Techniques for MR Myocardial Perfusion Imaging

  • Michael Jerosch-HeroldEmail author
Part of the Contemporary Cardiology book series (CONCARD)


Outside the field of MRI, most techniques for myocardial perfusion imaging rely on the detection of injected tracers to assess myocardial blood flow and detect ischemia. Examples are tracers that emit gamma rays for single-photon emission tomography or tracers that scatter ultrasound waves, such as injected gas-filled bubbles. With MRI, blood-borne contrast agents can be used to assess myocardial perfusion. The presence of the contrast agent in tissue is detected through its effects on the local T1 and T2 relaxation times of 1H nuclei. An alternative approach for assessing myocardial perfusion without using an exogenous contrast agent relies on selectively “labeling” 1H spins and detecting the signal changes that are induced by tissue blood flow carrying “labeled” 1H spins in or out of an image slice. Though the absence on contrast agents makes arterial spin labeling an attractive proposition, its use is limited by the relatively small signal changes that need to be detected for quantifying myocardial perfusion. This chapter will focus foremost on contrast-enhanced perfusion imaging, as it remains the most widely used approach for myocardial perfusion imaging.


T1 and T2 Perfusion imaging Pulse sequence techniques Arterial input sampling Spatiotemporal sampling Signal analysis Spin labeling 3D perfusion Imaging acceleration 


  1. 1.
    Bellamy DD, Pereira RS, McKenzie CA, Prato FS, Drost DJ, et al. Gd-DTPA bolus tracking in the myocardium using T1 fast acquisition relaxation mapping (T1 FARM). Magn Reson Med. 2001;46(3):555–64.CrossRefGoogle Scholar
  2. 2.
    Tsekos NV, Zhang Y, Merkle H, Wilke N, Jerosch-Herold M, et al. Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrhythmia insensitive magnetization preparation. Magn Reson Med. 1995;34(4):530–6.CrossRefGoogle Scholar
  3. 3.
    Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen BV, Stillman AE, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204(2):373–84.CrossRefGoogle Scholar
  4. 4.
    Ferreira P, Gatehouse P, Bucciarelli-Ducci C, Wage R, Firmin D. Measurement of myocardial frequency offsets during first pass of a gadolinium-based contrast agent in perfusion studies. Magn Reson Med. 2008;60(4):860–70.CrossRefGoogle Scholar
  5. 5.
    Salerno M, Sica CT, Kramer CM, Meyer CH. Optimization of spiral-based pulse sequences for first-pass myocardial perfusion imaging. Magn Reson Med. 2011;65(6):1602–10.CrossRefGoogle Scholar
  6. 6.
    Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging. 2004;19(6):758–70.CrossRefGoogle Scholar
  7. 7.
    Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004;20(1):39–45.CrossRefGoogle Scholar
  8. 8.
    Kim D, Cernicanu A, Axel L. Multi-slice, first-pass myocardial perfusion MRI with undistorted arterial input function and higher myocardial enhancement at 3 T. Paper presented at: Scientific Sessions of the International Society of Magnetic Resonance in Medicine (ISMRM); May 11, 2005; Miami Beach, FL.Google Scholar
  9. 9.
    Köstler H, Ritter C, Baunach D, Beer M, Larson AC, Simonetti O, et al. Determination of the arterial input function in high dose radial myocardial perfusion imaging. Paper presented at: Scientific Sessions of the International Society of Magnetic Resonance in Medicine, 2005; Miami Beach, FL.Google Scholar
  10. 10.
    Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004;232(3):677–84.CrossRefGoogle Scholar
  11. 11.
    Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:28.CrossRefGoogle Scholar
  12. 12.
    Edelman RR, Li W. Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology. 1994;190(3):771–7.CrossRefGoogle Scholar
  13. 13.
    Epstein FH, London JF, Peters DC, Goncalves LM, Agyeman K, Taylor J, et al. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med. 2002;47(3):482–91.CrossRefGoogle Scholar
  14. 14.
    Elkington AG, Gatehouse PD, Cannell TM, Moon JC, Prasad SK, et al. Comparison of hybrid echo-planar imaging and FLASH myocardial perfusion cardiovascular MR imaging. Radiology. 2005;235(1):237–43.CrossRefGoogle Scholar
  15. 15.
    Chen W, Meyer CH. Semiautomatic off-resonance correction in spiral imaging. Magn Reson Med. 2008;59(5):1212–9.CrossRefGoogle Scholar
  16. 16.
    Salerno M, Taylor A, Yang Y, Kuruvilla S, Ragosta M, et al. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation. Circ Cardiovasc Imaging. 2014;7(4):639–46.CrossRefGoogle Scholar
  17. 17.
    Chen D, Sharif B, Bi X, Wei J, Thomson LE, Bairey Merz CN, et al. Quantification of myocardial blood flow using non-electrocardiogram-triggered MRI with three-slice coverage. Magn Reson Med. 2016;75(5):2112–20.CrossRefGoogle Scholar
  18. 18.
    Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.CrossRefGoogle Scholar
  19. 19.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRefGoogle Scholar
  20. 20.
    Pruessmann KP, Weiger M, Boesiger P. Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson. 2001;3(1):1–9.CrossRefGoogle Scholar
  21. 21.
    Kroll K, Wilke N, Jerosch-Herold M, Wang Y, Zhang Y, Bache RJ, Bassingthwaighte JB. Accuracy of modeling of regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol. 1996;40:H1643–55.Google Scholar
  22. 22.
    Madore B. Using UNFOLD to remove artifacts in parallel imaging and in partial-Fourier imaging. Magn Reson Med. 2002;48(3):493–501.CrossRefGoogle Scholar
  23. 23.
    Madore B. UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression. Magn Reson Med. 2004;52(2):310–20.CrossRefGoogle Scholar
  24. 24.
    Madore B, Glover GH, Pelc NJ. Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med. 1999;42(5):813–28.CrossRefGoogle Scholar
  25. 25.
    Di Bella EV, Wu YJ, Alexander AL, Parker DL, Green D, McGann CJ. Comparison of temporal filtering methods for dynamic contrast MRI myocardial perfusion studies. Magn Reson Med. 2003;49(5):895–902.CrossRefGoogle Scholar
  26. 26.
    Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med. 2005;53(3):684–91.CrossRefGoogle Scholar
  27. 27.
    Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010;64(3):767–76.CrossRefGoogle Scholar
  28. 28.
    Vitanis V, Manka R, Giese D, Pedersen H, Plein S, et al. High resolution three-dimensional cardiac perfusion imaging using compartment-based k-t principal component analysis. Magn Reson Med. 2011;65(2):575–87.CrossRefGoogle Scholar
  29. 29.
    Pawar K, Egan GF, Zhang J. Accelerating k-t sparse using k-space aliasing for dynamic MRI imaging. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2619–23.PubMedGoogle Scholar
  30. 30.
    Usman M, Prieto C, Schaeffter T, Batchelor PG. k-t Group sparse: a method for accelerating dynamic MRI. Magn Reson Med. 2011;66(4):1163–76.CrossRefGoogle Scholar
  31. 31.
    Araoz PA, Glockner JF, McGee KP, Potter DD Jr, Valeti VU, et al. 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson. 2005;7(3):559–64.CrossRefGoogle Scholar
  32. 32.
    Cheng AS, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, Banning AP, Neubauer S, Robson MD, Selvanayagam JB. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol. 2007;49(25):2440–9.CrossRefGoogle Scholar
  33. 33.
    Donahue KM, Weisskoff RM, Chesler DA, Kwong KK, Bogdanov AA Jr, et al. Improving MR quantification of regional blood volume with intravascular T1 contrast agents: accuracy, precision, and water exchange. Magn Reson Med. 1996;36(6):858–67.CrossRefGoogle Scholar
  34. 34.
    Li X, Huang W, Yankeelov TE, Tudorica A, Rooney WD, Springer CS Jr. Shutter-speed analysis of contrast reagent bolus-tracking data: preliminary observations in benign and malignant breast disease. Magn Reson Med. 2005;53(3):724–9.CrossRefGoogle Scholar
  35. 35.
    Donahue KM, Burstein D. Proton exchange rates in myocardial tissue with Gd-DTPA administration. New York; 1993.Google Scholar
  36. 36.
    Donahue KM, Weisskoff RM, Burstein D. Water diffusion and exchange as they influence contrast enhancement. J Magn Reson Imaging. 1997;7(1):102–10.CrossRefGoogle Scholar
  37. 37.
    Landis CS, Li X, Telang FW, Coderre JA, Micca PL, Rooney WD, et al. Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med. 2000;44(4):563–74.CrossRefGoogle Scholar
  38. 38.
    Wacker CM, Fidler F, Dueren C, Hirn S, Jakob PM, Ertl G, et al. Quantitative assessment of myocardial perfusion with a spin-labeling technique: preliminary results in patients with coronary artery disease. J Magn Reson Imaging. 2003;18(5):555–60.CrossRefGoogle Scholar
  39. 39.
    Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, et al. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology. 2000;215(1):189–97.CrossRefGoogle Scholar
  40. 40.
    Reeder SB, Atalay MK, McVeigh ER, Zerhouni EA, Forder JR. Quantitative cardiac perfusion: a noninvasive spin-labeling method that exploits coronary vessel geometry. Radiology. 1996;200(1):177–84.CrossRefGoogle Scholar
  41. 41.
    Zhang H, Shea SM, Park V, Li D, Woodard PK, Gropler RJ, Zheng J. Accurate myocardial T1 measurements: toward quantification of myocardial blood flow with arterial spin labeling. Magn Reson Med. 2005;53(5):1135–42.CrossRefGoogle Scholar
  42. 42.
    Klocke FJ, Simonetti OP, Judd RM, Kim RJ, Harris KR, Hedjbeli S, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation. 2001;104(20):2412–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations