Advertisement

Cardiac T1 Mapping

  • Michael Jerosch-HeroldEmail author
  • Ravi Teja Seethamraju
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Cardiac T1 mapping is a method for mapping the myocardial T1 relaxation properties with single-pixel resolution, in its native state (i.e., pre-contrast state), and after administration of a paramagnetic, extracellular contrast agent. Both native T1 and the change of the myocardial T1 relative to its native state (preferably normalized by the change of T1 in blood) have become important biomarkers to detect abnormal water homeostasis and adverse myocardial remodeling, respectively, in a broad range of cardiac diseases. The quest to optimize accuracy, precision, and reproducibility of these biomarkers has driven the development of T1 mapping techniques, both in terms of pulse sequence design and of post-processing to overcome sequence and acquisition imperfections. These technical advances also led to the realization that myocardial T1 relaxation times do not represent an intrinsic tissue property that is independent of the applied pulse sequence technique, but instead encompasses probing a mixture of T1 relaxation mechanisms, that depends on the pulse sequence technique. Untangling different T1 relaxation mechanisms will likely remain a challenge for cardiac T1 mapping, in particular when limited to native T1 measurements, but this will not necessarily impede the detection of disease, assuming that normative values have been established with the same T1 mapping technique as used in patients.

Keywords

T1 relaxation time Myocardium Fibrosis Edema Gadolinium Contrast agent Biomarker 

References

  1. 1.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.CrossRefGoogle Scholar
  2. 2.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:42.CrossRefGoogle Scholar
  3. 3.
    Salerno M, Kramer CM. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging. 2013;6(7):806–22.CrossRefGoogle Scholar
  4. 4.
    Look D, Locker D. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum. 1970;41:250–1.CrossRefGoogle Scholar
  5. 5.
    Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.CrossRefGoogle Scholar
  6. 6.
    Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med. 2014;71(6):2082–95.CrossRefGoogle Scholar
  7. 7.
    Weingartner S, Roujol S, Akcakaya M, Basha TA, Nezafat R. Free-breathing multislice native myocardial T1 mapping using the slice-interleaved T1 (STONE) sequence. Magn Reson Med. 2014;74(1):115–24.CrossRefGoogle Scholar
  8. 8.
    Marty B, Vignaud A, Greiser A, Robert B, de Sousa PL, Carlier PG. BLOCH equations-based reconstruction of myocardium T1 maps from modified look-locker inversion recovery sequence. PLoS One. 2015;10(5):e0126766.CrossRefGoogle Scholar
  9. 9.
    Xanthis CG, Venetis IE, Chalkias AV, Aletras AH. MRISIMUL: a GPU-based parallel approach to MRI simulations. IEEE Trans Med Imaging. 2014;33(3):607–17.CrossRefGoogle Scholar
  10. 10.
    Cooper MA, Nguyen TD, Spincemaille P, Prince MR, Weinsaft JW, Wang Y. How accurate is MOLLI T1 mapping in vivo? Validation by spin echo methods. PLoS One. 2014;9(9):e107327.CrossRefGoogle Scholar
  11. 11.
    Kellman P, Herzka DA, Hansen MS. Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med. 2014;71(4):1428–34.CrossRefGoogle Scholar
  12. 12.
    de Jong S, Zwanenburg JJ, Visser F, der Nagel R, van Rijen HV, Vos MA, et al. Direct detection of myocardial fibrosis by MRI. J Mol Cell Cardiol. 2011;51(6):974–9.CrossRefGoogle Scholar
  13. 13.
    Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med. 2013;70:664.CrossRefGoogle Scholar
  14. 14.
    Landis CS, Li X, Telang FW, Molina PE, Palyka I, Vetek G, Springer CS Jr. Equilibrium transcytolemmal water-exchange kinetics in skeletal muscle in vivo. Magn Reson Med. 1999;42(3):467–78.CrossRefGoogle Scholar
  15. 15.
    Coelho-Filho O, Mongeon F-P, Mitchell RM, Moreno H, Nadruz Junior W, Kwong RY, Jerosch-Herold M. The role of transcytolemmal water exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging. 2012.; in pressGoogle Scholar
  16. 16.
    Coelho-Filho OR, Shah RV, Mitchell R, Neilan TG, Moreno H Jr, Simonson B, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation. 2013;128(11):1225–33.CrossRefGoogle Scholar
  17. 17.
    Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;272(3):683–9.CrossRefGoogle Scholar
  18. 18.
    Sparrow P, Messroghli DR, Reid S, Ridgway JP, Bainbridge G, Sivananthan MU. Myocardial T1 mapping for detection of left ventricular myocardial fibrosis in chronic aortic regurgitation: pilot study. Am J Roentgenol. 2006;187(6):W630–5.CrossRefGoogle Scholar
  19. 19.
    Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52(19):1574–80.CrossRefGoogle Scholar
  20. 20.
    Flacke SJ, Fischer SE, Lorenz CH. Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology. 2001;218(3):703–10.CrossRefGoogle Scholar
  21. 21.
    Harris PA, Lorenz CH, Holburn GE, Overholser KA. Regional measurement of the Gd-DTPA tissue partition coefficient in canine myocardium. Magn Reson Med. 1997;38(4):541–5.CrossRefGoogle Scholar
  22. 22.
    Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, et al. Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol-Heart Circ Physiol. 2008;295(3):H1234–42.CrossRefGoogle Scholar
  23. 23.
    Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6(3):415–22.CrossRefGoogle Scholar
  24. 24.
    Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43(12):2260–4.CrossRefGoogle Scholar
  25. 25.
    Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6(4):475–84.CrossRefGoogle Scholar
  26. 26.
    Flett AS, Sado DM, Quarta G, Mirabel M, Pellerin D, Herrey AS, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2012;13(10):819–26.CrossRefGoogle Scholar
  27. 27.
    Lee SP, Lee W, Lee JM, Park EA, Kim HK, Kim YJ, Sohn DW. Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology. 2015;274(2):359–69.CrossRefGoogle Scholar
  28. 28.
    Kuruvilla S, Janardhanan R, Antkowiak P, Keeley EC, Adenaw N, Brooks J, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging. 2015;8(2):172–80.CrossRefGoogle Scholar
  29. 29.
    Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48.CrossRefGoogle Scholar
  30. 30.
    Carberry J, Carrick D, Haig C, Rauhalammi SM, Ahmed N, Mordi I, et al. Remote zone extracellular volume and left ventricular remodeling in survivors of ST-elevation myocardial infarction. Hypertension. 2016;68(2):385–91.CrossRefGoogle Scholar
  31. 31.
    Bandula S, Banypersad SM, Sado D, Flett AS, Punwani S, Taylor SA, et al. Measurement of tissue interstitial volume in healthy patients and those with amyloidosis with equilibrium contrast-enhanced MR imaging. Radiology. 2013;268(3):858–64.CrossRefGoogle Scholar
  32. 32.
    Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2013;6(1):34–9.CrossRefGoogle Scholar
  33. 33.
    Campbell-Washburn AE, Price AN, Ellmerich S, Simons JP, Al-Shawi R, Kalber TL, et al. Monitoring systemic amyloidosis using MRI measurements of the extracellular volume fraction. Amyloid. 2013;20(2):93–8.CrossRefGoogle Scholar
  34. 34.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson. 2014;16:36.CrossRefGoogle Scholar
  35. 35.
    Kali ACE, Sharif B, Kim YJ, Bi X, Spottiswoode B, Cokic I, et al. Native T1 mapping by 3-T CMR imaging for characterization of chronic myocardial infarctions. JACC Cardiovasc Imaging. 2015;8:1019–30.CrossRefGoogle Scholar
  36. 36.
    Dall’Armellina E, Ferreira VM, Kharbanda RK, Prendergast B, Piechnik SK, Robson MD, et al. Diagnostic value of pre-contrast T1 mapping in acute and chronic myocardial infarction. JACC Cardiovasc Imaging. 2013;6(6):739–42.CrossRefGoogle Scholar
  37. 37.
    Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36(4):244–51.CrossRefGoogle Scholar
  38. 38.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):157–65.CrossRefGoogle Scholar
  39. 39.
    Kramer CM, Appelbaum E, Desai MY, Desvigne-Nickens P, DiMarco JP, Friedrich MG, et al. Hypertrophic cardiomyopathy registry: the rationale and design of an international, observational study of hypertrophic cardiomyopathy. Am Heart J. 2015;170(2):223–30.CrossRefGoogle Scholar
  40. 40.
    Nacif MS, Kawel N, Lee JJ, Chen X, Yao J, Zavodni A, et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology. 2012;264(3):876–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michael Jerosch-Herold
    • 1
    Email author
  • Ravi Teja Seethamraju
    • 2
  1. 1.Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of MR/R&DSiemens HealthcareBostonUSA

Personalised recommendations