Techniques in the Assessment of Cardiovascular Blood Flow and Velocity

  • Michael MarklEmail author
Part of the Contemporary Cardiology book series (CONCARD)


The intrinsic motion sensitivity of MRI, which is exploited in phase-contrast (PC) MRI, can be used to measure and quantify in vivo blood flow simultaneously with morphological data within a single examination. In clinical routine, the PC-MRI acquisition is typically synchronized with the cardiac cycle (CINE imaging) and based on methods that resolve two spatial dimensions (2D) in individual slices and encode the component of time-resolved velocity-directed perpendicularly to the 2D plane. This approach allows measurements of volume flow, systolic peak velocity, as well as regurgitant and shunt flows in congenital and acquired heart disease. A number of advanced flow MR imaging techniques that build on the fundamental principles of PC-MRI have recently been introduced, including real-time flow imaging for the evaluation of flow changes on short time scales and 4D flow MRI for the comprehensive analysis of complex time-resolved 3D blood flow characteristics. This chapter reviews the fundamental principles, imaging techniques, and applications of 2D CINE PC-MRI and provides and introduction and discussion of advanced flow MR imaging techniques.


Blood flow Phase-contrast MRI Velocity encoding Velocity mapping 4D flow MRI 


  1. 1.
    Moran PR. A flow velocity zeugmatographic interlace for nmr imaging in humans. Magn Reson Imaging. 1982;1:197–203.PubMedCrossRefGoogle Scholar
  2. 2.
    Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with nmr imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr. 1984;8:588–93.CrossRefGoogle Scholar
  3. 3.
    Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr. 1986;10:715–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB. In vivo validation of MR velocity imaging. J Comput Assist Tomogr. 1987;11:751–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR. Phase contrast cine magnetic resonance imaging. Magn Reson Q. 1991;7:229–54.PubMedGoogle Scholar
  6. 6.
    Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88:2235–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Kvitting JP, Ebbers T, Wigstrom L, Engvall J, Olin CL, Bolger AF. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg. 2004;127:1602–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Dijk P. Direct cardiac nmr imaging of heart wall and blood flow velocity. J Comput Assist Tomogr. 1984;171:429–36.CrossRefGoogle Scholar
  9. 9.
    Mohiaddin RH, Pennell DJ. MR blood flow measurement. Clinical application in the heart and circulation. Cardiol Clin. 1998;16:161–87.PubMedCrossRefGoogle Scholar
  10. 10.
    Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboflash sequence. Radiology. 1991;178:357–60.CrossRefGoogle Scholar
  11. 11.
    Pelc NJ, Bernstein MA, Shimakawa A, Glover GH. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging. 1991;1:405–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomsen C, Cortsen M, Sondergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding. J Magn Reson Imaging. 1995;5:393–401.PubMedCrossRefGoogle Scholar
  13. 13.
    Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson. 2005;7:705–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001;103:2476–82.CrossRefGoogle Scholar
  15. 15.
    Didier D. Assessment of valve disease: qualitative and quantitative. Magn Reson Imaging Clin N Am. 2003;11:115–34, viiPubMedCrossRefGoogle Scholar
  16. 16.
    Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15:2172–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Underwood SR, Firmin DN, Rees RS, Longmore DB. Magnetic resonance velocity mapping. Clin Phys Physiol Meas. 1990;11:37–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Bernstein MA, Shimakawa A, Pelc NJ. Minimizing te in moment-nulled or flow-encoded two- and three-dimensional gradient-echo imaging. J Magn Reson Imaging. 1992;2:583–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Bock J, Kreher BW, Hennig J, Markl M. Optimized pre-processing of time-resolved 2d and 3d phase contrast MRI data. In: 15th Annual Meeting of ISMRM. 2007.Google Scholar
  20. 20.
    Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993;3:521–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med. 1998;39:300–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Markl M, Bammer R, Alley MT, Elkins CJ, Draney MT, Barnett A, et al. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med. 2003;50:791–801.PubMedCrossRefGoogle Scholar
  23. 23.
    Arheden H, Holmqvist C, Thilen U, Hanseus K, Bjorkhem G, Pahlm O, et al. Left-to-right cardiac shunts: comparison of measurements obtained with MR velocity mapping and with radionuclide angiography. Radiology. 1999;211:453–8.CrossRefGoogle Scholar
  24. 24.
    Powell AJ, Maier SE, Chung T, Geva T. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol. 2000;21:104–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Beerbaum P, Korperich H, Gieseke J, Barth P, Peuster M, Meyer H. Rapid left-to-right shunt quantification in children by phase-contrast magnetic resonance imaging combined with sensitivity encoding (sense). Circulation. 2003;108:1355–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Iversen K, Jensen AS, Jensen TV, Vejlstrup NG, Sondergaard L. Combination therapy with bosentan and sildenafil in eisenmenger syndrome: a randomized, placebo-controlled, double-blinded trial. Eur Heart J. 2010;31:1124–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Mohiaddin RH, Kilner PJ, Rees S, Longmore DB. Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol. 1993;22:1515–21.CrossRefGoogle Scholar
  28. 28.
    Kilner PJ, Firmin DN, Rees RS, Martinez J, Pennell DJ, Mohiaddin RH, Underwood SR, Longmore DB. Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology. 1991;178:229–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Doherty JU, Kort S, Mehran R, Schoenhagen P, Soman P. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS. Appropriate Use Criteria for Multimodality Imaging in Valvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2017;70:1647–72.Google Scholar
  30. 30.
    Kozerke S, Schwitter J, Pedersen EM, Boesiger P. Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging. 2001;14:106–12.PubMedCrossRefGoogle Scholar
  31. 31.
    O’Brien KR, Myerson SG, Cowan BR, Young AA, Robson MD. Phase contrast ultrashort te: a more reliable technique for measurement of high-velocity turbulent stenotic jets. Magn Reson Med. 2009;62:626–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Altiok E, Frick M, Meyer CG, Al Ateah G, Napp A, Kirschfink A, et al. Comparison of two- and three-dimensional transthoracic echocardiography to cardiac magnetic resonance imaging for assessment of paravalvular regurgitation after transcatheter aortic valve implantation. Am J Cardiol. 2014;113:1859–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Cawley PJ, Hamilton-Craig C, Owens DS, Krieger EV, Strugnell WE, Mitsumori L, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6:48–57.PubMedCrossRefGoogle Scholar
  34. 34.
    Chan KM, Wage R, Symmonds K, Rahman-Haley S, Mohiaddin RH, Firmin DN, et al. Towards comprehensive assessment of mitral regurgitation using cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10:61.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dall'Armellina E, Hamilton CA, Hundley WG. Assessment of blood flow and valvular heart disease using phase-contrast cardiovascular magnetic resonance. Echocardiography. 2007;24:207–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Nayak KS, Pauly JM, Kerr AB, Hu BS, Nishimura DG. Real-time color flow MRI. Magn Reson Med. 2000;43:251–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Joseph AA, Merboldt KD, Voit D, Zhang S, Uecker M, et al. Real-time phase-contrast MRI of cardiovascular blood flow using undersampled radial fast low-angle shot and nonlinear inverse reconstruction. NMR Biomed. 2012;25:917–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Dumoulin CL, Souza SP, Hardy CJ, Ash SA. Quantitative measurement of blood flow using cylindrically localized fourier velocity encoding. Magnet Reson Med. 1991;21:242–50.CrossRefGoogle Scholar
  39. 39.
    Macgowan CK, Kellenberger CJ, Detsky JS, Roman K, Yoo SJ. Real-time fourier velocity encoding: an in vivo evaluation. J Magn Reson Imaging. 2005;21:297–304.PubMedCrossRefGoogle Scholar
  40. 40.
    Binter C, Knobloch V, Manka R, Sigfridsson A, Kozerke S. Bayesian multipoint velocity encoding for concurrent flow and turbulence mapping. Magn Reson Med. 2013;69:1337–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4d flow MRI. J Magnet Reson Imaging. 2012;36:1015–36.CrossRefGoogle Scholar
  42. 42.
    Markl M, Kilner PJ, Ebbers T. Comprehensive 4d velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wigstrom L, Sjoqvist L, Wranne B. Temporally resolved 3d phase-contrast imaging. Magn Reson Med. 1996;36:800–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Tasu JP, Jolivet O, Mousseaux E, Delouche A, Diebold B, Bittoun J. Acceleration mapping by fourier acceleration-encoding: in vitro study and initial results in the great thoracic vessels. Magn Reson Med. 1997;38:110–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Barker AJ, Staehle F, Bock J, Jung BA, Markl M. Analysis of complex cardiovascular flow with three-component acceleration-encoded MRI. Magn Reson Med. 2012;67:50–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang S, Uecker M, Voit D, Merboldt KD, Frahm J. Real-time cardiovascular magnetic resonance at high temporal resolution: radial flash with nonlinear inverse reconstruction. J Cardiovasc Magn Reson. 2010;12:39.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nayak KS, Hu BS. The future of real-time cardiac magnetic resonance imaging. Curr Cardiol Rep. 2005;7:45–51.PubMedCrossRefGoogle Scholar
  48. 48.
    Kowalik GT, Steeden JA, Pandya B, Odille F, Atkinson D, et al. Real-time flow with fast gpu reconstruction for continuous assessment of cardiac output. J Magn Reson Imaging. 2012;36:1477–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Lin HY, Bender JA, Ding Y, Chung YC, Hinton AM, Pennell ML, et al. Shared velocity encoding: a method to improve the temporal resolution of phase-contrast velocity measurements. Magn Reson Med. 2012;68:703–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (tsense). Magn Reson Med. 2001;45:846–52.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fasshauer M, Joseph AA, Kowallick JT, Unterberg-Buchwald C, Merboldt KD, Voit D, et al. Real-time phase-contrast flow MRI of haemodynamic changes in the ascending aorta and superior vena cava during mueller manoeuvre. Clin Radiol. 2014;69:1066–71.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Jones A, Steeden JA, Pruessner JC, Deanfield JE, Taylor AM, Muthurangu V. Detailed assessment of the hemodynamic response to psychosocial stress using real-time MRI. J Magn Reson Imaging. 2011;33:448–54.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Joseph A, Kowallick JT, Merboldt KD, Voit D, Schaetz S, Zhang S, et al. Real-time flow MRI of the aorta at a resolution of 40 msec. J Magn Reson Imaging. 2014;40:206–13.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu CY, Varadarajan P, Pohost GM, Nayak KS. Real-time color-flow MRI at 3 t using variable-density spiral phase contrast. Magn Reson Imaging. 2008;26:661–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Thavendiranathan P, Verhaert D, Walls MC, Bender JA, Rajagopalan S, Chung YC, et al. Simultaneous right and left heart real-time, free-breathing CMR flow quantification identifies constrictive physiology. JACC Cardiovasc Imaging. 2012;5:15–24.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Thompson RB, McVeigh ER. Real-time volumetric flow measurements with complex-difference MRI. Magn Reson Med. 2003;50:1248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Frydrychowicz A, Francois CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol. 2011;80:24–35.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hope MD, Sedlic T, Dyverfeldt P. Cardiothoracic magnetic resonance flow imaging. J Thorac Imaging. 2013;28:217–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Wigstrom L, Sjoqvist L, Wranne B. Temporally resolved 3d phase-contrast imaging. Magn Reson Med. 1996;36:800–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Wentland AL, Wieben O, Francois CJ, Boncyk C, Munoz Del Rio A, Johnson KM, et al. Aortic pulse wave velocity measurements with undersampled 4d flow-sensitive MRI: comparison with 2d and algorithm determination. J Magn Reson Imaging. 2013;37:853–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Roldan-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM, et al. In vivo validation of 4d flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging. 2013;37:1100–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Francois CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E, Landgraf BR, et al. 4d cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. J Cardiovasc Magn Reson. 2012;14:16.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Frydrychowicz A, Landgraf BR, Niespodzany E, Verma RW, Roldan-Alzate A, Johnson KM, et al. Four-dimensional velocity mapping of the hepatic and splanchnic vasculature with radial sampling at 3 tesla: a feasibility study in portal hypertension. J Magn Reson Imaging. 2011;34:577.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Johnson KM, Lum DP, Turski PA, Block WF, Mistretta CA, Wieben O. Improved 3d phase contrast MRI with off-resonance corrected dual echo vipr. Magn Reson Med. 2008;60:1329–36.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, et al. K-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med. 2014;72:522–33.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Stalder AF, Dong Z, Yang Q, Bock J, Hennig J, Markl M, Li K. Four-dimensional flow-sensitive MRI of the thoracic aorta: 12- versus 32-channel coil arrays. J Magn Reson Imaging. 2012;35:190–5.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Jung B, Honal M, Ullmann P, Hennig J, Markl M. Highly k-t-space-accelerated phase-contrast MRI. Magn Reson Med. 2008;60:1169–77.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M. K-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med. 2005;54:1172–84.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Knobloch V, Boesiger P, Kozerke S. Sparsity transform k-t principal component analysis for accelerating cine three-dimensional flow measurements. Magn Reson Med. 2013;70:53–63.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Giese D, Schaeffter T, Kozerke S. Highly undersampled phase-contrast flow measurements using compartment-based k-t principal component analysis. Magn Reson Med. 2013;69:434–43.PubMedCrossRefGoogle Scholar
  71. 71.
    Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY. K-t PCA: temporally constrained k-t blast reconstruction using principal component analysis. Magn Reson Med. 2009;62:706–16.PubMedCrossRefGoogle Scholar
  72. 72.
    Tao Y, Rilling G, Davies M, Marshall I. Carotid blood flow measurement accelerated by compressed sensing: validation in healthy volunteers. Magn Reson Imaging. 2013;31:1485–91.PubMedCrossRefGoogle Scholar
  73. 73.
    Tariq U, Hsiao A, Alley M, Zhang T, Lustig M, Vasanawala SS. Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4d phase contrast MRI. J Magn Reson Imaging. 2013;37:1419–26.PubMedCrossRefGoogle Scholar
  74. 74.
    Hsiao A, Lustig M, Alley MT, Murphy MJ, Vasanawala SS. Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4d phase-contrast MR imaging with stereoscopic 3d velocity-fusion volume-rendered visualization. Radiology. 2012;265:87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Buonocore MH. Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn Reson Med. 1998;40:210–26.PubMedCrossRefGoogle Scholar
  76. 76.
    Rodriguez Munoz D, Markl M, Moya Mur JL, Barker A, Fernandez-Golfin C, et al. Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging. 2013;14:1029–38.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Unterhinninghofen R, Ley S, Ley-Zaporozhan J, von Tengg-Kobligk H, Bock M, Kauczor HU, et al. Concepts for visualization of multidirectional phase-contrast MRI of the heart and large thoracic vessels. Acad Radiol. 2008;15:361–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN. Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg. 1995;110:704–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging. 2003;17:499–506.PubMedCrossRefGoogle Scholar
  80. 80.
    Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, et al. Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Investig Radiol. 2009;44:669–75.CrossRefGoogle Scholar
  81. 81.
    Valverde I, Simpson J, Schaeffter T, Beerbaum P. 4d phase-contrast flow cardiovascular magnetic resonance: comprehensive quantification and visualization of flow dynamics in atrial septal defect and partial anomalous pulmonary venous return. Pediatr Cardiol. 2010;31:1244–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Wigstrom L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger AF. Particle trace visualization of intracardiac flow using time-resolved 3d phase contrast MRI. Magn Reson Med. 1999;41:793–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3d velocity mapping. J Magn Reson Imaging. 2001;13:690–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Bogren HG, Buonocore MH, Valente RJ. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging. 2004;19:417–27.PubMedCrossRefGoogle Scholar
  85. 85.
    Markl M, Draney MT, Miller DC, Levin JM, Williamson EE, Pelc NJ, et al. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg. 2005;130:456–63.PubMedCrossRefGoogle Scholar
  86. 86.
    Frydrychowicz A, Harloff A, Jung B, Zaitsev M, Weigang E, Bley TA, et al. Time-resolved, 3-dimensional magnetic resonance flow analysis at 3 t: visualization of normal and pathological aortic vascular hemodynamics. J Comput Assist Tomogr. 2007;31:9–15.PubMedCrossRefGoogle Scholar
  87. 87.
    Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, et al. Clinical evaluation of aortic coarctation with 4d flow MR imaging. J Magn Reson Imaging. 2010;31:711–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Markl M, Geiger J, Arnold R, Stroh A, Damjanovic D, et al. Comprehensive 4-dimensional magnetic resonance flow analysis after successful heart transplantation resolves controversial intraoperative findings and reveals complex hemodynamic alterations. Circulation. 2011;123:e381–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature. 2000;404:759–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Bolger AF, Heiberg E, Karlsson M, Wigstrom L, Engvall J, Sigfridsson A, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9:741–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Uribe S, Beerbaum P, Sorensen TS, Rasmusson A, Razavi R, Schaeffter T. Four-dimensional (4d) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med. 2009;62:984–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Eriksson J, Carlhall CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4d left ventricular blood flow. J Cardiovasc Magn Reson. 2010;12:9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Toger J, Carlsson M, Soderlind G, Arheden H, Heiberg E. Volume tracking: a new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping. BMC Med Imaging. 2011;11:10.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Fluckiger JU, Goldberger JJ, Lee DC, Ng J, Lee R, Goyal A, Markl M. Left atrial flow velocity distribution and flow coherence using four-dimensional flow MRI: a pilot study investigating the impact of age and pre- and postintervention atrial fibrillation on atrial hemodynamics. J Magn Reson Imaging. 2013;38:580–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Fyrenius A, Wigstrom L, Ebbers T, Karlsson M, Engvall J, Bolger AF. Three dimensional flow in the human left atrium. Heart. 2001;86:448–55.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3d velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008;249:792–800.PubMedCrossRefGoogle Scholar
  97. 97.
    Kvitting JP, Dyverfeldt P, Sigfridsson A, Franzen S, Wigstrom L, et al. In vitro assessment of flow patterns and turbulence intensity in prosthetic heart valves using generalized phase-contrast MRI. J Magn Reson Imaging. 2010;31:1075–80.PubMedCrossRefGoogle Scholar
  98. 98.
    Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, et al. 4d flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4:781–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Bogren HG, Buonocore MH. 4d magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging. 1999;10:861–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010;255:53–61.PubMedCrossRefGoogle Scholar
  101. 101.
    Frydrychowicz A, Markl M, Hirtler D, Harloff A, Schlensak C, Geiger J, et al. Aortic hemodynamics in patients with and without repair of aortic coarctation: in vivo analysis by 4d flow-sensitive magnetic resonance imaging. Investig Radiol. 2011;46:317–25.Google Scholar
  102. 102.
    Barker AJ, Markl M, Burk J, Lorenz R, Bock J, Bauer S, et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging. 2012;5:457–66.PubMedCrossRefGoogle Scholar
  103. 103.
    Burk J, Blanke P, Stankovic Z, Barker A, Russe M, Geiger J, et al. Evaluation of 3d blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4d CMR. J Cardiovasc Magn Reson. 2012;14:84.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Geiger J, Arnold R, Herzer L, Hirtler D, Stankovic Z, Russe M, et al. Aortic wall shear stress in marfan syndrome. Magn Reson Med. 2013;70:1137–44.PubMedCrossRefGoogle Scholar
  105. 105.
    Wentland AL, Grist TM, Wieben O. Repeatability and internal consistency of abdominal 2d and 4d phase contrast MR flow measurements. Acad Radiol. 2013;20:699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, et al. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Cir Cardiovasc Imaging. 2008;1:23–30.CrossRefGoogle Scholar
  107. 107.
    Geiger J, Markl M, Jung B, Grohmann J, Stiller B, et al. 4d-mr flow analysis in patients after repair for tetralogy of fallot. Eur Radiol. 2011;21:1651–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Bachler P, Pinochet N, Sotelo J, Crelier G, Irarrazaval P, et al. Assessment of normal flow patterns in the pulmonary circulation by using 4d magnetic resonance velocity mapping. Magn Reson Imaging. 2013;31:178–88.PubMedCrossRefGoogle Scholar
  109. 109.
    Harloff A, Albrecht F, Spreer J, Stalder A, Bock J, Frydrychowicz A, et al. 3d blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4d MRI at 3t. Magn Reson Med. 2009;61:65–74.PubMedCrossRefGoogle Scholar
  110. 110.
    Markl M, Wegent F, Zech T, Bauer S, Strecker C, Schumacher M, et al. In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circ Cardiovasc Imaging. 2010;3:647–55.PubMedCrossRefGoogle Scholar
  111. 111.
    Meckel S, Leitner L, Bonati LH, Santini F, Schubert T, Stalder AF, et al. Intracranial artery velocity measurement using 4d pc MRI at 3 t: comparison with transcranial ultrasound techniques and 2d pc MRI. Neuroradiology. 2013;55:389–98.PubMedCrossRefGoogle Scholar
  112. 112.
    Bammer R, Hope TA, Aksoy M, Alley MT. Time-resolved 3d quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5t and 3.0t in combination with parallel imaging. Magn Reson Med. 2007;57:127–40.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wetzel S, Meckel S, Frydrychowicz A, Bonati L, Radue EW, Scheffler K, et al. In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4d MR imaging at 3t. AJNR Am J Neuroradiol. 2007;28:433–8.PubMedGoogle Scholar
  114. 114.
    Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, Higashida R, et al. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med. 2009;61:409–17.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Isoda H, Ohkura Y, Kosugi T, Hirano M, Takeda H, Hiramatsu H, et al. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (mrfd) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology. 2010;52:921–8.PubMedCrossRefGoogle Scholar
  116. 116.
    van Ooij P, Guedon A, Poelma C, Schneiders J, Rutten MC, Marquering HA, et al. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed. 2012;25(1):14–26.PubMedCrossRefGoogle Scholar
  117. 117.
    Stankovic Z, Csatari Z, Deibert P, Euringer W, Blanke P, Kreisel W, et al. Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology. 2012;262:862–73.PubMedCrossRefGoogle Scholar
  118. 118.
    Stankovic Z, Csatari Z, Deibert P, Euringer W, Jung B, Kreisel W, et al. A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4d MRI compared with doppler ultrasound in patients with cirrhosis and controls. Eur J Gastroenterol Hepatol. 2013;25:669–75.PubMedCrossRefGoogle Scholar
  119. 119.
    Frydrychowicz A, Winterer JT, Zaitsev M, Jung B, Hennig J, et al. Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3d phase contrast MRI at 3t. J Magn Reson Imaging. 2007;25:1085–92.PubMedCrossRefGoogle Scholar
  120. 120.
    Lum DP, Johnson KM, Paul RK, Turk AS, Consigny DW, Grinde JR, et al. Transstenotic pressure gradients: measurement in swine – retrospectively ecg-gated 3d phase-contrast MR angiography versus endovascular pressure-sensing guidewires. Radiology. 2007;245:751–60.PubMedCrossRefGoogle Scholar
  121. 121.
    Bley TA, Johnson KM, Francois CJ, Reeder SB, Schiebler ML, Landgraf BR, et al. Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase-contrast MR angiography. Radiology. 2011;261:266–73.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Francois CJ, Lum DP, Johnson KM, Landgraf BR, Bley TA, Reeder SB, et al. Renal arteries: isotropic, high-spatial-resolution, unenhanced MR angiography with three-dimensional radial phase contrast. Radiology. 2011;258:254–60.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2d and 3d phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med. 2008;60:1218–31.PubMedCrossRefGoogle Scholar
  124. 124.
    Markl M, Wallis W, Harloff A. Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J Magn Reson Imaging. 2011;33:988–94.PubMedCrossRefGoogle Scholar
  125. 125.
    Oshinski JN, Curtin JL, Loth F. Mean-average wall shear stress measurements in the common carotid artery. J Cardiovasc Magn Reson. 2006;8:717–22.PubMedCrossRefGoogle Scholar
  126. 126.
    Tyszka JM, Laidlaw DH, Asa JW, Silverman JM. Three-dimensional, time-resolved (4d) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging. 2000;12:321–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Ebbers T, Wigstrom L, Bolger AF, Engvall J, Karlsson M. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn Reson Med. 2001;45:872–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Bock J, Frydrychowicz A, Lorenz R, Hirtler D, Barker AJ, Johnson KM, et al. In vivo noninvasive 4d pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med. 2011;66:1079–88.PubMedCrossRefGoogle Scholar
  129. 129.
    Bolster BD Jr, Atalar E, Hardy CJ, McVeigh ER. Accuracy of arterial pulse-wave velocity measurement using MR. J Magn Reson Imaging. 1998;8:878–88.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Markl M, Wallis W, Brendecke S, Simon J, Frydrychowicz A, Harloff A. Estimation of global aortic pulse wave velocity by flow-sensitive 4d MRI. Magn Reson Med. 2010;63:1575–82.PubMedCrossRefGoogle Scholar
  131. 131.
    Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn Reson Med. 2006;56:850–8.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Dyverfeldt P, Gardhagen R, Sigfridsson A, Karlsson M, Ebbers T. On MRI turbulence quantification. Magn Reson Imaging. 2009;27:913–22.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Northwestern University Feinberg School of MedicineDepartment of Radiology and Biomedical EngineeringChicagoUSA

Personalised recommendations