Interventional Cardiovascular MRI

  • Toby Rogers
  • Robert J. LedermanEmail author
Part of the Contemporary Cardiology book series (CONCARD)


Interventional cardiovascular MRI (or “iCMR”) is potentially revolutionary because of the exquisite tissue and blood imaging afforded to guide therapeutic procedures. By making small compromises in spatial or temporal resolution, and with little or no modifications to commercial high-performance MRI systems, images can be acquired and displayed almost instantaneously to operators. This may be useful simply to avoid ionizing radiation during conventional catheter-based procedures, especially in children. Perhaps more important, iCMR promises to enable more advanced procedures not otherwise possible without open surgical exposure.


Interventional cardiovascular MRI Catheter devices Coronary artery disease Peripheral vascular disease Cardiac catheterization Cardiac electrophysiology 



Supported by NIH Z01-HL005062.


  1. 1.
    Johnson JN, Hornik CP, Li JS, Benjamin DK Jr, Yoshizumi TT, Reiman RE, et al. Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation. 2014;130(2):161–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Venneri L, Rossi F, Botto N, Andreassi MG, Salcone N, Emad A, et al. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. Am Heart J. 2009;157(1):118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Duerk JL, Butts K, Hwang KP, Lewin JS. Pulse sequences for interventional magnetic resonance imaging. Top Magn Reson Imaging. 2000;11(3):147–62.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Peters DC, FRKTMGWFBJEHKKVCAM. Undersampled projection reconstruction applied to MR angiography. Magn Reson Med. 2000;43(1):91–101.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation. 2003;108(23):2899–904.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Elgort DR, Wong EY, Hillenbrand CM, Wacker FK, Lewin JS, Duerk JL. Real-time catheter tracking and adaptive imaging. J Magn Reson Imaging. 2003;18(5):621–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Dick AJ, Raman VK, Raval AN, Guttman MA, Thompson RB, Ozturk C, et al. Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined XMR suite. Catheter Cardiovasc Interv. 2005;64(3):265–74.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    White MJ, Thornton JS, Hawkes DJ, Hill DL, Kitchen N, Mancini L, et al. Design, operation, and safety of single-room interventional MRI suites: practical experience from two centers. J Magn Reson Imaging. 2015;41(1):34–43.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lederman RJ. Cardiovascular interventional magnetic resonance imaging. Circulation. 2005;112(19):3009–17.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013;34(5):380–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Godart F, Beregi JP, Nicol L, Occelli B, Vincentelli A, Daanen V, et al. MR-guided balloon angioplasty of stenosed aorta: in vivo evaluation using near-standard instruments and a passive tracking technique. J Magn Reson Imaging. 2000;12(4):639–44.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Omary RA, Frayne R, Unal O, Warner T, Korosec FR, Mistretta CA, et al. MR-guided angioplasty of renal artery stenosis in a pig model: a feasibility study. J Vasc Interv Radiol. 2000;11(3):373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Raval AN, Telep JD, Guttman MA, Ozturk C, Jones M, Thompson RB, et al. Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in swine. Circulation. 2005;112(5):699–706.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Paetzel C, Zorger N, Bachthaler M, Hamer OW, Stehr A, Feuerbach S, et al. Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Investig Radiol. 2005;40(5):257–62.CrossRefGoogle Scholar
  15. 15.
    Paetzel C, Zorger N, Bachthaler M, Volk M, Seitz J, Herold T, et al. Feasibility of MR-guided angioplasty of femoral artery stenoses using real-time imaging and intraarterial contrast-enhanced MR angiography. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2004;176(9):1232–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Miquel ME, Hegde S, Muthurangu V, Corcoran BJ, Keevil SF, Hill DL, et al. Visualization and tracking of an inflatable balloon catheter using SSFP in a flow phantom and in the heart and great vessels of patients. Magn Reson Med. 2004;51(5):988–95.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362(9399):1877–82.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kuehne T, Yilmaz S, Schulze-Neick I, Wellnhofer E, Ewert P, Nagel E, et al. Magnetic resonance imaging guided catheterisation for assessment of pulmonary vascular resistance: in vivo validation and clinical application in patients with pulmonary hypertension. Heart. 2005;91(8):1064–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Buecker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, et al. Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging. 2000;12(4):616–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Delapaz RL, Bishop PL, et al. Feasibility of stent placement in carotid arteries with real-time MR imaging guidance in pigs. Radiology. 2005;234(2):558–62.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kuehne T, Saeed M, Higgins CB, Gleason K, Krombach GA, Weber OM, et al. Endovascular stents in pulmonary valve and artery in swine: feasibility study of MR imaging-guided deployment and postinterventional assessment. Radiology. 2003;226(2):475–81.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kee ST, Rhee JS, Butts K, Daniel B, Pauly J, Kerr A, et al. 1999 Gary J. Becker Young Investigator Award. MR-guided transjugular portosystemic shunt placement in a swine model. J Vasc Interv Radiol. 1999;10(5):529–35.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Manke C, Nitz WR, Djavidani B, Strotzer M, Lenhart M, Volk M, et al. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology. 2001;219(2):527–34.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ganesan AN, Selvanayagam JB, Mahajan R, Grover S, Nayyar S, Brooks AG, et al. Mapping and ablation of the pulmonary veins and cavo-tricuspid isthmus with a magnetic resonance imaging-compatible externally irrigated ablation catheter and integrated electrophysiology system. Circ Arrhythm Electrophysiol. 2012;5(6):1136–42.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hofmann LV, Liddell RP, Eng J, Wasserman BA, Arepally A, Lee DS, et al. Human peripheral arteries: feasibility of transvenous intravascular MR Imaging of the arterial wall. Radiology. 2005;235(2):617–22.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Larose E, Yeghiazarians Y, Libby P, Yucel EK, Aikawa M, Kacher DF, et al. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation. 2005;112(15):2324–31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, et al. MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson. 2012;14:38.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kocaturk O, Kim AH, Saikus CE, Guttman MA, Faranesh AZ, Ozturk C, et al. Active two-channel 0.035″ guidewire for interventional cardiovascular MRI. J Magn Reson Imaging. 2009;30(2):461–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Reddy V, Malchano Z, Dukkipati S, Holmvang G, Schmidt E, Dumoulin C, et al. Interventional MRI: electroanatomical mapping using real-time MR tracking of a deflectable catheter [Abstract]. Heart Rhythm. 2005;2(15):S279–S80.CrossRefGoogle Scholar
  30. 30.
    Dukkipati SR, Mallozzi R, Schmidt EJ, Holmvang G, d’Avila A, Guhde R, et al. Electroanatomic mapping of the left ventricle in a porcine model of chronic myocardial infarction with magnetic resonance-based catheter tracking. Circulation. 2008;118(8):853–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Vergara GR, Vijayakumar S, Kholmovski EG, Blauer JJ, Guttman MA, Gloschat C, et al. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla. Heart Rhythm. 2011;8(2):295–303.PubMedCrossRefGoogle Scholar
  32. 32.
    Bakker CJ, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP. Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med. 1996;36(6):816–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Bakker CJ, Bos C, Weinmann HJ. Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy. Magn Reson Med. 2001;45(1):17–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Buecker A, Spuentrup E, Schmitz-Rode T, Kinzel S, Pfeffer J, Hohl C, et al. Use of a nonmetallic guide wire for magnetic resonance-guided coronary artery catheterization. Investig Radiol. 2004;39(11):656–60.CrossRefGoogle Scholar
  35. 35.
    Tzifa A, Krombach GA, Kramer N, Kruger S, Schutte A, von Walter M, et al. Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv. 2010;3(6):585–92. Epub 2010/11/26PubMedCrossRefGoogle Scholar
  36. 36.
    Kantor HL, Briggs RW, Balaban RS. In vivo 31P nuclear magnetic resonance measurements in canine heart using a catheter-coil. Circ Res. 1984;55(2):261–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Martin AJ, Plewes DB, Henkelman RM. MR imaging of blood vessels with an intravascular coil. J Magn Reson Imaging. 1992;2(4):421–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Hurst GC, Hua J, Duerk JL, Cohen AM. Intravascular (catheter) NMR receiver probe: preliminary design analysis and application to canine iliofemoral imaging. Magn Reson Med. 1992;24(2):343–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Kandarpa K, Jakab P, Patz S, Schoen FJ, Jolesz FA. Prototype miniature endoluminal MR imaging catheter. J Vascul Interv Radio. 1993;4(3):419–27.CrossRefGoogle Scholar
  40. 40.
    Atalar E, Bottomley PA, Ocali O, Correia LC, Kelemen MD, Lima JA, et al. High resolution intravascular MRI and MRS by using a catheter receiver coil. Magn Reson Med. 1996;36(4):596–605.PubMedCrossRefGoogle Scholar
  41. 41.
    Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS, et al. Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil. Magn Reson Med. 2004;51(4):668–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Worthley SG, Helft G, Fuster V, Fayad ZA, Shinnar M, Minkoff LA, et al. A novel nonobstructive intravascular MRI coil: in vivo imaging of experimental atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(2):346–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Ladd ME, Erhart P, Debatin JF, Hofmann E, Boesiger P, von Schulthess GK, et al. Guidewire antennas for MR fluoroscopy. Magn Reson Med. 1997;37(6):891–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Ocali O, Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med. 1997;37(1):112–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Atalar E, Kraitchman DL, Carkhuff B, Lesho J, Ocali O, Solaiyappan M, et al. Catheter-tracking FOV MR fluoroscopy. Magn Reson Med. 1998;40(6):865–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Burl M, Coutts GA, Herlihy DJ, Hill-Cottingham R, Eastham JF, Hajnal JV, et al. Twisted-pair RF coil suitable for locating the track of a catheter. Magn Reson Med. 1999;41(3):636–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Rivas PA, Nayak KS, Scott GC, McConnell MV, Kerr AB, Nishimura DG, et al. In vivo real-time intravascular MRI. J Cardiosvas Magn Reson. 2002;4(2):223–32.CrossRefGoogle Scholar
  48. 48.
    Susil RC, Yeung CJ, Atalar E. Intravascular extended sensitivity (IVES) MRI antennas. Magn Reson Med. 2003;50(2):383–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Guttman MA, Ozturk C, Raval AN, Raman VK, Dick AJ, DeSilva R, et al. Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Reson Imaging. 2007;26(6):1429–35.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993;29(3):411–5.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Leung DA, Debatin JF, Wildermuth S, McKinnon GC, Holtz D, Dumoulin CL, et al. Intravascular MR tracking catheter: preliminary experimental evaluation. Am J Roentgenol. 1995;164(5):1265–70.CrossRefGoogle Scholar
  52. 52.
    Ladd ME, Zimmermann GG, McKinnon GC, von Schulthess GK, Dumoulin CL, Darrow RD, et al. Visualization of vascular guidewires using MR tracking. J Magn Reson Imaging. 1998;8(1):251–3.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Campbell-Washburn A, Rogers T, Xue H, Hansen MS, Lederman RJ, Faranesh AZ. Dual echo positive contrast bSSFP for real-time visualization of passive devices during MRI-guided cardiovascular catheterization. J Cardiovasc Magn Reson. 2014;16:88.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Srinivasan S, Ennis DB. Variable flip angle balanced steady-state free precession for lower SAR or higher contrast cardiac cine imaging. Magn Reson Med. 2014;71(3):1035–43.CrossRefGoogle Scholar
  55. 55.
    Wu X, Akgun C, Vaughan JT, Andersen P, Strupp J, Ugurbil K, et al. Adapted RF pulse design for SAR reduction in parallel excitation with experimental verification at 9.4 T. J Magn Reson. 2010;205(1):161–70.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ladd ME, Quick HH. Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med. 2000;43(4):615–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee C, McNamara C, Viohl I, inventors; Surgi-Vision, assignee. Connector and guidewire connectable thereto. United States patent 6,714,809. 2004.Google Scholar
  58. 58.
    Yeung CJ, Susil RC, Atalar E. RF safety of wires in interventional MRI: using a safety index. Magn Reson Med. 2002;47(1):187–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Serfaty JM, Yang X, Foo TK, Kumar A, Derbyshire A, Atalar E. MRI-guided coronary catheterization and PTCA: A feasibility study on a dog model. Magn Reson Med. 2003;49(2):258–63.PubMedCrossRefGoogle Scholar
  60. 60.
    Weiss S, Vernickel P, Schaeffter T, Schultz V, Gleich B, editors. A safe transmission line for interventional devices. 5th International MRI Symposium; 2004; BostonGoogle Scholar
  61. 61.
    Wong EY, Zhang Q, Duerk JL, Lewin JS, Wendt M. An optical system for wireless detuning of parallel resonant circuits. J Magn Reson Imaging. 2000;12(4):632–8. Epub 2000/10/24PubMedCrossRefGoogle Scholar
  62. 62.
    Konings MK, Bartels LW, van Swol CF, Bakker CJ. Development of an MR-safe tracking catheter with a laser-driven tip coil. J Magn Reson Imaging. 2001;13(1):131–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Eggers H, Weiss S, Boernert P, Boesiger P. Image-based tracking of optically detunable parallel resonant circuits. Magn Reson Med. 2003;49(6):1163–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Weiss S, Schaeffter T, Brinkert F, Kuhne T, Bücker A. Ein Verfahren zur sicheren Visualisierung und Lokalisierung von Kathetern fur MR-gefuhrte intravaskulare Prozeduren [An approach for safe visualization and localization of catheter during MR-guided intravascular procedures]. Z Med Phys. 2003;13(3):172–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Bell JA, Saikus CE, Ratnayaka K, Barbash IM, Faranesh AZ, Franson DN, et al. Active delivery cable tuned to device deployment state: enhanced visibility of nitinol occluders during preclinical interventional MRI. J Magn Reson Imaging. 2012;36(4):972–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Quick HH, Kuehl H, Kaiser G, Bosk S, Debatin JF, Ladd ME. Inductively coupled stent antennas in MRI. Magn Reson Med. 2002;48(5):781–90.PubMedCrossRefGoogle Scholar
  67. 67.
    Kivelitz D, Wagner S, Schnorr J, Wetzler R, Busch M, Melzer A, et al. A vascular stent as an active component for locally enhanced magnetic resonance imaging: initial in vivo imaging results after catheter-guided placement in rabbits. Investig Radiol. 2003;38(3):147–52.Google Scholar
  68. 68.
    Kuehne T, Fahrig R, Butts K. Pair of resonant fiducial markers for localization of endovascular catheters at all catheter orientations. J Magn Reson Imaging. 2003;17(5):620–4.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Quick HH, Zenge MO, Kuehl H, Kaiser G, Aker S, Massing S, et al. Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization. Magn Reson Med. 2005;53(2):446–55.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Spuentrup E, Ruebben A, Schaeffter T, Manning WJ, Gunther RW, Buecker A. Magnetic resonance – guided coronary artery stent placement in a swine model. Circulation. 2002;105(7):874–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wildermuth S, Dumoulin CL, Pfammatter T, Maier SE, Hofmann E, Debatin JF. MR-guided percutaneous angioplasty: assessment of tracking safety, catheter handling and functionality. Cardiovasc Intervent Radiol. 1998;21(5):404–10.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Yang X, Bolster BD Jr, Kraitchman DL, Atalar E. Intravascular MR-monitored balloon angioplasty: an in vivo feasibility study. J Vasc Interv Radiol. 1998;9(6):953–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Buecker A, Adam GB, Neuerburg JM, Kinzel S, Glowinski A, Schaeffter T, et al. Simultaneous real-time visualization of the catheter tip and vascular anatomy for MR-guided PTA of iliac arteries in an animal model. J Magn Reson Imaging. 2002;16(2):201–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Dion YM, Ben El Kadi H, Boudoux C, Gourdon J, Chakfe N, Traore A, et al. Endovascular procedures under near-real-time magnetic resonance imaging guidance: an experimental feasibility study. J Vasc Surg. 2000;32(5):1006–14.PubMedCrossRefGoogle Scholar
  75. 75.
    Wacker FK, Hillenbrand C, Elgort DR, Zhang S, Duerk JL, Lewin JS. MR imaging-guided percutaneous angioplasty and stent placement in a swine model: comparison of open- and closed-bore scanners. Acad Radiol. 2005;12(9):1085.PubMedCrossRefGoogle Scholar
  76. 76.
    Bartels LW, Bos C, van Der Weide R, Smits HF, Bakker CJ, Viergever MA. Placement of an inferior vena cava filter in a pig guided by high-resolution MR fluoroscopy at 1.5 T. J Magn Reson Imaging. 2000;12(4):599–605.PubMedCrossRefGoogle Scholar
  77. 77.
    Bücker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, et al. Real-time MR Guidance for inferior vena cava filter placement in an animal model. J Vasc Interv Radiol. 2001;12(6):753–6.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Frahm C, Gehl HB, Lorch H, Zwaan M, Drobnitzky M, Laub GA, et al. MR-guided placement of a temporary vena cava filter: technique and feasibility. J Magn Reson Imaging. 1998;8(1):105–9.CrossRefGoogle Scholar
  79. 79.
    Bücker A, Neuerburg JM, Adam G, Glowinski A, van Vaals JJ, Gunther RW. MR-gesteuerte Spiralembolisation von Nierenarterien in einem Tiermodell [MR-guided coil embolisation of renal arteries in an animal model]. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2003;175(2):271–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Fink C, Bock M, Umathum R, Volz S, Zuehlsdorff S, Grobholz R, et al. Renal embolization: feasibility of magnetic resonance-guidance using active catheter tracking and intraarterial magnetic resonance angiography. Investig Radiol. 2004;39(2):111–9.CrossRefGoogle Scholar
  81. 81.
    Seppenwoolde JH, Bartels LW, van der Weide R, Nijsen JF, van het Schip AD, Bakker CJ. Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Reson Imaging. 2006;23(2):123–9. Epub 2005/12/24PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Sampath S, DeSilva R, et al. Real-time MRI-guided endovascular recanalization of chronic total arterial occlusion in a swine model. Circulation. 2006;113(8):1101–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Raman VK, Karmarkar PV, Guttman MA, Dick AJ, Peters DC, Ozturk C, et al. Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol. 2005;45(12):2069–77.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Eggebrecht H, Quick HH. [Personal Communication]. 2005.Google Scholar
  85. 85.
    Schalla S, Saeed M, Higgins CB, Martin A, Weber O, Moore P. Magnetic resonance – guided cardiac catheterization in a swine model of atrial septal defect. Circulation. 2003;108(15):1865–70.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Guhde R, Delapaz RL, et al. Transfemoral catheterization of carotid arteries with real-time MR imaging guidance in pigs. Radiology. 2005;234(2):551–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Omary RA, Green JD, Schirf BE, Li Y, Finn JP, Li D. Real-time magnetic resonance imaging-guided coronary catheterization in swine. Circulation. 2003;107(21):2656–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Quick HH, Kuehl H, Kaiser G, Hornscheidt D, Mikolajczyk KP, Aker S, et al. Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion. Magn Reson Med. 2003;49(1):129–37.PubMedCrossRefGoogle Scholar
  89. 89.
    Buecker A, Spuentrup E, Grabitz R, Freudenthal F, Muehler EG, Schaeffter T, et al. Magnetic resonance-guided placement of atrial septal closure device in animal model of patent foramen ovale. Circulation. 2002;106(4):511–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Rickers C, Jerosch-Herold M, Hu X, Murthy N, Wang X, Kong H, et al. Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation. 2003;107(1):132–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Schalla S, Saeed M, Higgins CB, Weber O, Martin A, Moore P. Balloon sizing and transcatheter closure of acute atrial septal defects guided by magnetic resonance fluoroscopy: assessment and validation in a large animal model. J Magn Reson Imaging. 2005;21(3):204–11.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kuehne T, Yilmaz S, Meinus C, Moore P, Saeed M, Weber O, et al. Magnetic resonance imaging-guided transcatheter implantation of a prosthetic valve in aortic valve position: Feasibility study in swine. J Am Coll Cardiol. 2004;44(11):2247–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Lederman RJ, Guttman MA, Peters DC, Thompson RB, Sorger JM, Dick AJ, et al. Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation. 2002;105(11):1282–4.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Corti R, Badimon J, Mizsei G, Macaluso F, Lee M, Licato P, et al. Real time magnetic resonance guided endomyocardial local delivery. Heart. 2005;91(3):348–53.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, et al. MR-trackable intramyocardial injection catheter. Magn Reson Med. 2004;51(6):1163–72.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Krombach GA, Pfeffer JG, Kinzel S, Katoh M, Gunther RW, Buecker A. MR-guided percutaneous intramyocardial injection with an MR-compatible catheter: feasibility and changes in T1 values after injection of extracellular contrast medium in pigs. Radiology. 2005;235(2):487–94.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Saeed M, Lee R, Martin A, Weber O, Krombach GA, Schalla S, et al. Transendocardial delivery of extracellular myocardial markers by using combination X-ray/MR fluoroscopic guidance: feasibility study in dogs. Radiology. 2004;231(3):689–96.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hazel SJ, Paterson HS, Edwards JR, Maddern GJ. Surgical treatment of atrial fibrillation via energy ablation. Circulation. 2005;111(8):e103–6.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Susil RC, Yeung CJ, Halperin HR, Lardo AC, Atalar E. Multifunctional interventional devices for MRI: a combined electrophysiology/MRI catheter. Magn Reson Med. 2002;47(3):594–600.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lardo AC, McVeigh ER, Jumrussirikul P, Berger RD, Calkins H, Lima J, et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation. 2000;102(6):698–705.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hoffmann BA, Koops A, Rostock T, Mullerleile K, Steven D, Karst R, et al. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model. Eur Heart J. 2010;31(4):450–6.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Arepally A, Karmarkar PV, Weiss C, Rodriguez ER, Lederman RJ, Atalar E. Magnetic resonance image-guided trans-septal puncture in a swine heart. J Magn Reson Imaging. 2005;21(4):463–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Raval AN, Karmarkar PV, Guttman MA, Ozturk C, DeSilva R, Wright VJ, et al. Real-time MRI guided atrial septal puncture and balloon septostomy in swine. Catheter Cardiovasc Interv. 2006;67(4):637–43.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Barbash IM, Saikus CE, Faranesh AZ, Ratnayaka K, Kocaturk O, Chen MY, et al. Direct percutaneous left ventricular access and port closure: pre-clinical feasibility. JACC Cardiovasc Intervent. 2011;4(12):1318–25.CrossRefGoogle Scholar
  105. 105.
    Halabi M, Ratnayaka K, Faranesh AZ, Hansen MS, Barbash IM, Eckhaus MA, et al. Transthoracic delivery of large devices into the left ventricle through the right ventricle and interventricular septum: preclinical feasibility. J Cardiovasc Magn Reson. 2013;15(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ratnayaka K, Saikus CE, Faranesh AZ, Bell JA, Barbash IM, Kocaturk O, et al. Closed-chest transthoracic magnetic resonance imaging-guided ventricular septal defect closure in swine. JACC Cardiovasc Intervent. 2011;4(12):1326–34.CrossRefGoogle Scholar
  107. 107.
    Halabi M, Faranesh A, Schenke W, Wright V, Hansen M, Saikus C, et al. Real-time cardiovascular magnetic resonance subxiphoid pericardial access and pericardiocentesis using off-the-shelf devices in swine. J Cardiovasc Magn Reson. 2013;15(1):61.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kee ST, Ganguly A, Daniel BL, Wen Z, Butts K, Shimikawa A, et al. MR-guided transjugular intrahepatic portosystemic shunt creation with use of a hybrid radiography/MR system. J Vasc Interv Radiol. 2005;16(2 Pt 1):227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Arepally A, Kamarkar P, Weiss C, Atalar E. Percutaneous MR-guided transvascular access of the mesenteric venous system-study in a swine model [In Press]. Radiology. 2006;238(1):113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Paetzel C, Zorger N, Seitz J, Volk M, Nitz WR, Herold T, et al. Intraarterial contrast material-enhanced magnetic resonance angiography of the aortoiliac system. J Vasc Interv Radiol. 2004;15(9):981–4.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Rogers T, Ratnayaka K, Lederman RJ. MRI catheterization in cardiopulmonary disease. Chest. 2014;145(1):30–6.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25(5):1143–53.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Muthurangu V, Taylor A, Andriantsimiavona R, Hegde S, Miquel ME, Tulloh R, et al. Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation. 2004;110(7):826–34.PubMedCrossRefGoogle Scholar
  115. 115.
    Muthurangu V, Atkinson D, Sermesant M, Miquel ME, Hegde S, Johnson R, et al. Measurement of total pulmonary arterial compliance using invasive pressure monitoring and MR flow quantification during MR-guided cardiac catheterization. Am J Physiol Heart Circ Physiol. 2005;289(3):H1301–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Ohno Y, Hatabu H, Murase K, Higashino T, Nogami M, Yoshikawa T, et al. Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol. 2007;188(1):48–56.PubMedCrossRefGoogle Scholar
  117. 117.
    Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33(10):1268–78.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Nishimura RA, Carabello BA. Hemodynamics in the cardiac catheterization laboratory of the 21st century. Circulation. 2012;125(17):2138–50.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Fujimoto N, Borlaug BA, Lewis GD, Hastings JL, Shafer KM, Bhella PS, et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127(1):55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Blumberg FC, Arzt M, Lange T, Schroll S, Pfeifer M, Wensel R. Impact of right ventricular reserve on exercise capacity and survival in patients with pulmonary hypertension. Eur J Heart Fail. 2013;15(7):771–5.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Xue H, Kellman P, Larocca G, Arai AE, Hansen MS. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson. 2013;15:102.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Xue H, Inati S, Sorensen TS, Kellman P, Hansen MS. Distributed MRI reconstruction using gadgetron-based cloud computing. Magn Reson Med. 2015;73(3):1015–25PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Krueger JJ, Ewert P, Yilmaz S, Gelernter D, Peters B, Pietzner K, et al. Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study. Circulation. 2006;113(8):1093–100.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Eitel C, Piorkowski C, Hindricks G, Gutberlet M. Electrophysiology study guided by real-time magnetic resonance imaging. Eur Heart J. 2012;33(15):1975.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Grothoff M, Piorkowski C, Eitel C, Gaspar T, Lehmkuhl L, Lucke C, et al. MR imaging-guided electrophysiological ablation studies in humans with passive catheter tracking: initial results. Radiology. 2014;122671Google Scholar
  126. 126.
    Dickfeld T, Kato R, Zviman M, Lai S, Meininger G, Lardo AC, et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2006;47(2):370–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Arujuna A, Karim R, Caulfield D, Knowles B, Rhode K, Schaeffter T, et al. Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation: evidence from magnetic resonance imaging. Circulation: Arrhyth Electrophysiol. 2012;5(4):691–700.Google Scholar
  128. 128.
    Harrison JL, Jensen HK, Peel SA, Chiribiri A, Grøndal AK, Bloch LØ, et al. Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur Heart J. 2014 Jun 7;35(22):1486–95.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Celik H, Ramanan V, Barry J, Ghate S, Leber V, Oduneye S, et al. Intrinsic contrast for characterization of acute radiofrequency ablation lesions. Circ Arrhythm Electrophysiol. 2014;7(4):718–27Google Scholar
  130. 130.
    Ranjan R, Kato R, Zviman MM, Dickfeld TM, Roguin A, Berger RD, et al. Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circ Arrhythm Electrophysiol. 2011;4(3):279–86.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ranjan R, Kholmovski EG, Blauer J, Vijayakumar S, Volland NA, Salama ME, et al. Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circ Arrhythm Electrophysiol. 2012;5(6):1130–5.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Peters DC, Wylie JV, Hauser TH, Nezafat R, Han Y, Woo JJ, et al. Recurrence of atrial fibrillation correlates with the extent of post-procedural late gadolinium enhancement: a pilot study. JACC Cardiovasc Imaging. 2009;2(3):308–16.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CardiovascularNational Institutes of Health, National Heart, Lung, and Blood InstituteBethesdaUSA
  2. 2.Cardiovascular, Division of Intramural ResearchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations