. Polym Eng Sci 57(3):248–257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thomas J. Santner
    • 1
  • Brian J. Williams
    • 2
  • William I. Notz
    • 1
  1. 1.Department of StatisticsThe Ohio State UniversityColumbusUSA
  2. 2.Statistical Sciences GroupLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations