Anatomy of the Heart and Great Arteries

  • Lawrence M. Boxt
  • Martin J. Lipton
Part of the Contemporary Cardiology book series (CONCARD)


The high temporal, spatial, and contrast resolution of ECG-gated cardiac magnetic resonance imaging techniques provides clinical imaging that can reliably differentiate between normal and abnormal cardiac structure. Furthermore, cardiac magnetic resonance imaging has become the “gold standard” for quantitative analysis of cardiac structure and function. Linear dimension of myocardial and arterial wall thickness and tomographic measurement of chamber area may be reliably reported. Linear and area measurements may be measured at end diastole and end systole, summed over the entire cardiac mass, or over the entire cardiac cycle, providing reference standards for measuring myocardial mass and right and left ventricular function. Changes in the regional myocardial signal intensity before, during, and after intravenous contrast administration reflect the state of ventricular myocardium, and may be used, in association with visualized morphologic changes to enhance diagnosis.


Heart Anatomy Pericardium Left ventricle Right ventricle Left atrium Right atrium Aorta Pulmonary veins Cardiac function 


  1. 1.
    Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus panel report. J Cardiovasc Magn Reson. 2004;6(4):727–65.CrossRefGoogle Scholar
  2. 2.
    Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 Expert consensus document on cardiovascular magnetic resonance. J Am Coll Cardiol. 2010;55(23):2614–62.CrossRefGoogle Scholar
  3. 3.
    Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson. 2013;15:35–54.CrossRefGoogle Scholar
  4. 4.
    Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation. 1997;96(5):1432–7.CrossRefGoogle Scholar
  5. 5.
    Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol. 1997;146(5):483–94.CrossRefGoogle Scholar
  6. 6.
    O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults: cardiovascular risk study. N Engl J Med. 1999;340(1):14–22.CrossRefGoogle Scholar
  7. 7.
    Li AE, Kamel I, Rando F, Anderson M, Kumbasar B, Lima JA, et al. Using MRI to assess aortic wall thickness in the Multiethnic Study of Atherosclerosis: distribution by race, sex, and age. Am J Roentgenol. 2004;182(3):593–7.CrossRefGoogle Scholar
  8. 8.
    Mensel B, Quadrat A, Schneider T, Kühn JP, Dörr M, Völzke H, et al. MRI-based determination of reference values of thoracic aortic wall thickness in a general population. Eur Radiol. 2014;24(9):2038–44.CrossRefGoogle Scholar
  9. 9.
    Malayeri AA, Natori S, Bahrami H, Bertoni AG, Kronmal R, Lima JA, et al. Relation of aortic wall thickness and distensibility to cardiovascular risk factors (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol. 2008;102(4):491–6.CrossRefGoogle Scholar
  10. 10.
    Desai MY, Stone JH, Foo TK, Hellmann DB, Lima JA, Bluemke DA. Delayed contrast-enhanced MRI of the aortic wall in Takayasu’s arteritis: Initial experience. Am J Roentgenol. 2005;184(6):1427–31.CrossRefGoogle Scholar
  11. 11.
    Kato Y, Terashima M, Ohigashi H, Tezuka D, Ashikaga T, Hirao K, et al. Vessel wall inflammation of Takayasu arteritis detected by contrast-enhanced magnetic resonance imaging: Association with disease distribution and activity. PLoS One. 2015;10(12):e0145855.CrossRefGoogle Scholar
  12. 12.
    Mensel B, Heßelbarth L, Wenzel M, Kühn JP, Dörr M, Völzke H, et al. Thoracic and abdominal aortic diameters in a general population: MRI-based reference values and association with age and cardiovascular risk factors. Eur Radiol. 2016;26(4):969–78.CrossRefGoogle Scholar
  13. 13.
    Potthast S, Mitsumori L, Stanescu LA, Richardson ML, Branch K, Dubinsky TJ, et al. Measuring aortic diameter with different MR techniques: Comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging. 2010;31(1):177–84.CrossRefGoogle Scholar
  14. 14.
    Pontone G, Andreini D, Bartorelli AL, Bertella E, Mushtaq S, Gripari P, et al. Comparison of accuracy of aortic root annulus assessment with cardiac magnetic resonance versus echocardiography and multidetector computed tomography in patients referred for transcatheter aortic valve implantation. Am J Cardiol. 2013;112(11):1790–9.CrossRefGoogle Scholar
  15. 15.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR,STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. J Am Coll Cardiol. 2010;55(14):e27–e129.CrossRefGoogle Scholar
  16. 16.
    Ostberg JE, Brookes JA, McCarthy C, Halcox J, Conway GS. A comparison of echocardiography and magnetic resonance imaging in cardiovascular screening of adults with Turner syndrome. J Clin Endocrinol Metab. 2004;89(12):5966–71.CrossRefGoogle Scholar
  17. 17.
    Bannas P, Rybczynski M, Sheikhzadeh S, von Kodolitsch Y, Derlin T, Yamamura J, et al. Comparison of cine-MRI and transthoracic echocardiography for the assessment of aortic root diameters in patients with suspected Marfan syndrome. Fortschr Röntgenstr. 2015;187(11):1022–8.CrossRefGoogle Scholar
  18. 18.
    Jabbour A, Ismail TF, Moat N, Gulati A, Roussin I, Alpendurada F, et al. Multimodality imaging in transcatheter aortic valve implantation and post-procedural aortic regurgitation. J Am Coll Cardiol. 2011;58(21):2165–73.CrossRefGoogle Scholar
  19. 19.
    Friedman BJ, Waters J, Kwan OL, DeMaria AN. Comparison of magnetic resonance imaging and echocardiography in determination of cardiac dimensions in normal subjects. J Am Coll Cardiol. 1985;5(6):1369–76.CrossRefGoogle Scholar
  20. 20.
    Paelinck BP, Van Herck PL, Rodrigus I, Claeys MJ, Laborde JC, Parizel PM, et al. Comparison of magnetic resonance imaging of aortic valve stenosis and aortic root to multimodality imaging for selection of transcatheter aortic valve implantation candidates. Am J Cardiol. 2011;108(1):92–8.CrossRefGoogle Scholar
  21. 21.
    Goldstein SA, Evangelista A, Abbara S, Arai A, Asch FM, Badano LP, et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(2):119–82.CrossRefGoogle Scholar
  22. 22.
    Tsang W, Bateman MG, Weinert L, Pellegrini G, Mor-Avi V, Sugeng L, et al. Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart. 2012;98(15):1146–52.CrossRefGoogle Scholar
  23. 23.
    Burman ED, Keegan J, Kilner PJ. Aortic root measurement by cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2008;1:104–13.CrossRefGoogle Scholar
  24. 24.
    Davis AE, Lewandowski AJ, Holloway CJ, Ntusi NAB, Banerjee R, Nethononda R, et al. Observational study of regional aortic size referenced to body size: production of a cardiovascular magnetic resonance nomogram. J Cardiovasc Magn Reson. 2014;16:9.CrossRefGoogle Scholar
  25. 25.
    Kaiser T, Kellenberger CJ, Albisetti M, Bergsträsser E, Valsangiacomo Buechel ER. Normal values for aortic diameters in children and adolesents—assessment in vivo with contrast-enhanced CMR-angiography. J Cardiovasc Magn Reson. 2008;10:56.CrossRefGoogle Scholar
  26. 26.
    Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH. Aortic stiffness. J Am Coll Cardiol. 2011;57(14):1511–22.CrossRefGoogle Scholar
  27. 27.
    Herment A, Kachenoura N, Lefort M, Bensalah M, Dogui A, Frouin F, et al. Automated segmentation of the aorta from phase contrast MR images: validation against expert tracing in healthy volunteers and in patients with a dilated aorta. J Magn Reson Imaging. 2010;31(4):881–8.CrossRefGoogle Scholar
  28. 28.
    Turkbey EB, Jain A, Johnson C, Redheuil A, Arai AE, Gomes AS, et al. Determinants and normal values of ascending aortic diameter by age, gender, and race/ethnicity in the Multi-Ethnic Study of Atherosclerosis (MESA). J Magn Reson Imaging. 2014;39(2):360–8.CrossRefGoogle Scholar
  29. 29.
    Grotenhuis HB, Westenberg JJ, Steendijk P, van der Geest RJ, Ottenkamp J, Bax JJ, et al. Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J Magn Reson Imaging. 2009;30(3):521–6.CrossRefGoogle Scholar
  30. 30.
    Wentland AL, Grist TM, Wieben O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther. 2014;4(2):193–206.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD, et al. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:77–90.CrossRefGoogle Scholar
  32. 32.
    Garcier J-M, Petitcolin V, Filaire M, Mofid R, Azarnouch K, Ravel A, et al. Normal diameter of the thoracic aorta in adults: a magnetic resonance imaging study. Surg Radiol Anat. 2003;25(3):322–9.CrossRefGoogle Scholar
  33. 33.
    Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S, et al. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson. 2005;7(5):775–82.CrossRefGoogle Scholar
  34. 34.
    Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:20–62.CrossRefGoogle Scholar
  35. 35.
    Boerrigter B, Mauritz G-J, Marcus JT, Helderman F, Postmus PE, Westerhof N, et al. Progressive dilatation of the main pulmonary artery is a characteristic of pulmonary arterial hypertension and is not related to changes in pressure. Chest. 2010;138(6):1395–401.CrossRefGoogle Scholar
  36. 36.
    Paz R, Mohiaddin RH, Longmore DB. Magnetic resonance assessment of the pulmonary arterial trunk anatomy, flow, pulsatility and distensibility. Eur Heart J. 1993;14(11):1524–30.CrossRefGoogle Scholar
  37. 37.
    Rodevand O, Bjornerheim R, Ljosland M, Maehle J, Smith HJ, Ihlen H. Left atrial volumes assessed by three- and two-dimensional echocardiography compared to MRI estimates. Int J Card Imaging. 1999;15(5):397–410.CrossRefGoogle Scholar
  38. 38.
    Maceira AM, Cosin-Sales J, Roughton M, Prasad SK, Pennell DJ. Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:65–75.CrossRefGoogle Scholar
  39. 39.
    Dickfeld T, Kato R, Zviman M, Lai S, Meininger G, Lardo AC, et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2006;47(2):370–8.CrossRefGoogle Scholar
  40. 40.
    Peters DC, Wylie JV, Hauser TH, Kissinger KV, Botnar RM, Essebag V, et al. Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology. 2007;243(3):690–5.CrossRefGoogle Scholar
  41. 41.
    Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119(113):1758–67.CrossRefGoogle Scholar
  42. 42.
    Seitz J, Horvilleur J, Lacotte J, et al. Correlation between AF substrate ablation difficulty and left atrial fibrosis quantified by delayed-enhancement cardiac magnetic resonance. Pacing Clin Electrophysiol. 2011;34(10):1267–77.CrossRefGoogle Scholar
  43. 43.
    Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA, et al. Regional heterogeniety of human myocardial infarcts demonstrated by contrast-enhanced MRI: potential mechanisms. Circulation. 1995;92(5):1117–25.CrossRefGoogle Scholar
  44. 44.
    Kim RJ, Chen EL, Lima JA, Judd RM, et al. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation. 1996;94(12):3318–26.CrossRefGoogle Scholar
  45. 45.
    Flacke SJ, Fischer SE, Lorenz CH. Measurement of the gadopentetate dimeglumine partion coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology. 2001;218(3):703–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lawrence M. Boxt
    • 1
  • Martin J. Lipton
    • 2
  1. 1.Department of RadiologyEnglewood Hospital Medical CenterEnglewoodUSA
  2. 2.Department of RadiologyPritzker School of Medicine, University of ChicagoChicagoUSA

Personalised recommendations