Advertisement

Safety and Monitoring for Cardiac Magnetic Resonance Imaging

  • Rolf Symons
  • Saman Nazarian
  • Henry R. Halperin
  • David A. BluemkeEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

An increasing proportion of patients with cardiovascular disease have higher acuity of disease and may have ferromagnetic implants with potential for interaction with the MRI environment. Familiarity with each device class and its potential for electromagnetic interaction is essential for radiologists and cardiologists performing MRI examinations in this population of patients. The final decision to perform MRI in patients with electronic devices or other implants is frequently made by considering the potential benefit of MRI relative to the attendant risks associated with various devices. While techniques for safe imaging with MRI in the setting of certain devices have been developed, the potential for catastrophic complications exists and dictates a high degree of vigilance to minimize patient risk.

Keywords

ECG leads Sternal wires Epicardial wires Stents Guidewires Swan-Ganz and thermodilution catheters Balloon pumps Gadolinium-based contrast agents 

Notes

Summary

The diagnostic benefits of cardiovascular MRI are of critical importance in the management of an ever-increasing number of patients with cardiovascular disease. Patients with higher morbidity are referred for MRI, raising specific safety concerns. Although techniques for safe imaging in the setting of certain devices have been developed, the potential for catastrophic complications still exists and dictates a high degree of vigilance for safe imaging. The reader is encouraged to consult websites that provide more specific information regarding individual devices and safe administration of GBCAs (e.g., www.mrisafety.com and www.ACR.org). The final decision to perform cardiac MRI should be made on an individual basis considering the potential benefit of MRI relative to the associated risks.

References

  1. 1.
    Prasad SK, Pennell DJ. Safety of cardiovascular magnetic resonance in patients with cardiovascular implants and devices. Heart. 2004;90(11):1241–4.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Manner I, Alanen A, Komu M, Savunen T, Kantonen I, Ekfors T. MR imaging in the presence of small circular metallic implants: assessment of thermal injuries. Acta Radiol. 1996;37(4):551–4.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Okamura Y, Yamada Y, Mochizuki Y, et al. [Evaluation of coronary artery bypass grafts with magnetic resonance imaging]. [Zasshi][Journal] Nihon Kyobu Geka Gakkai. 1997;45(6):801–805.Google Scholar
  4. 4.
    Hartnell GG, Spence L, Hughes LA, Cohen MC, Saouaf R, Buff B. Safety of MR imaging in patients who have retained metallic materials after cardiac surgery. AJR Am J Roentgenol. 1997;168(5):1157–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Murphy KJ, Cohan RH, Ellis JH. MR imaging in patients with epicardial pacemaker wires. AJR Am J Roentgenol. 1999;172(3):727–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Roguin A, Zviman MM, Meininger GR, et al. Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe in vitro and in vivo assessment of safety and function at 1.5 T. Circulation. 2004;110(5):475–82.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Soulen RL, Budinger TF, Higgins CB. Magnetic resonance imaging of prosthetic heart valves. Radiology. 1985;154(3):705–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Edwards M, Taylor KM, Shellock FG. Prosthetic heart valves: evaluation of magnetic field interactions, heating, and artifacts at 1.5 T. J Magn Reson Imaging. 2000;12(2):363–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Shellock FG. Prosthetic heart valves and annuloplasty rings: assessment of magnetic field interactions, heating, and artifacts at 1.5 Tesla. J Cardiovasc Magn Reson. 2001;3(4):317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Shellock FG. Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-Tesla MR system. J Magn Reson Imaging. 2002;16(6):721–32.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Edwards M-B, Draper ERC, Hand JW, Taylor KM, Young IR. Mechanical testing of human cardiac tissue: some implications for MRI safety. J Cardiovasc Magn Reson. 2005;7(5):835–40.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Shellock FG. Magnetic resonance safety update 2002: implants and devices. J Magn Reson Imaging. 2002;16(5):485–96.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Condon B, Hadley DM. Potential MR hazard to patients with metallic heart valves: the Lenz effect. J Magn Reson Imaging. 2000;12(1):171–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    van Gorp MJ, van der Graaf Y, de Mol BAJM, et al. Björk-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures 1. Radiology. 2004;230(3):709–14.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ho JC, Shellock FG. Magnetic properties of Ni–Co–Cr-base Elgiloy. J Mater Sci Mater Med. 1999;10(9):555–60.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Edwards M, Ordidge RJ, Hand JW, Taylor KM, Young IR. Assessment of magnetic field (4.7 T) induced forces on prosthetic heart valves and annuloplasty rings. J Magn Reson Imaging. 2005;22(2):311–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sherif MA, Abdel-Wahab M, Beurich H-W, et al. Haemodynamic evaluation of aortic regurgitation after transcatheter aortic valve implantation using cardiovascular magnetic resonance. EuroIntervention J Eur Collab with Work Gr Interv Cardiol Eur Soc Cardiol. 2011;7(1):57–63.Google Scholar
  18. 18.
    Strohm O, Kivelitz D, Gross W, et al. Safety of implantable coronary stents during H-magnetic resonance imaging at 1.0 and 1.5 T. J Cardiovasc Magn Reson. 1999;1(3):239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Scott NA, Pettigrew RI. Absence of movement of coronary scents after placement in a magnetic resonance imaging field. Am J Cardiol. 1994;73(12):900–1.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hug J, Nagel E, Bornstedt A, Schnackenburg B, Oswald H, Fleck E. Coronary arterial stents: safety and artifacts during MR imaging 1. Radiology. 2000;216(3):781–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Gerber TC, Fasseas P, Lennon RJ, et al. Clinical safety of magnetic resonance imaging early after coronary artery stent placement. J Am Coll Cardiol. 2003;42(7):1295–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaya MG, Okyay K, Yazici H, et al. Long-term clinical effects of magnetic resonance imaging in patients with coronary artery stent implantation. Coron Artery Dis. 2009;20(2):138–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Porto I, Selvanayagam J, Ashar V, Neubauer S, Banning AP. Safety of magnetic resonance imaging one to three days after bare metal and drug-eluting stent implantation. Am J Cardiol. 2005;96(3):366–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Shellock FG, Forder JR. Drug eluting coronary stent: in vitro evaluation of magnet resonance safety at 3 tesla. J Cardiovasc Magn Reson. 2005;7(2):415–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Busch M, Vollmann W, Bertsch T, et al. On the heating of inductively coupled resonators (stents) during MRI examinations. Magn Reson Med. 2005;54(4):775–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Engellau L, Olsrud J, Brockstedt S, et al. MR evaluation ex vivo and in vivo of a covered stent-graft for abdominal aortic aneurysms: ferromagnetism, heating, artifacts, and velocity mapping. J Magn Reson Imaging. 2000;12(1):112–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahmed S, Shellock FG. Magnetic resonance imaging safety: implications for cardiovascular patients. J Cardiovasc Magn Reson. 2001;3(3):171–82.CrossRefGoogle Scholar
  28. 28.
    Stables RH, Mohiaddin R, Panting J, Pennell DJ, Pepper J, Sigwart U. Exclusion of an aneurysmal segment of the thoracic aorta with covered stents. Circulation. 2000;101(15):1888–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Marshall MW, Teitelbaum GP, Kim HS, Deveikis J. Ferromagnetism and magnetic resonance artifacts of platinum embolization microcoils. Cardiovasc Intervent Radiol. 1991;14(3):163–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Okahara M, Kiyosue H, Hori Y, Yamashita M, Nagatomi H, Mori H. Three-dimensional time-of-flight MR angiography for evaluation of intracranial aneurysms after endosaccular packing with Guglielmi detachable coils: comparison with 3D digital subtraction angiography. Eur Radiol. 2004;14(7):1162–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Soeda A, Sakai N, Sakai H, et al. Thromboembolic events associated with Guglielmi detachable coil embolization of asymptomatic cerebral aneurysms: evaluation of 66 consecutive cases with use of diffusion-weighted MR imaging. Am J Neuroradiol. 2003;24(1):127–32.PubMedGoogle Scholar
  32. 32.
    Albayram S, Selcuk H, Kara B, et al. Thromboembolic events associated with balloon-assisted coil embolization: evaluation with diffusion-weighted MR imaging. Am J Neuroradiol. 2004;25(10):1768–77.PubMedGoogle Scholar
  33. 33.
    Cottier JP, Bleuzen-Couthon A, Gallas S, et al. Follow-up of intracranial aneurysms treated with detachable coils: comparison of plain radiographs, 3D time-of-flight MRA and digital subtraction angiography. Neuroradiology. 2003;45(11):818–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamada N, Hayashi K, Murao K, Higashi M, Iihara K. Time-of-flight MR angiography targeted to coiled intracranial aneurysms is more sensitive to residual flow than is digital subtraction angiography. Am J Neuroradiol. 2004;25(7):1154–7.PubMedGoogle Scholar
  35. 35.
    Cronqvist M, Wirestam R, Ramgren B, et al. Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology. 2005;47(11):855–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Karacozoff AM, Shellock FG, Wakhloo AK. A next-generation, flow-diverting implant used to treat brain aneurysms: in vitro evaluation of magnetic field interactions, heating and artifacts at 3-T. Magn Reson Imaging. 2013;31(1):145–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Williamson MR, McCowan TC, Walker CW, Ferris EJ. Effect of a 1.5 tesla magnetic field on greenfield filters in vitro and in dogs. Angiology. 1988;39(12):1022–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Liebman CE, Messersmith RN, Levin DN, Lu C-T. MR imaging of inferior vena caval filters: safety and artifacts. Am J Roentgenol. 1988;150(5):1174–6.CrossRefGoogle Scholar
  39. 39.
    Honda M, Obuchi M, Sugimoto H. Artifacts of vena cava filters ex vivo on MR angiography. Magn Reson Med Sci. 2003;2(2):71–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Teitelbaum GP, Ortega HV, Vinitski S, et al. Low-artifact intravascular devices: MR imaging evaluation. Radiology. 1988;168(3):713–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Grassi CJ, Matsumoto AH, Teitelbaum GP. Vena caval occlusion after Simon nitinol filter placement: identification with MR imaging in patients with malignancy. J Vasc Interv Radiol. 1992;3(3):535–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim D, Edelman RR, Margolin CJ, et al. The Simon nitinol filter: evaluation by MR and ultrasound. Angiology. 1992;43(7):541–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Frahm C, Gehl H, Lorch H, et al. MR-guided placement of a temporary vena cava filter: technique and feasibility. J Magn Reson Imaging. 1998;8(1):105–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Bücker A, Neuerburg JM, Adam GB, et al. Real-time MR guidance for inferior vena cava filter placement in an animal model. J Vasc Interv Radiol. 2001;12(6):753–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shellock FG, Morisoli SM. Ex vivo evaluation of ferromagnetism and artifacts of cardiac occluders exposed to a 1.5-T MR system. J Magn Reson Imaging. 1994;4(2):213–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rickers C, Jerosch-Herold M, Hu X, et al. Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation. 2003;107(1):132–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Shellock FG, Valencerina S. Septal repair implants: evaluation of magnetic resonance imaging safety at 3 T. Magn Reson Imaging. 2005;23(10):1021–5.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Shellock FG, Shellock VJ. Vascular access ports and catheters: ex vivo testing of ferromagnetism, heating, and artifacts associated with MR imaging. Magn Reson Imaging. 1996;14(4):443–7.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Titterington B, Shellock FG. Evaluation of MRI issues for an access port with a radiofrequency identification (RFID) tag. Magn Reson Imaging. 2013;31(8):1439–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Masaki F, Shuhei Y, Riko K, Yohjiro M. Iatrogenic second-degree burn caused by a catheter encased tubular braid of stainless steel during MRI. Burns. 2007;33(8):1077–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Razavi R, Hill DLG, Keevil SF, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362(9399):1877–82.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Susil RC, Yeung CJ, Halperin HR, Lardo AC, Atalar E. Multifunctional interventional devices for MRI: a combined electrophysiology/MRI catheter. Magn Reson Med. 2002;47(3):594–600.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Krämer NA, Krüger S, Schmitz S, et al. Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Investig Radiol. 2009;44(7):390–7.CrossRefGoogle Scholar
  54. 54.
    Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging. 2009;2(11):1321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Brown DW, Croft JB, Giles WH, Anda RF, Mensah GA. Epidemiology of pacemaker procedures among Medicare enrollees in 1990, 1995, and 2000. Am J Cardiol. 2005;95(3):409–11.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–83.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kalin R, Stanton MS. Current clinical issues for MRI scanning of pacemaker and defibrillator patients. Pacing Clin Electrophysiol. 2005;28(4):326–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Shellock FG, Tkach JA, Ruggieri PM, Masaryk TJ. Cardiac pacemakers, Icds, and loop recorder: evaluation of translational attraction using conventional (“long-bore”) and “short-bore” 1.5-and 3.0-tesla Mr systems: SAFETY. J Cardiovasc Magn Reson. 2003;5(2):387–97.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Erlebacher JA, Cahill PT, Pannizzo F, Knowles RJR. Effect of magnetic resonance imaging on DDD pacemakers. Am J Cardiol. 1986;57(6):437–40.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hayes DL, Holmes DR, Gray JE. Effect of 1.5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers. J Am Coll Cardiol. 1987;10(4):782–6.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Smith JM. Industry viewpoint: Guidant: pacemakers, ICDs, and MRI. Pacing Clin Electrophysiol. 2005;28(4):264.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Stanton MS. Industry viewpoint: medtronic: pacemakers, ICDs, and MRI. Pacing Clin Electrophysiol. 2005;28(4):265.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Levine PA. Industry viewpoint: St. Jude medical: pacemakers, ICDs and MRI. Pacing Clin Electrophysiol. 2005;28(4):266–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care 1. Radiology. 2004;232(3):635–52.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Faris OP, Shein MJ. Government viewpoint: US food & drug administration: pacemakers, ICDs and MRI. Pacing Clin Electrophysiol. 2005;28(4):268–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Gimbel J, Johnson D, Levine PA, Wilkoff BL. Safe performance of magnetic resonance imaging on five patients with permanent cardiac pacemakers. Pacing Clin Electrophysiol. 1996;19(6):913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Sommer T, Vahlhaus C, Lauck G, et al. MR imaging and cardiac pacemakers: in vitro evaluation and in vivo studies in 51 patients at 0.5 T 1. Radiology. 2000;215(3):869–79.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Vahlhaus C, Sommer T, Lewalter T, et al. Interference with cardiac pacemakers by magnetic resonance imaging: are there irreversible changes at 0.5 Tesla? Pacing Clin Electrophysiol. 2001;24(4):489–95.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol. 2004;43(7):1315–24.CrossRefGoogle Scholar
  71. 71.
    Del Ojo J, Moya F, Villalba J, et al. Is magnetic resonance imaging safe in cardiac pacemaker recipients? Pacing Clin Electrophysiol. 2005;28(4):274–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gimbel J, Kanal E, Schwartz KM, Wilkoff BL. Outcome of magnetic resonance imaging (MRI) in selected patients with implantable cardioverter defibrillators (ICDs). Pacing Clin Electrophysiol. 2005;28(4):270–3.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Brignole M, Auricchio A, Baron-Esquivias G, et al. ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2013;2013:eht150.Google Scholar
  74. 74.
    Nazarian S, Roguin A, Zviman MM, et al. Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla. Circulation. 2006;114(12):1277–84.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Baker KB, Tkach JA, Nyenhuis JA, et al. Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating. J Magn Reson Imaging. 2004;20(2):315–20.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Gimbel J. Magnetic resonance imaging of implantable cardiac rhythm devices at 3.0 tesla. Pacing Clin Electrophysiol. 2008;31(7):795–801.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Mollerus M, Albin G, Lipinski M, Lucca J. Ectopy in patients with permanent pacemakers and implantable cardioverter-defibrillators undergoing an MRI scan. Pacing Clin Electrophysiol. 2009;32(6):772–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Rezai AR, Phillips M, Baker KB, et al. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Investig Radiol. 2004;39(5):300–3.CrossRefGoogle Scholar
  79. 79.
    Finelli DA, Rezai AR, Ruggieri PM, et al. MR imaging-related heating of deep brain stimulation electrodes: in vitro study. Am J Neuroradiol. 2002;23(10):1795–802.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Bhidayasiri R, Bronstein JM, Sinha S, et al. Bilateral neurostimulation systems used for deep brain stimulation: in vitro study of MRI-related heating at 1.5 T and implications for clinical imaging of the brain. Magn Reson Imaging. 2005;23(4):549–55.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Baker KB, Nyenhuis JA, Hrdlicka G, Rezai AR, Tkach JA, Shellock FG. Neurostimulation systems: assessment of magnetic field interactions associated with 1.5-and 3-Tesla MR systems. J Magn Reson Imaging. 2005;21(1):72–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Fraix V, Chabardes S, Krainik A, et al. Effects of magnetic resonance imaging in patients with implanted deep brain stimulation systems: clinical article. J Neurosurg. 2010;113(6):1242–5.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Foltynie T, Zrinzo L, Martinez-Torres I, et al. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. 2011;82(4):358–63.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR. Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: case report. Neurosurgery. 2005;57(5):E1063.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rezai AR, Baker KB, Tkach JA, et al. Is magnetic resonance imaging safe for patients with neurostimulation systems used for deep brain stimulation? Neurosurgery. 2005;57(5):1056–62.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Azevedo CF, Amado LC, Kraitchman DL, et al. The effect of intra-aortic balloon counterpulsation on left ventricular functional recovery early after acute myocardial infarction: a randomized experimental magnetic resonance imaging study. Eur Heart J. 2005;26(12):1235–41.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kumar R, Lerski RA, Gandy S, Clift BA, Abboud RJ. Safety of orthopedic implants in magnetic resonance imaging: an experimental verification. J Orthop Res. 2006;24(9):1799–802.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Liu Y, Chen J, Shellock FG, Kainz W. Computational and experimental studies of an orthopedic implant: MRI-related heating at 1.5-T/64-MHz and 3-T/128-MHz. J Magn Reson Imaging. 2013;37(2):491–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bernstein MA, Huston J, Ward HA. Imaging artifacts at 3.0 T. J Magn Reson Imaging. 2006;24(4):735–46.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Weinmann HJ, Laniado M, Mützel W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR. 1983;16(2):167–72.Google Scholar
  91. 91.
    Van Wagoner M, Worah D. Gadodiamide injection: first human experience with the nonionic magnetic resonance imaging enhancement agent. Investig Radiol. 1993;28:S44–8.CrossRefGoogle Scholar
  92. 92.
    McLachlan SJ, Eaton S, De Simone DN. Pharmacokinetic behavior of gadoteridol injection. Investig Radiol. 1992;27:S16.CrossRefGoogle Scholar
  93. 93.
    Tombach B, Bremer C, Reimer P, et al. Pharmacokinetics of 1M gadobutrol in patients with chronic renal failure. Investig Radiol. 2000;35(1):35.CrossRefGoogle Scholar
  94. 94.
    Baker JF, Kratz LC, Stevens GR, Wible JH Jr. Pharmacokinetics and safety of the MRI contrast agent gadoversetamide injection (OptiMARK) in healthy pediatric subjects. Investig Radiol. 2004;39(6):334–9.CrossRefGoogle Scholar
  95. 95.
    Pascolo L, Cupelli F, Anelli PL, et al. Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun. 1999;257(3):746–52.PubMedCrossRefGoogle Scholar
  96. 96.
    McMurry TJ, Parmelee DJ, Sajiki H, et al. The effect of a phosphodiester linking group on albumin binding, blood half-life, and relaxivity of intravascular diethylenetriaminepentaacetato aquo gadolinium (III) MRI contrast agents. J Med Chem. 2002;45(16):3465–74.PubMedCrossRefGoogle Scholar
  97. 97.
    Levey AS, Eckardt K-U, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2005;67(6):2089–100.PubMedCrossRefGoogle Scholar
  98. 98.
    Rai AT, Hogg JP. Persistence of gadolinium in CSF: a diagnostic pitfall in patients with end-stage renal disease. Am J Neuroradiol. 2001;22(7):1357–61.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Morris JM, Miller GM. Increased signal in the subarachnoid space on fluid-attenuated inversion recovery imaging associated with the clearance dynamics of gadolinium chelate: a potential diagnostic pitfall. Am J Neuroradiol. 2007;28(10):1964–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Choyke PL, Cady J, DePollar SL, Austin H. Determination of serum creatinine prior to iodinated contrast media: is it necessary in all patients? Tech Urol. 1998;4(2):65–9.PubMedGoogle Scholar
  101. 101.
    Sena BF, Stern JP, Pandharipande PV, et al. Screening patients to assess renal function before administering gadolinium chelates: assessment of the Choyke questionnaire. Am J Roentgenol. 2010;195(2):424–8.CrossRefGoogle Scholar
  102. 102.
    Murphy KPJ, Szopinski KT, Cohan RH, Mermillod B, Ellis JH. Occurrence of adverse reactions to gadolinium-based contrast material and management of patients at increased risk: a survey of the American Society of Neuroradiology Fellowship Directors. Acad Radiol. 1999;6(11):656–64.PubMedCrossRefGoogle Scholar
  103. 103.
    Prince MR, Zhang H, Zou Z, Staron RB, Brill PW. Incidence of immediate gadolinium contrast media reactions. Am J Roentgenol. 2011;196(2):W138–43.CrossRefGoogle Scholar
  104. 104.
    Jung J-W, Kang H-R, Kim M-H, et al. Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology. 2012;264(2):414–22.PubMedCrossRefGoogle Scholar
  105. 105.
    Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.PubMedCrossRefGoogle Scholar
  106. 106.
    Grobner T. Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Morcos SK. Experimental studies investigating the pathophysiology of nephrogenic systemic fibrosis; what did we learn so far? Eur Radiol. 2011;21(3):496–500.PubMedCrossRefGoogle Scholar
  108. 108.
    Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H-J. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 C. Investig Radiol. 2008;43(12):817–28.CrossRefGoogle Scholar
  109. 109.
    Martin DR, Krishnamoorthy SK, Kalb B, et al. Decreased incidence of NSF in patients on dialysis after changing gadolinium contrast-enhanced MRI protocols. J Magn Reson Imaging. 2010;31(2):440–6.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kuo PH. Gadolinium-containing MRI contrast agents: important variations on a theme for NSF. J Am Coll Radiol. 2008;5(1):29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    American College of Radiology (ACR) Website. ACR manual on contrast media, version 10.1. http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/ContrastManual/2015_Contrast_Media.pdf. Accessed 16 Mar 2016.
  112. 112.
    Thomsen HS, Morcos SK, Almén T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol. 2013;23(2):307–18.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Tran KT, Prather HB, Cockerell CJ, Jacobe H. UV-A1 therapy for nephrogenic systemic fibrosis. Arch Dermatol. 2009;145(10):1170–4.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Elmholdt TR, Buus NH, Ramsing M, Olesen AB. Antifibrotic effect after low-dose imatinib mesylate treatment in patients with nephrogenic systemic fibrosis: an open-label non-randomized, uncontrolled clinical trial. J Eur Acad Dermatology Venereol. 2013;27(6):779–84.CrossRefGoogle Scholar
  115. 115.
    Ross C, De Rosa N, Marshman G, Astill D. Nephrogenic systemic fibrosis in a gadolinium-naïve patient: successful treatment with oral sirolimus. Australas J Dermatol. 2015;56(3):e59–62.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Mathur K, Morris S, Deighan C, Green R, Douglas KW. Extracorporeal photopheresis improves nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: three case reports and review of literature. J Clin Apher. 2008;23(4):144–50.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Panesar M, Banerjee S, Barone GW. Clinical improvement of nephrogenic systemic fibrosis after kidney transplantation. Clin Transpl. 2008;22(6):803–8.CrossRefGoogle Scholar
  118. 118.
    Nacif MS, Arai AE, Lima JA, Bluemke DA. Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to United States Food and Drug Administration (FDA) guidelines. J Cardiovasc Magn Reson. 2012;14:18.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2013;270(3):834–41.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276(1):228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772–82.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Malayeri AA, Brooks KM, Bryant LH, et al. National Institutes of Health perspective on reports of gadolinium deposition in the brain. J Am Coll Radiol. 2016;13:237.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kanal E, Barkovich AJ, Bell C, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37(3):501–30.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Saito K, Suzuki H, Suzuki K. Teratogenic effects of static magnetic field on mouse fetuses. Reprod Toxicol. 2006;22(1):118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Marcos HB, Semelka RC, Worawattanakul S. Normal placenta: gadolinium-enhanced dynamic MR imaging. Radiology. 1997;205(2):493–6.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Shoenut JP, Semelka RC, Silverman R, Yaffe CS, Micflikier AB. MRI in the diagnosis of Crohn’s disease in two pregnant women. J Clin Gastroenterol. 1993;17(3):244–7.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Oh KY, Roberts VHJ, Schabel MC, Grove KL, Woods M, Frias AE. Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology. 2015;276(1):110–8.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wang PI, Chong ST, Kielar AZ, et al. Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. Am J Roentgenol. 2012;198(4):778–84.CrossRefGoogle Scholar
  129. 129.
    Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T, et al. Gadopentetate Dimeglumine excretion into human breast milk during lactation 1. Radiology. 2000;216(2):555–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rolf Symons
    • 1
  • Saman Nazarian
    • 2
  • Henry R. Halperin
    • 2
  • David A. Bluemke
    • 1
    Email author
  1. 1.NIH Clinical CenterDepartment of Radiology and Imaging SciencesBethesdaUSA
  2. 2.Johns Hopkins HospitalDepartment of MedicineBaltimoreUSA

Personalised recommendations